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In this paper a boundary method is used to numerically solve the problem of scattering of SH waves by a
bounded surface cavity or arbitrary shape in a half-space. This method reduces the dimension of the problem by
one, but avoids the introduction of singular integral equations. A close connection is established between this meth-
od and least-squares collocation. Results are obtained using a multipole expansion in terms of Hankel functions
about the origin. Comparison with some known exact solutions for SH wave motion yields very good agreement. It
is observed that, in the case of a trench with steep walls, local amplification factors can sometimes significantly exceed

100%.

1. Introduction

In earthquake engineering and strong-motion seis-
mology, the surface motion at a given site due to
incoming seismic waves is of interest. For rough topo-
graphy this problem may be approached as one of
scattering and diffraction of elastic waves by depar-
tures from flatness. Owing to its mathematical com-
plexity the problem has not been completely solved.
There are a few known exact solutions (Trifunac,
1973; Wong and Trifunac, 1974). Also, some approx-
imate solutions have been obtained, for example by
singular perturbations (Sabina and Willis, 1975, 1977)
for scatterers of arbitrary shape, with approximations
valid for long wavelengths. Other approximate
methods assume the scattering surface to have small
slope, and dimensions comparable with the wave-
length of the incident wave (Gilbert and Knopoff,
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1960; Mclvor, 1969; Aki and Larner, 1970; Bouchon,
1973; Bouchon and Aki, 1977a, b; Hudson, 1977).

Therefore, it is of interest to search for other
numerical methods, suitable for scatterers of arbitrary
shape, and with dimensions similar to the wavelength
of the incident wave. Indeed, many such solutions
have been produced (Boore, 1972a, b; Smith, 1975;
Wong and Jennings, 1975; Ilan, 1977, Singh and
Sabina, 1977;Ilan et al., 1979; Sabina et al., 1978;
Sdnchez-Sesma, 1978; Sdnchez-Sesma and Rosen-
blueth, 1978, 1979; Sills, 1978). In particular, finite dif-
ference and finite element methods introduce artifi-
cial boundaries and contaminating reflected waves,
while some others assume a periodic repetition of the
scatterer in space, in order to reduce the unbounded
region to a finite one.

In this paper, consideration is given to the problem
of scattering of a plane harmonic SH wave, incident
upon a bounded surface cavity in an otherwise plane
traction-free boundary. In the method of solution,
the scattered field is represented as a linear combina-
tion of known solutions of the boundary value
problem for the unmodified half-space. The coeffi-



cients are chosen to minimize the mean-square error
in the boundary condition on the cavity. The
development of this approach has been guided by a
recently developed theory of connectivity (Herrera,
1977a, b), which allows a systematic formulation of
boundary methods (Herrera, 1978), applicable to
many other problems, and which leads naturally to
the complete system of functions used here for the
half-space (Herrera and Sabina, 1978). However, the
corresponding system of functions for problems for-
mulated in the whole space has been used extensively
in the null-field method of acoustic and electromag-
netism (Bates, 1975). Minimization of the mean-
square error on the boundary is a standard technique
(Kantorovich and Krylov, 1964; Collatz, 1960) whose
implications have not been fully realized until
recently. For a similar problem, Millar (1973) has
shown that when the mean-square error is minimized
on the boundary, the resulting representation con-
verges uniformly to the solution of the problem, pro-
vided that a complete set of functions is chosen, as is
the case in the present work. The procedure pre-
sented here is a boundary method, and as such it has
the advantage of reducing the dimensionality of the
problem. In connection with electromagnetic scat-
tering problems, this method was proposed by
Yasuura (1971), and was used by Meecham (1956)
and Ikuno and Yasuura (1973) for a periodic surface
and by Yasuura and Ikuno (1971) for a bounded scat-
terer. A related least-squares boundary method is
given by Davies (1973).

2. Statement of the problem

Consider a two-dimensional half-space, y >0 (as in
Fig. 1), consisting of two parts: an unbounded region
E, and a bounded region R which contains the origin
of coordinates O. Let the boundary of £ be 8E and
the common boundary between R and E be S. The
surface S is assumed smooth in the sense of having a
continuously turning unit normal vector fi. The
unbounded region F is filled with a linear elastic,
homogeneous, isotropic medium of density p and
rigidity u; shear wave velocity is § = (o/u)!/2. On the
other hand, the bounded region R, having a charac-
teristic horizontal linear dimension 2a, is empty. The
surface oF is traction-free.
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Fig. 1. Illustrative topography of two-dimensional half-space.

A state of antiplane shear deformation and har-
monic motions in time is considered, so that the only
non-zero component of the displacement is
w =w(x, y) exp(—iwt) in the z (out-of-plane) direc-
tion, where w is the circular frequency. Consider a
plane harmonic SH wave w' of unit amplitude, inci-
dent upon R at an angle ¢ measured with respect to
the x-axis (Fig. 1), where
w' = exp[ik(—x cos ¢ +y sin )]
with k = w/B. For convenience, the factor exp(iwt) is
omitted here and henceforth.

In the absence of the scattering region R, i.e., if the
surface were flat, a reflected plane harmonic SH wave

w' = exp[—ik(x cos ¢ +y sin ¢)]

would arise, so that a total field w® = wf + w" would be
produced in y > 0.

In the presence of R, the scattered wave w, produced
by R, is sought, such that the total field w* may be
written as

t=

w=wl+winF

Thus the scattered field satisfies the following
boundary value problem

Viw +k*w =0in E 1)
ow/on = —aw°/dn on OF 2)

and w satisfies Sommerfeld’s outward radiation con-
dition at infinity, where V> = 32/ax? + 92/9y? is the
Laplacian operator in two dimensions, and 8/0n is the
derivative in the direction of the outward normal fi to
9F. It may be observed that the right-hand side of eq.
2 is, in general, non-zero only on §, i.e. the common
boundary between R and E.
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Once w is found, the total field w? can be deter-
mined. In strong-motion seismology it is of interest to
find the surface field (i.e. w* on 3E), especially on
and near S. A method for doing this is described here.

3. Method of solution

Consider a set of linearly independent functions
vi(x) f(i =0,1,2,..)

not necessarily orthogonal, that have the following
properties.

(i) Each v; is a solution of the partial differential
equation (1) in F.

(ii) Each y; fulfils dv;/on=0ony = 0.

(iii) Each v; satisfies a Sommerfeld outgoing radia-
tion condition at infinity.

Let the Nth approximation to w be

N
W) = 27 of'u(x) 3)

where the superindex NV on the complex coefficients
ofY has been introduced to make explicit their
dependence on the order of the approximation. Note
that, because of the linearity of properties (i) to (iii),
wy also satisfies them forevery N=0, 1, 2, ... . How-
ever, the boundary condition given by eq. 2 is not
necessarily satisfied on S. Hence the coefficients in
(3) will be chosen so that the mean-square error on
the boundary

dwy , dw?

2
612V=*Sf~5n— on ds/sf

is minimized. This approximating method may be
referred to as a boundary method (Collatz, 1960, p.
28). Note that the dimension of the problem has been
reduced by one.

By substituting (3) into (4) and minimizing the
resulting expression, an (N + 1) X (N + 1) system of
linear algebraic equations is obtained, which may be
written as:

2
ds )

aw°
on

Aa=f (%)

where the elements of the matrix 4 and the vector

f are
ai; = [ (@5;_,/an)(@v;_ 1/om) ds ®)
N
fi=~ [ @0,_1/on)ow® fom) ds @)
S

The bar stands for the complex conjugate. The matrix
A = [a;;] is Hermitian and positive definite —a numer-
ically advantageous fact.

In general, it is not possible to find closed forms of
the integrals (6) and (7). Thus it is necessary to use
numerical integration to obtain values of the coeffi-
cients (6) and the inhomogeneous term (7) before
solving the system (5). By choosing an appropriate M-
point quadrature rule with weights p, and abscissae
S, the following approximations are obtained

M
iy = 2 P00, -1/ O KBV, -1 fom)s)

M
fi=— kZ)l Pr(Sk)OT; -1 /0nXsi W® 0n)(si)

or, in matrix notation

A=B"PB, f=BTpg,

where B is an M X (N + 1) matrix, BT is its transpose,
Pis an M X M diagonal matrix, g is an M vector, and
their elements are given by

bij = (Qv;_1/On)(s;),  pij = pi(si) 85

g = —(aw°/on)(s;)

Here, §;; are the elements of the unit matrix.
Hence the system (5) may be rewritten as

B"PBa=BTpg (8)

For given M, this system is solved for the coeffi-
cients o, and finally (3) gives the scattered field at
any desired point in E, or, in particular on 9E.

Before discussing the numerical details of the solu-
tion of (8), a close relationship with the collocation
method will be established.



4. The collocation method

As above, it is assumed that the Nth approxima-
tion to w is given by (3). In this case, the remaining
boundary condition on S is imposed directly on wy
at M points, in order to obtain the coefficients, i.e.

N

3 aw®
Lol 6 == - @) ke S (=1,2,., M,

or, in matrix notation
Ba=g

This is pure collocation at M points. It is not clear
where these points ought to be chosen, or how many
of them should be used, but they are usually taken
with a distribution which is as uniform as possible
(Collatz, 1960, p. 29). The choice M =N + 1, sug-
gested by the need for a determinate (N + 1) X
(NV + 1) system of algebraic equations, was used in
electromagnetic theory under the name of a point
matching method. Its advantages and disadvantages
have already been widely discussed (for example,
Lewin, 1970). Another possible choice is M > N,

A least-squares solution of the overdetermined system
may be found by minimizing T/ r where r = Ba — g is
the residual vector of the system. It is well-known
(Noble, 1969, p. 143) that (B7B)"'BT is the general
ized inverse of B with the minimization property.
When the solution thus found is not completely satis-
factory, some equations are considered more impor-
tant than others. It is usually a matter of experience
to choose convenient positive weights for each equa-
tion. Thus a new system may be obtained

QBa =Q0g €))

where Q is an M X M diagonal matrix of positive ele-
ments. The least-squares solution of (9) is obtained
after premultiplying it by BTQ to obtain the general-
ized inverse (BTQ?B)™' BTQ of QB. When P =02,
the solution is identical with that of (8), which was
derived differently. This shows a close connection
between the series expansion in non-orthogonal func-
tions, and the collocation method via least-squares.
Furthermore, it gives a clearer picture of the meaning
of weights which otherwise would need to be guessed.
An analogous relation was given by Ikuno and
Yasuura (1973) for a periodic surface.
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5. Multipole expansion

So far, the set of functions vi(x) is as general as
possible: to proceed further it is necessary to specify
them.

Consider the set of cylindrical wave functions

v; = H Y (kr) cos(i8) (i=0,1,2, ..) (10)

where H{!(kr) is the Hankel function of the first
kind, of order i, and (r, 8) are the polar coordinates
of the point (x, y). This set satisfies all the conditions
(i) to (iii). Thus (3) is the (¥ + 1)th order multipole
expansion of w in terms of Hankel functions about
the origin.

This particular choice has interesting conse-
quences: (a) the set of functions {0v;/dn} is complete
with respect to all functions that are square-integrable
on S; and (b) 8wy/0n converges uniformly in S to
ow/dn in the mean-square sense. These facts can be
proved by adapting the work of Millar (1973), who
dealt with the full two-dimensional problem. Further-
more, wy converges uniformly in £ to the solution w
of (1) and (2) in the mean-square sense.

It is worthwhile observing that when S is a semi-
circle of radius a, the functions H,(‘)(kr) and their
derivatives are constant on S, and the set of basis
functions {v;} or {9v;/9n} is orthogonal on S in the
sense that the matrix A is diagonal. The coefficients
of are then independent of N, and eq. 3 represents
simply N + 1 terms of the trigonometric Fourier
series for w at any fixed value of r.

When S departs slightly from a circle, it seems
reasonable to expect that the set {0v,/dn} departs
very little from the orthogonality condition on S in
the sense that the matrix 4 is “numerically”’ diagonal,
i.e. the magnitude of the diagonal elements is much
larger than that of the off-diagonal elements.

6. Other expansions

Other sets of functions could be chosen. For

instance

v;i(x) = G(x,x;) (i=0,1,2,..)

where each x; is a distinct point in R and G(x, x;) is
the Green’s function for the Neumann problem corre-
sponding to the Helmholtz equation in the half-space.
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Such a set was used by Sdnchez-Sesma and Rosen-
blueth (1978, 1979), in what is essentially a collocation
method and least-squares solution.

A multipole expansion in terms of Mathieu func-
tions is another possible set. Its completeness and
uniform convergence in the mean-square sense may
be established along similar lines to those indicated
here. Many other sets are possible, but a complete
study of all possible sets is beyond the scope of this

paper.

7. Numerical considerations

Since the displacement w is a complex function, it
is necessary to calculate its modulus and phase, as
functions of the normalized abscissa x/a

lwl= [(Re w)? + (Im w)?] '/
ph(w) = tan"'(Im w/Re w)

The latter is arbitrarily divided by a normalizing
factor 27, mainly to facilitate comparison with other
known solutions. In addition, the appropriate value
of tan™" is chosen to make ph(w) a continuous func-
tion, and a constant is subtracted to make its value
zero at xfa = 0.

To deal with incident waves of different frequen-
cies for fixed topography, a normalized frequency (or
wavenumber), 1 is introduced, where
n = wafnf = ka/n .

Evaluation of (4) provides a criterion for the
accuracy achieved as a function of the order of the
approximation N. Also, by repeating the method for
different values of N, it may be concluded that suffi-
cient accuracy has been obtained when two solutions
differ on § by less than the required error bound.

In addition to the value of N, it is necessary to fix
some integration rule for the evaluation of egs. 6 and
7. In view of the factor cos if in v;, there are inte-
grands in eq. 6 with up to V complete oscillations on
S. Numerical experiments have given very poor results
when the integration rule used fewer than 2/ points,
confirming a result from Yasuura and Ikuno (1971).
Further, by varying the distribution of points, unsat-
isfactory results have been obtained, with fewer than
two integration points in each cycle of the factor
cos?(V8) in by This suggests that  is the most suit-
able parameter to use in the equation of the curve S.

A compound trapezoidal rule, with equal intervals in
0, clearly showed convergence to a single value for
each of the of" as the number of points increased
above 2. However, to obtain values of oY with 1%
accuracy, as many as 10V points were needed, using
that rule. Nevertheless, the same precision is attain-
able with fewer points using integration rules of
higher order, provided the curve S, r = H8), is suffi-
ciently smooth. In particular, with a compound nine-
point Lobatto rule — coefficients from Stroud and
Secrest (1966) — approximately 3V points were suffi-
cient. A further increase in order did not appear pro-
ductive, presumably because, with increasing irregu-
larity of the distribution of integration points, more
than 3N points are required to maintain two in each
cycle for cos?(NO).

Having evaluated egs. 6 and 7, it remains to solve
eq. 5. Since the matrix 4 is Hermitian and positive
definite, it should be possible to factorize it into
triangular factors L X U without row interchanges,
with all the pivots (diagonal elements of the factors)
positive if rounding errors do not accumulate
seriously. The larger the diagonal elements of 4 com-
pared to the off-diagonal elements, the smaller should
be the accumulation of rounding error. Further, it is
possible to choose a Cholesky type factorization,
U= L*, the asterisk indicating the transposed com-
plex conjugate, or to factorize A4 in the form LDL*,
where L is lower triangular with a unit diagonal, and
D is real diagonal. This last form has in fact been
used.

Probably the most costly part of the computation
is the calculation of the Hankel functions, H{V(kr).
The imaginary parts — Bessel functions of the second
kind, Y (kr) — have been evaluated using a routine
from the IBM (1970) Scientific Subroutine Package,
slightly modified to provide values simultaneously for
i=0,1,...,N. The real parts — Bessel functions of
the first kind, J;(kr) — have been evaluated by a back-
wards recurrence algorithm, obtained by simplifying
Algorithm 236 (Gautschi, 1964) for the special case
of a positive, integer index (real argument). However,
Bessel functions of the second kind, and, even more
so, their derivatives, increase rapidly as the index
increases:

. i+1
d___YC;Ekr) ~ 2% (EZ;) ilasi—>o0



These functions quite rapidly exceed the capacity of
most computers. Therefore, the routines have been
further modified to provide directly a normalized set
of functions Hfl)(kr)/i !, for which eq. 10 becomes

v; = [H D ®n)/it] cos(i6) (=0,1,2,...)

Nevertheless, if many of these basis functions are to
be calculated, it would seem that very high precision
is needed — possibly using double precision. Even
with seven significant figures correct in the calcula-
tion of the Bessel functions J;(kr)/i!, the matrix A
was sometimes found to be ill-conditioned, or even to
have negative pivots, for NV greater than about 40.

It should be noted that the matrix A does not
depend upon the angle of incidence ¢. Thus a con-
siderable economy of computation is achieved if
several angles of incidence are analysed simulta-
neously for a given geometry and wavenumber k.

8. Results

In order to assess the method, it has been applied
to two cases with known exact solutions: semi-
cylindrical canyons (Trifunac, 1973); and semi-
elliptical canyons (Wong and Trifunac, 1974).

In the case of the semi-cylindrical canyon, it was
found that precision better than the 1% quoted by
Trifunac (1973) could be obtained with as few func-
tions (V + 1) as four (for n = 0.25) to 11 (for
n=2.0). Typically in these cases, the value of X was
less than 5 X 1074, and |dwy/0n + ow®/onl[2k
attained point values of the order of 1072,

For semi-elliptical canyons, Wong and Trifunac
(1974) give the solution as a series involving Mathieu
functions, and as graphs of surface displacement am-
plitude and normalized phase vs. normalized distance
(x/a) from —3 to 3, with four angles of incidence, 0,
30, 60 and 90°. Using the method described here, and
multipole expansions in terms of Hankel functions,
semi-elliptical canyons of aspect ratio b = 0.70 and
0.50 have been analysed. (b = ratio of minor to major
axis. For each value of b, there is both a shallow and
a deep canyon.)

For b = 0.70, using various values of N in the range
20 to 40, results coincided in general to within 0.05
of those given by Wong and Trifunac (1974), which is
about 2.5%, and as good as the precision with which
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it is possible to read their graphs. Exceptions occurred
for the larger values of 1 and |x/a|, where differences
reached 0.31. (For details see Sabina et al., 1978.)
However, by repeating the same cases with other
values of N, it was concluded that errors were less
than 0.005, and 0.0005 for the larger values in |x/al,
and that Wong and Trifunac had not taken sufficient
terms in their series solution. Indeed, it appears that a
1% precision can be obtained with as few functions
(N + 1) as 15 (for n = 0.50 (shallow) or n/b = 0.50
(deep)) to 21 (for n = 2.0 (shallow) or n/b = 2.0
(deep)). Typically, once more, e} < 1073 and
[dwy/3n + dw®/an|/2k < 0.05.

For b = 0.5, it appears that more than 40 basis
functions are needed to obtain similar precision, but

Fig. 2. Cavity shape (top), normalized displacement phase
Ph(w)/2r (centre) and normalized displacement amplitude
iw| (bottom) against normalized distance x/a. Note that the
units of shape and amplitude are shown on the left, and units
of the phase on the right. The cavity is a deep semi-ellipse of
b = 0.50 with n = 0.50, and four angles of incidence ¢ = 0,
30, 60 and 90°.
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with V= 40 in the deep case, results are still indistin-
guishable from the graphs of Wong and Trifunac
(1974), giving e}, < 2X1072 and [dwy/dn + d3w°/3nl/
2k of the order of 1071, Judging from the values of
€%/, the results are even better than this in the shallow
case. However, there are no published results for com-
parison.

It may be concluded that the basis used is very
good for semi-elliptical cavities of aspect ratio
b 2 0.50 for the range of frequencies examined
1n<2.0 (/b <2.0in deep cases), and probably also
for somewhat larger values of 7. By way of example,
graphs of cavity shape, displacement amplitude, and
normalized displacement phase, plotted against
normalized distance x/a, for b = 0.50 and ¢ =0, 30,
60 and 90°, are given in Fig. 2 (deep cavity: n = 0.50,
N = 40), Fig. 3 (shallow cavity: = 0.50, N = 38) and
Fig. 4 (shallow cavity: n=2.0, N = 40).

As the usefulness of the basis given by (10) has
been demonstrated, it was further applied to a family
of trenches, with vertical walls of depth d at x = ta
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Fig. 3. As Fig. 2, but for a shallow semi-ellipse.
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Fig. 4. As Fig. 3, but for n = 2.0.

and curved floors, using
r=a[cos®8 + (d? cos?6 —sin20)?] /2 | ltan81>d

When d = 0.0, there is no vertical wall as such, but the
steep slope is more abrupt than for the semi-cylindri-
cal cavity (see Fig. 5).

The results obtained for two trenches and dif-
ferent frequencies are displayed in Fig. 5 (d = 0.0,
n=1.0,N=16), Fig. 6 (d = tan 30°, 7= 1.0, N = 36)
and Fig. 7 (d = tan 30°, 7 = 1.50, N = 36). Since the
trench with d = tan 30° has vertical walls at |x/a| = 1,
the plots of surface displacement (or normalized
phase) against normalized distance x/a show intervals
in the abscissae, marked as thick lines, which corre-
spond to the vertical wall precisely at |x/a|= 1. The
values of N used were such as to give e}, <6 X 1073,
and | 9wy /dn + d0w°/3n|/2k < 0.05.

Qualitatively similar results to those for semi-cylin-
drical and semi-elliptical cavities were observed. How-
ever, it is of interest to note that, for waves propa-
gating towards the right-hand side, the amplitude of



Fig. 5. As Fig. 2, but for n = 1.0 and a trench with d = 0.0.

the scattered wave near the left-hand wall can con-
siderably exceed that of w®, the sum of the incident
and reflected plane waves.

This effect is also observed in some phase curves,
which do not tend to the linear relationship

ph(w) = —mn(x/a) cos ¢

which holds in the absence of the cavity, However,
the phase diagrams for both the semi-cylindrical and
semi-elliptical cavities do tend to that linear form for
large |x/al.

Finally, it should be noted that this method con-
verges to the correct results, without any limitation
on the topographic slope, such as that implicit in
methods involving the Rayleigh hypothesis (Aki and
Larner, 1970; Bouchon, 1973; Bouchon and Aki,
1977 ab). Lack of accuracy of su¢h a method for
steep slopes was reported by Boore (1972 b).

n-1o —|Bhiw)
S B 27

Fig. 6. As Fig. 5, but for d = 0.58 and n = 1.0. Note that the
thick lines in the abscissae correspond to the vertical wall at
precisely |x/a| = 1.

-3 -2 -t o] | 2 3

Fig. 7. As Fig. 6, but for n = 1.50.
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9. Conclusions

The problem of the scattering of SH waves by
bounded surface cavities in a half-space with an other-
wise plane traction-free surface is solved numerically
using a boundary method. The scattered field is
represented as a finite linear combination of a given
complete non-orthogonal basis: each basis function is
a solution of the boundary value problem in the
absence of the cavity. The coefficients are chosen by
minimizing the mean-square error in the boundary
condition on the cavity.

A relation between the least-squares collocation
method and the convergence in the mean of a series
expansion in non-orthogonal basis functions is estab-
lished.

The range of usefulness of the basis chosen —
multipole expansion in terms of Hankel functions
about the origin — has been established. It owes its
suitability to the numerical quasi-orthogonality of the
basis when the cavity is not very different from a
circle.

Other bases may be more convenient for elongated
shapes. For example, a multipole expansion in terms
of Mathieu functions, but their numerical advantages
have not yet been demonstrated,

Finally, it is shown that trenches with near-vertical
walls can produce local amplification factors of signi-
ficantly more than 100%.

Acknowledgements

We wish to thank C. Ruiz de Velasco who wrote
the program used to produce the graphs, and F.J.
Sdnchez-Sesma for providing his program for the
exact solution for the semi-cylindrical cavity. Also we
thank F.J. Sdnchez-Sesma and E. Rosenblueth for
preprints of their papers. Thanks are also due to R.F.
Millar for sending us some relevant references.

References

Aki, K. and Larner, K.L., 1970. Surface motion of a layered
medium having an irregular interface due to incident plane
SH waves. J. Geophys. Res., 75: 933-954.

Bates, R.H.T., 1975. Analytic constraints on electromagnetic

field computations. IEEE Trans. Microwave Theory Tech.,
MTT-23: 605-623.

Boore, D.M., 1972a. Finite difference methods for seismic
wave propagation in heterogeneous materials. In: B.A.
Bolt (Editor), Methods in Computational Physics, 11.
Academic Press, New York, NY, pp. 1-37.

Boore, D.M., 1972b. A note on the effect of simple topo-
graphy on seismic SH waves. Bull. Seismol. Soc. Am., 62:
275-284.

Bouchon, M., 1973. Effect of topography on surface motion.
Bull. Seismol. Soc. Am., 63: 615—-632.

Bouchon, M. and Aki, K., 1977a. Discrete wave-number
representation of seismic-source wave fields. Bull. Seis-
mol. Soc. Am., 67: 259-277.

Bouchon, M. and Aki, K., 1977b. Near-field of a seismic
source in a layered medium with irregular interfaces.
Geophys. J. R. Astron. Soc., 50: 669—-684.

Collatz, L., 1960. The Numerical Treatment of Differential
Equations. Springer-Verlag, Berlin, 3rd edn., 568 pp.

Davies, J.B., 1973. A least-squares boundary residual method
for the numerical solution of scattering problems. IEEE
Trans. Microwave Theory Tech., MTT-21: 99-104.

Gautschi, W., 1964. Algorithm 236. Bessel functions of the
first kind. In: Collected ACM Algorithms. ACM, New
York, NY, pp. 1-4.

Gilbert, F. and Knopoff, L., 1960. Seismic scattering from
topographic irregularities. J. Geophys. Res., 65: 3437—
3444,

Herrera, 1., 1977a. General variational principles applicable to
the hybrid element method. Proc. Nat. Acad. Sci. U.S.A.,
74: 2595-2597.

Herrera, 1., 1977b. Theory of connectivity for formally sym-
metric operators. Proc. Nat. Acad. Sci. U.S.A., 74:
4722-4725.

Herrera, 1., 1978. Theory of connectivity: a systematic for-
mulation of boundary element methods. In: C.A. Brebbia
(Editor), Recent Advances in Boundary Element
Methods. Pentech Press, London, pp. 45-58.

Herrera, I. and Sabina, F.J., 1978. Connectivity as an alter-
native to boundary integral equations. Construction of
bases. Proc. Nat. Acad. Sci. U.S.A., 75: 2059-2063.

Hudson, J.A., 1977. Scattered waves in the coda of P. J. Geo-
phys., 34: 727-742.

IBM, 1970. System/360 Scientific Subroutine Package, Ver-
sion III. IBM, New York, NY, 454 pp.

Ikuno, H. and Yasuura, K., 1973. Improved point-matching
method with application to scattering from a periodic sur-
face. IEEE Trans. Antennas Propag., AP-21: 657-662.

Itan, A., 1977. Finite-difference modelling for P-pulse propa-
gation in elastic media with arbitrary polygonal surface. J.
Geophys., 43: 41-58.

Ilan, A., Bond, L.J. and Spivack, M., 1979. Interaction of a
compressional impulse with a slot normal to the surface
of an elastic half-space. Geophys. J. R. Astron. Soc., 57:
463-477.

Kantorovich, L.V. and Krylov, V.1., 1964. Approximate
Methods of Higher Analysis. Interscience, New York, NY,
681 pp.



Lewin, L., 1970. On the restricted validity of point-matching
techniques. IEEE Trans. Microwave Theory Tech., MTT-
18:1041-1047.

Mclvor, 1., 1969. Two-dimensional scattering of a plane com-
pressional wave by surface imperfections. Bull. Seismol.
Soc. Am., 59: 1349-1364.

Meecham, W.C., 1956. Variational method for the calculation
of the distribution of energy reflected from a periodic sur-
face. L. J. Appl. Phys., 27: 361-367.

Millar, R.F., 1973. The Rayleigh hypothesis and a related
least-squares solution to scattering problems for periodic
surfaces and other scatterers. Radio Sci., 8: 785-796.

Noble, B., 1969. Applied Linear Algebra. Prentice-Hall, Engle-
wood Cliffs, NJ, 523 pp.

Sabina, F.J. and Willis, J.R., 1975. Scattering of SH waves by
a rough half-space of arbitrary slope. Geophys. J. R.
Astron. Soc.,42: 685-703.

Sabina, F.J. and Willis, J.R., 1977. Scattering of Rayleigh
waves by a ridge. J. Geophys., 43: 401-419.

Sabina, F.J., Herrera, I. and England, R., 1978. Theory of
connectivity: applications to scattering of seismic waves:
1. SH wave motion. In: Proc. Second International Con-
ference on Microzonation, San Francisco, CA, November
26—December 1, 1978.

Sanchez-Sesma, F.J., 1978. Ground motion amplifications
due to canyons of arbitrary shape. In: Proc. Second Inter-
national Conference on Microzonation, San Francisco,
CA, November 26—December 1, 1978.

S4nchez-Sesma, F.J. and Rosenblueth, E., 1978. Evaluacion
del riesgo-efectos locales. Etapa I. Movimiento del terreno
en depresiones bidimensionales de forma arbitraria ante
incidencia de ondas SH planas. Instituto de Ingenierfa,
Universidad Nacional Auténoma de México, 46 pp.

Sanchez-Sesma, F.J. and Rosenblueth, E., 1979. Ground

157

motion at canyons of arbitrary shape under incident SH
waves. Int. J. Earthquake Eng. Struct. Dyn. (in press).

Sills, L. B., 1978. Scattering of horizontally polarized shear
waves by surface irregularities. Geophys. J. R. Astron.
Soc., 54: 319-348.

Singh, 8.K., and Sabina, F.J., 1977. Ground-motion amplifi-
cation by topographic depressions for incident P wave
under acoustic approximation, Bull. Seismol. Soc. Am.,
67: 345-352.

Smith, W.D., 1975. The application of finite element analysis
to body wave propagation problems. Geophys. J. R.
Astron. Soc., 42: 747-768.

Stroud, A.H. and Secrest, D., 1966. Gaussian Quadrature
Formulas. Prentice-Hall, New York, NY, 374 pp.

Trifunac, M.D., 1973. Scattering of plane SH waves by a
semi-cylindrical canyon. Int. J. Earthquake Eng. Struct.
Dyn., 1: 267-281.

Wong, H.L. and Jennings, P.C., 1975. Effects of canyon topo-
graphy on strong ground motion. Bull. Seismol. Soc. Am.,
65:1239-1257.

Wong, H.L. and Trifunac, M.D., 1974, Scattering of plane SH
waves by a semi-elliptical canyon. Int. J, Earthquake Eng,
Struct. Dyn., 3: 157-169.

Yasuura, K., 1971. A view of numerical methods in diffrac-
tion problems. In: W.V. Tilston and M. Sauzade (Editors),
Progress in Radio Science 1966—1969, Vol. 3. Radio
Waves and Circuits; Radio Electronics. URSI, Brussels,
pp. 257-270.

Yasuura, K. and Ikuno, H., 1971. On the modified Rayleigh
hypothesis and the mode-matching method. In: Interna-
tional Symposium on Antennas and Propagation, Sendai,
Japan. Institute of Electronics and Communication
Engineers of Japan, Tokyo, pp. 173-174.



