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An abstract theory of problems subjected to linear constraints is developed. It
supplies a general framework for boundary methods that are the subject of extensive
research at present, as a tool to study numerically partial differential equations
associated with many problems of science and engineering. Two kinds of general
problem are considered, one for which the solutions are required to satisfy prescribed
jumps and the other for which solutions can be continued smoothly into
neighbouring regions as functions that satisfy given equations. The general theory is
developed systematically, but only applications to variational principles are reported
here. In previous papers the possibility of using this theory to discuss more general
questions has been suggested; such applications will be discussed thoroughly in a
further paper that is being prepared.

1. Introduction

BoUNDARY METHODS for treating numerically partial differential equations associated
with many problems of science and engineering are currently receiving attention.
Most frequently, boundary methods have been formulated by means of integral
equations based on Maxwell Betti's formula (Brebbia, 1978; Cruse & Rizzo, 1975;
Cruse, 1974 and Rizzo, 1967). Alternatives have been considered by some authors
such as Heise (1978), Sabina, Herrera & England (1978), Sanchez-Sesma &
Rosenblueth (1978) and Kupradze, Gegelia, Baschelejschwili & Burtschuladge
(1976). The main advantages of boundary methods stem from a reduction of the
dimensions involved in the problems.

In very general terms, one can say that the general solution which is used for the
formulation of boundary methods may depend on a continuous or, alternatively, on a
discrete parameter. In the first case the family is usually prescribed by means of
singular solutions and the sought solution is constructed using integral
representations. Usually the boundary of the region represents the domain of
definition for the kernel in the integral but other approaches are possible (Heise,
1978; Rieder, 1962, 1968; Kupradze, 1965; Kupradze et al., 1976 and Oliveira, 1968).

t This paper was written while the author was visiting the Department of Mathematics and theMathematics 
Research Center, University of Wisconsin-Madison, as a Tinker Professor.
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When a denumerable family of solutions is used one is led to series
representations, or more generally to a sequence of least-squares approximations
(Millar, 1973). The series expansion method has been used most extensively in
acoustics and electromagnetic field computations (Bates, 1975). Applications of this
procedure have also been made in other fields such as free-surface flows (Mei & Chen,
1976) and seismology (Sabina, Herrera & England, 1978). A technique recently
applied by Sanchez-Sesma & Rosenblueth (1978), may be thought as a transition
between the singularity and the series expansion methods.

Some of the alternative formulations have clelir numerical advantages such as the
avoidance of singular integral equations. However, there has been a lack of clarity in
the application of these methods and many questions are not well understood. For a
class of integral representations, Oliveira (1968) showed that severe restrictions which
apparently are required for the applicability of the method, are not actually needed in
order to solve problems successfully. The "Rayleigh hypothesis" restricts drastically
the applicability of the series expansion method in acoustics and electromagnetic field
computations (Bates, 1975). However, this assumption can be avoided altogether if a
different point of view is adopted (Millar, 1973).

When boundary methods are used to reduce the size of the region to be treated
numerically, it is important to match this part with the rest of the space efficiently and
this can be done using variational principles. For cases such as diffraction problems,
in which the regions considered are unbounded, the associated variational principles
have the interesting property in that the corresponding functionals involve a bounded
region only (Mei & Chen, 1976).

A general theory of problems subjected to linear restrictions or constraints, recently
developed (Herrera, 1977a, b, c; Herrera, 1978a, b; and Herrera & Sabina, 1978) is
presented in this paper. This theory supplies a unified approach to boundary
methods.

In Section 2, valued functional operators and the general problem with linear
constraints, are introduced; regular and completely regular constraints are also
defined.

In Section 3, canonical decompositions of a linear space D, are defined and their
relation with problems with linear restrictions is exhibited.

In Section 4, the concept of an operator B that decomposes A is introduced. A one-
to-one correspondence between operators that decompose A and canonical
decompositions of D is established.

In Section 5, the problem of connecting is introduced. This is an abstract version of
a problem posed on a region such as RuE in Fig. 1, where Rand E are neighbouring
sub-regions, subjected to a prescribed smoothness criterion across the common
boundary. In application, such a problem corresponds to a problem formulated in
discontinuous fields and with prescribed jump conditions. It is shown that the
existence of a solution for this problem grants that the set of functions that can be
extended smoothly into solutions of the homogeneous equations on E (this selis here
called a continuation type restriction), constitutes a linear sub-space that is
completely regular for the equations on R. A survey of variational principles for
problems with prescribed jump has been given by Nemat-Nasser (1972a, b).

In Section 6, two general variational principles for problems with linear restrictions
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are fonnulated; one is relevant for problems with prescribed jumps and the other one
for problems in which the boundary method is used to reduce the size of the region
treated numerically.

Finally, in Section 7, applications are made to Laplace, reduced wave and heat
equation. Applications to Elasticity are explained for static, periodic and dynamical
problems. Also, an application to a two-phase problem is considered, in which region
R (Fig. 1) is occupied by an inviscid liquid, while there is in E an elastic solid, as when
a dam is filled. An application to free surface flows was given previously (Herrera,
1977a).

There are two theoretical questions which acquire great practical importance in
specific applications; conditions under which a basic set of functions is complete and
conditions which assure the convergence of the approximating procedure. The theory
presented here can be used to discuss these matters. Indeed, completely regular
constraints can be characterized by connectivity bases that were introduced in a
previous paper, where a general method for constructing such bases was also
developed (Herrera & Sabina, 1978). Furthennore, the notion of connectivity basis
can be related with that of Hilbert space basis (Herrera, 1978b). When this is possible,
a connectivity basis becomes a Hilbert space basis and the completeness of the basic
set of functions is established. Once this has been shown, a procedure similar to one
applied by Kantarovich & Krylov (1964, pp. 44-68) to Laplace equation, can be used
to choose the coefficients of the linear combinations in a manner that assures the
unifonn convergence of the approximating sequence.

In this paper applications of the theory have been restricted to variational
principles, leaving the discussion of the questions of completeness and convergence
for a further paper now being prepared.

As in previous work by the author (Herrera, 1974; Herrera & Bielak, 1976 and
Herrera & Sewell, 1978), functional valued operators are used systematically, because
they have been demonstrated to be suitable for the discussion of questions related to
differential and integral equations. Indeed, functional valued operators supply a very
flexible language which permits treating problems with generality, simplicity, clarity
and rigor. In this respect, the author hopes that this article will estimulate more
extensive use of Functional Analysis to treat questions relevant in specific applica-
tions, because it shows that notions of a relatively elementary nature, and therefore
within the grasp of a larger audience, can be used to achieve those desired features.

Some of the theorems take as an assumption, the existence of solution of the
abstract problems considered. In specific applications this hypothesis requires taking
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the linear space on which the operators are defined, so as to satisfy it. There are
treatises available which discuss thoroughly, questions of existence of solutions for
partial differential equations (Lions & Magenes, 1968; see also, Babuska & Aziz,
1972).

The terminology of the theory has been revised; the problem with linear
restrictions had been called in previous papers, problem of diffraction. Regular and
completely regular sub-spaces, were called before, connectivity and complete
connectivity conditions, respectively. It was felt that these changes were necessary
because the former terminology had been suggested by specific applications, and
apparently, was misleading at the more general level that the theory has achieved.

2. Problems with Linear Restrictions

In what follows F is the field of real or, alternatively, of complex numbers. Let D be
a linear space and D* its algebraic dual; i.e. D* is the set of linear functionals defined
on D. With the usual algebraic structure, D* is itself a linear space. In this paper
attention is restricted to operators P: D -.D* which are linear. The value P(u) E D*
of Pat U ED, is a linear functional. Write <P(u), v) E F for the value of the functional
P(u) E D* at v E D. When P is linear, it is customary to drop the parenthesis in P(u),
and in this case the operator P: D -.D* is uniquely determined by the bi-linear
functional <Pu, v). In this case, the adjoint operator p* : D -.D* always exists and it
is defined by means of the transposed bi-linear functional <Pv, u). Attention will be
restricted to linear operators P : D -.D*.

There are many problems that can be cast in the following framework.

Definition 2.1. Consider P: D -.D* and a subspace I c D. Given U E D and V E D, an
element u E D is said to be a solution of the problem with linear restrictions or
constraints, when

(2.1)Pu=PU and u-VEI.

As an example, consider the operator P : D -+ D* defined by

(Pu, v) = f R vV2U dx (2.2)

where region R is illustrated in Fig. 2. There are many ways of choosing D, since it is
only required to be a linear space without any further structure. For definitiveness,
one may think of D as being the Sobolev space HS(R); s ~ 2 (Babuska & Aziz, 1972).
Define the linear sub-space I c D by

(2.3)1= {u E Diu = 0, on oR}

Then, problem (2.1) is Poisson's equation

V2U=V2U=!R; onR

subjected to boundary conditions of Dirichlet type

u = V =foR; on oR.
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FIG. 2

In the fonnulation given here, the functionsfR and faR may be defined by means of
equations (2.4) when U E D and V E D are given. Although it is more common to give
fR and faR as data of the problems, the use of U ED and V E D gives notational
advantages when carrying out the general development of the theory.

Given P : D -+ D* it is possible to define A : D -+ D* by

A = P-P*, (2.5)

because P* always exists. The null sub-space N A of A will be denoted by

N={UEDIAu=O}. (2.6)

Definition 2.2. A sub-space I c D is said to be regular for P, when

(a) I cD is a commutative subspace of P; i.e.

(Au, v> = 0 V u, V E I.

(b) NcI.

Regular sub-spaces frequently have the following additional property

(c) For every U eD, one has

(Au,v)=O'v'veI=>ueI. (2.9)

A regular sub-space possessing property (c) will be said to be completely regular
for P.

To illustrate this notion, it can be seen that in the previous example A : D -+ D* is

given by

f { au av
}<Au, v) = oR V & -u & dx (2.10a)

and
N = {u E Diu = ou/on = 0; on oR}. (2.10b)

Therefore,] c: D as defined by equation (2.3) is a regular sub-space for P; even more,
it is completely regular.
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Sub-spaces that are completely regular for P, can be characterized in a simple
manner.

LEMMA 2.1. Let I cD be a linear sub-space. Then I is completely regular for the
operator P, if and only if, for every u E D one has

(Au,v)=O VvEI~uEI. (2.11)

Proof Observe that condition (2.11) is the conjunction of properties (a) and (c). Thus,
it is enough to prove that when I c D satisfies (2.11), N c I. This is immediate,
because any U E N satisfies the premise in (2.11).

With every linear operator P : D -+ D*, it is possible to associate a sub-space Ip that
is regular for P. It is defined by

Ip=N+Np

where N p is the null sub-space of P. The corresponding result follows.

LEMMA 2.2. The linear space I p defined by equation (2.12) is a regular sub-space for P.

Proof Condition (2.8) is clearly satisfied by I p. In order to show that (2.7) is also
satisfied, given any u E Ip and v E Ip, write u = Up+UN and v = Vp+VN, where

Up, Vp E Np while UN' VN E N. Then

(Au, v) = (Aup, vp) = (Pup, vp) -(Pvp, up) = O. (2.13)

In view of the fact that N is a linear sub-space of D, it is possible to consider the
quotient spaces D = DIN, I = [IN and Ip = [piN. The elements of these spaces are
cosets. The space D will be referred to as the reduced space; in applications to
boundary value problems the elements of D are characterized by boundary values of
the functions of the corresponding cosets.

For the operator P : D -+ D* given by (2.2), N is given by (2.10b) and therefore,
each coset of D = DIN is characterized by a pair of functions {u, aulan} defined
on oR.

Definition 2.3. The problem with linear restrictions (2.1), is said to satisfy

(a) Existence, when there is at least one solution for every U ED and V ED;
(b) Uniqueness, when U = 0 and V = O=> u = 0;
(c) Almost uniqueness, when

U = 0 and V = 0 => U EN.

By a reduced solution or boundary solution, it is meant an element u E D = DIN such
that u -UC E Ip while u -VC E [ where UC, VC E D stand for the cosets associated with
U and V; respectively.

In applications to boundary problems almost uniqueness corresponds to
uniqueness of suitable boundary values. For example, when N is given by (2.10b), the
boundary values u and aulan are unique if almost uniqueness is satisfied.

The case when V = 0 in problem (2.1), will be called the basic problem. The
properties given in Definition 2.3 depend on corresponding properties of the basic
problem, only.
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LEMMA 2.3. The problem with linear restrictions (2.1) sati~fies existence, uniqueness or
almost uniqueness, respectively, if and only if, the basic problem enjoys corresponding
properties.

Proof The proof follows from the fact that ifw E D is defined by w = u- V; with V E D
fixed, then

Pu 

= PU and u-Ve/-Pw=P(U-V) and we/.

There is a very straightforward result that will be used when formulating
variational principles in Section 6. Let S : D -+ D* be symmetric and f E D* ; then,

Su = f=-.Q'(u) = 0 (2.15)

where
O(u) = t<Su, u) -<I, u). (2.16)

Here the derivative Of of 0 : D -'to:F is taken in the sense of additive Gateaux
variation (Nashed, 1971), which is probably the weakest definition of derivative.
Relation (2.15) is essentially Ritz formula, it follows from the fact that when S is
symmetric

(2.17)a(u) = Su-f

3. On the Occurrence of Canonical Decompositions

In this section it will be seen that there is frequently associated a pair of completely
regular sub-spaces with the problem with linear restrictions (2.1).

Definition 3.1. Let 11 cD and 12 cD be two completely regular sub-spaces for P.
Then the ordered pair (11, 12) is said to constitute a canonical decomposition of D,
with respect to P, when

11 

+12 = D and I1nI2=N.

Clearly, a pair (II' 12) of completely regular sub-spaces for P, is a canonical
decomposition ofD, if and only if, every U ED can be written as

U = Ul+U2; Ul Ell' U2 EI2 (3.2)

and this representation is almost unique in the sense that Ul-U'1 EN and U2-U2 EN
whenever U'I, U2 is any other pair satisfying (3.2).

Going back to the example considered in Section 2, a canonical decomposition
(1 1,12) of D, can be constructed by taking 11 as the sub-space given by equation (2.3)
and

12 = {U E Dloujon = 0, on oR}. (3.3)

The interest of canonical decompositions springs from the fact that given a sub-
space 1 cD, which is regular for P, under very general assumptions, the pair (I, Ip)
constitutes a canonical decomposition of D. The following discussion will be oriented
to prove this fact.
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LEMMA 3.1. Let [ c D be a regular sub-space for P. Assume the basic problem sati~es
existence. Then, for every u E [p, we have

(Au,w)=O 'v'"'EI=>UEN. (3.4)

Proof In view of (2.12), every u E Ip, can be written as U = Up+UN, with Up E Np and
UN EN. Given any WED, take w E I such that Pw = PW; this is possible because the
basic problem satisfies existence. Then

(Au, W) = (Aup, W) = -(PW; up)

= -(p"', up) = (Aup, w) = (Au, w). (3.5)

Therefore,
(Au, w) = 0 'v'~' e I => (Au, W) = 0 'v' WeD

=>ueN. (3.6)

Corollary 3.1. If I c D is regular for P and the basic problem satisfies existence, then

InIp=N (3.7)

and the solution of the problem with linear constraints is almost unique.
Proof I and I p are regular for P, so that N c I nIp by Definition 2.2 of regular sub-
space. Conversely, N =' In Ip, because the hypotheses of Lemma 3.1 are satisfied
whenever u e I nIp. The second part of this corollary follows from the first part.

The dual of Lemma 3.1, which is obtained by interchanging the roles of I and Ip, is
also true.
LEMMA 3.2. Let I c D be a regular sub-space for P. Assume the basic problem sati~fies
existence. Then, for every u e I, we have

(Au,v)=O 'v'veIp=>ueN. (3.8)

Proof The proof is similar to that of Lemma 3.1, but use has to be made of
Lemma 2.3.

THEOREM 3.1. Let 1 c D be a regular sub-space for P. If the problem "-'ith linear
restrictions satisfies existence, then the pair (I, 1 p) constitutes a canonical decomposition
of D. In particular 1 c D and 1 p c D are completely regular sub-spaces for P.

Proof Assume U ED, is such that

(AU, v) = 0 V vel.

Define "' = U -u, where u E I is such that Pu = PL

simultaneously

Therefore, ~'E I p and

eI (3.10)(Aw, v) = (AU, v)-(Au, v) = 0 V

This shows by Lemma 3.1, that"' E N c I. Hence V = U+"' E I and I is completely
regular. Making use of Lemma 3.2, dual of Lemma 3.1, it is possible to prove in a
similar fashion, that Ip is also completely regular. Corollary 3.1 shows that
Inlp = N, thus, by Definition 3.1, it remains only to prove I+Ip = D. This is
immediate, because given VED, choose V. E I such that PUt = PV, which is



V ARIA TIONAL PRINCIPLES 75

possible because existence for the problem with linear constraints is assumed. Define
Uz = U-Ui, then U = Ui+Uz and Ui E I while Uz E Np C Ip.

4. Decompositions of A and Canonical Decompositions

There is a close connection between canonical decompositions and certain classes
of decompositions of the operator A. This section is devoted to establish such
relations.
D~finition 4.1. An operator B: D -+ D* is said to be a boundary operator when

NB => N. (4.1)

Here N B is the null sub-space of B.
As an example, B : D -..D* given by

i ou <Bu, v) = v ~ dx (4.2)
oR un

is a boundary operator when A is given by (2.10a).Definition 
4.2. Given operators P : D -+ D* and Q : D -+ D*, one says that P and Q can

be varied independently when for every U E D and V E D, there exists u E D such that

Pu = PU and Qu = QJ-: (4.3)

The proof of the following lemma is straightforward.
LEMMA 4.1. Let P: D -+ D* and Q : D -+ D* be linear operators. Then the following
assertions are equivalent.-

(a) P and Q can be varied independently.
(b) For every UED, 3 uED3 Pu=PU; Qu=O. (4.4)
(c) For every V E D, 3 u E D3 Pu = 0; Qu = QV. (4.5)

As an example, the operator B : D -+ D* as given by (4.2) and B* : D -+ D*

i ov <B*u, v) = u ~ dx (4.6)
oR un

can be varied independently.

De.finition 4.3. An operator B : D -+ D* is said to decompose A, when Band B* can be
varied independently and

A = B-B*.

Applying Definition 4.3, we can see that the operator B : D --+ D* defined by (4.2),
decomposes A.

LEMMA 4.2. Assume B : D --+ D* decomposes A. Then Band B* are boundary operators.

Proof In view of Definition 4.1, it is necessary to prove, that when B decomposes A,
one has

Au = O=>Bu = O.
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If B decomposes A,
Au = 0= Bu = B*u. (4.9)

Given any V E D, choose v ED such that Bv = 0 and B*v = B*JI: Then if Au = 0,

<Bu, V) = <Bu, v) = <B*u, v) = <Bv, u) = O. (4.10)

This shows that Bu = 0, because V E D is arbitrary. Hence, B is a boundary operator.
The fact that B* is also a boundary operator follows from the above result when it is
observed that -B* decomposes A whenever B does.

It is possible to establish a one-to-one correspondence between operators
B : D ~ D* that decompose A and canonical decompositions of D.

THEOREM 4.1. Assume B: D ~ D* decomposes A, then the pair of linear sub-spaces

(11,12) given by

11 = {U E DIBu = O} = NB (4.11a)
and

(4.11b)12 = {uEDIB*u = O} = N~

constitutes a canonical decomposition of D "'ith respect to P.
Conversely. given any canonical decomposition (11. 12). define B : D -+ D* by

(Bu, v) = (AU2, V1) (4.12)

where u = U1 + u2, u1 E 11, U2 E 12, and similarly for v. Then B decomposes A and
satisfies (4.11). Even more, this is the only operator ~'ith these properties.

Proof To prove this Theorem, it will be first shown that when B decomposes A, 11
and 12 as given by (4.11), are completely regular. This can be seen by showing that
condition (2.11) of Lemma 2.1 is satisfied by 11 and 12. Now

(Au, v) = (Bu,v)-(Bv,u) =0, Vu,vEl1. (4.13)

To prove the converse implication in (2.11), observe that given any V E D, it is
possible to choose v ED such that Bv = 0 (i.e. v E 11) and simultaneously B*v = B*V,
because Band B* can be varied independently. With this choice of v E 11

(Bu, V) = (B*v, u) = -(Au, v). (4.14)

This shows that (Au, v) = 0 V V E 11 implies u E 11 because V E D is arbitrary in
(4.14). Hence, 11 is completely regular. A similar argument proves the corresponding
result for 12,

In order to show that (11, 12) is a canonical decomposition of D, it remains to prove
that I1n12=N and 11+12=D. Clearly, I1n12:)N in view of Lemma 4.2.
Conversely,N:) 11 n 12 = NB n NB*,becauseA = B-B*.Givenu E Dchooseu1 ED
so that BU1 = 0 while B*U1 = B*u, which is possible because Band B* can be varied
independently. Define U2 = U -U1, then B*U2 = 0 and u = U1 + U2; this shows that
D = 11 + 12 because U1 E 11 while U2 E 12, The proof of the first part of Theorem 4.1 is
now complete.

To prove the second part, let (11, 12) be an arbitrary canonical decomposition of D.
Given any u, v ED, take u1, v1 E 11 and U2, V2 E 12 as the components of the almost
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unique representations of u and v, corresponding to the canonical decomposition
(II' 12) of D. Then, the operator B : D -+ D* given by (4.12) is unambiguously defined.
The commutative property (2.7) of regular sub-spaces implies that

(Au, v) = (AU2, VI) -(Av2, UI). (4.15)

This shows A = B-B*. To prove that Band B* can be varied independently, let
U ED and V E D be given, then u = VI + U 2 satisfies Bu = BU and B*u = B*JI: Thus,
B decomposes A. To see that equation (4.11) is satisfied, observe that Bu = 0 implies

<Bu, v) = <AU2, v) = 0 'v' v ED. (4.16)

Hence U2 E N and therefore u = U1 + U2 Ell. Conversely, if U Ell, then U2 E Nand
Bu = 0 by virtue of (4.12). This completes the proof of (4.11a); the proof of (4.11b) is
similar.

To prove uniqueness, it will be shown that equation (4.12) is necessarily satisfied by
any such B. Assume B: D -+ D* is such that A = B-B* and it satisfies (4.11). Then
BUI = 0, \7' Ul Ell and B*U2 = 0, \7' U2 E 12; therefore

<AU2, VI) = <AU2, V) = <BU2, V) = <Bu, V). (4.17)

Observe that the one-to-one correspondence between operators that decompose A
and canonical decompositions would not be true, if canonical decompositions had
not been introduced as ordered pairs in Definition 3.1.

5. The Problem of Connecting

There are many problems that can be formulated as problems with linear
restrictions; a very general example is the problem of connecting.

Although the formulation to be presented is an abstract one, it is motivated by a
specific situation. Assume there are two neighbouring regions Rand E (Fig. 1) with
boundaries aR and aE, respectively. By reasons that will become apparent in some of
the examples to be given, the common boundary between Rand E will be denoted
a3R = a3E. The general problem is to find solutions to specific partial differential
equations on RuE subjected to a given smoothness criterion across the connecting
boundary a3R = a3E. Problems of this kind occur frequently in applications; the
smoothness criterion may be in potential theory, for example, that u and au/an be
continuous across a3R, or in Elasticity, that displacements and tractions be
continuous across that part of the boundary, but more complicated criteria may be
included in the theory.

Let D be a linear space and P : D -+ D* a functional valued operator defined on that
space. Here again, P is assumed to be linear; in addition, D = DR ~ DE where DR and
DE are two linear spaces. Elements U E D will be thought as pairs (UR' UE), where
UR E DR and UE E DE. The space D* is the algebraic dual of D and the operator P is
assumed to have the additive property

(5.1)<Pu, v) = <PUR' VR) + <PUE, VE)
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for every U = (UR' UE), v = (VR' VE)' If the operators fiR : fj -+ fj* and fiE: fj -+ fj* are

defined by

PRU, v) = <PUR' VR); <PEa, 0) = <PUE, VE)

then
P = PR+PEo

Operators PR : DR -+ D~ and PE : DE -+ D~ can also be defined; they are given by

<PRUR' VR) = <PUR' VR); <PEUE, VE) = <PUE, VE). (5

Then
<1>u,O) = <PRUR,VR)+<PEUE,VE)

Using these operators, the following can be defined

A = p-p', AR = PR-P~; AR = PR-P~;

AE = PE-P~; AE = PE-P~.

They satisfy
A = AR+AE (5.7)

and
(Au, v) = (ARuR' VR) + (AEuE' VE). (5.8)

The null sub-spaces of A, AR, AE, AR and AE will be denoted by N, N R, AE, N Rand N E,
respectively. The relation

N = NR<:!:)NE

will be used later; it is equivalent to

U = (UR' UE) E N =-UR E N Rand UE ENE, (5.10)

This latter relation follows from (5.8).
The general problem to be considered will be one with linear restrictions, where the

linear sub-space S c D specifying the linear restriction will be assumed to satisfy
special conditions. Elements a = (UE' UR) E S will be called smooth; when a = (UE' UR)
is smooth, UE E DE and UR E DR will be said to be smooth extensions of each other.
Definition 5.1. Let S c fj = DR ~ DE be a linear sub-space. Then S will be said to be a
smoothness condition or relation if every UR E DR possesses at least one smooth
extension UE E DE and conversely.
Definition 5.2. Given a smoothness relation S c D and elements 0 E D, Y E D, the
problem of connecting consists in finding an element a E D such that

Pa=PO and a-YES. (5.11)

Clearly, the problem of connecting is a problem with linear restrictions in the sense
of Definition 2.1 and the results of previous sections are applicable. The smoothness
relation S will be said to be regular and completely regular for P, when as a
sub-space, it is regular and completely regular for P, respectively.



VARIATIONAL PRINCIPLES 79

LEMMA 5.1. A smoothness condition 8 c fj is completely regular for P, if and only if

<Au, 13) = <ARuR, vR)+<AEuE, VE) = 0, V 13 E 8-u E 8. (5.12)

Proof This lemma follows from (2.11) and (5.8).
As an example, take DR = HS(R) and DE = HS(E), with s ~ 2. Assume each of the

boundaries oR and oE of regions Rand E (Fig. 1) is divided into three parts aiR and
oiE (i = 1,2,3), where °3R = 03E is the common boundary between Rand E. Let D
be the unit normal vector on these boundaries, which will be taken pointing outwards
from R and from E. On the common boundary 03R = 03E, there are defined two unit
normal vectors which have opposite senses, one associated with R and the other one
with E. Some times they will be represented by DR and DE; more often, however, the
ambiguity will be resolved by the suffix used under the integral sign.

Define PR: DR ~ D~ by

i 2 i OVR f OUR <PRUR,VR)= VRVURdx+ uR~dx- vR~dx (5.13)
R aIR un azR un

and let PE : DE -+ D; satisfy the equation that is obtained when R is replaced by E in
(5.13). Then

while

N = {u E fjlUR = UE = ouRion = OUE/On = 0, on o3R}

Let

s = {U E DluR = UE; OUR/OnR'= OUE/onR' on °3R}, (5.16)

Functions UR E DR = HS(R) (5 ~ 2) are such that their boundary values UR, ouRion
belong to Hs-1/2(03R) and Hs-3/2(03R), respectively (see, for example, Babuska &
Aziz, 1972). A corresponding result holds for functions UE E DE = HS(E). This shows
that every UR E DR can be extended smoothly into a function UE E DE, and conversely.
Thus S is a smoothness relation.

In this case the problem of connecting is

V2U = V2O, on RuE (5.17a)

U = 0, on ol(RuE) (5.17b)

OU 00-= on 02(R u E) (5.17c)
on an'

subjected to

UE-UR = VE-VR,

When v = (VR' VE) E S.

O(UE- UR)/On = O(VE- VR)/on, on o3R (5.18)
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for arbitrary U = (UR, UE) E D. Using (5.19) it can be seen that condition (5.12) is
satisfied by S cD; this shows that S is completely regular for P.

Well known results about the existence of solution for boundary value problems of
elliptic equations (Babuska & Aziz, 1972) can be used to show that the problem of
connecting corresponding to equations (5.17) and (5.18), satisfies existence when
DR = HS(R), DE = HS(E) and s ;;!: 2, when the boundaries of Rand E satisfy suitable

regularity assumptions.
When S is completely regular, it is easy to construct a completely regular sub-space

which together with S constitutes a canonical decomposition of D, for the operator P.
Definition 5.2. An element U = (UR' UE) E D is said to have zero mean when
(UR' -UE) E S. The collection of elements of D with zero mean will be denoted by M.

THEOREM 5.1. When the smoothness relation S is completely regular, the pair (S,1\1)
constitutes a canonical decomposition of D.

Proof In view of Definition 3.1, it is required to prove that 1\1 is completely regular
for P and that

Sn 1\1 = N; S+1\1 = D. (5.20)

Clearly, 1\1 is a linear sub-space of D. In addition, Lemma 5.1 and the fact that S is
completely regular imply that (5.12) holds. In view of Definition 5.2, S can be
replaced by 1\1 in (5.12) without altering its validity. This shows that 1\1 is completely
regular for P.

Assume U = (UR, UE) E S n 1\1; i.e. (UR' UE) E Sand (UR' -UE) E S. Then (UR' 0) ES,

which implies

<ARuR, VR) = 0, 'v' VR E DR (5.21)

by virtue of(5.12) and the fact that any VR has a smooth extension. Hence, UR E N R. In
a similar manner, it is seen that UE ENE. Therefore, U E N R ~ N £ = 1'1, by (5.9), and
the first equation in (5.20) is established. To show the second of those equations,
given any U = (UR' UE) E D, choose smooth extensions U~ E DR and U~ E DE of UE E DE

and UR E DR, respectively. Then

u = it-fEu]

where U E Sand [Ci} E 1\1 are

(5.23a)
(5.23b)

u = t(U~+UR' UE+UE)

[a] = (u~-uR" UE-UE)'

Equation (5.22) shows that any U E D can be written

U = Ut +U2; Ut E Sand U2 E ~

with
U1 = 14; U2 = -[u]/2. (5.25)

This establishes the second of equations (5.20), and the proof of Theorem 5.1 is
complete.

The fact that the pair (S, 1\1) constitutes a canonical decomposition of D, implies
that given any U E D, the elements 14 E Sand [u] E 1\1 are defined up to elements of N;
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more precisely, that it as well as [u], define unique co sets of the space DIN. Elements it
and [u] satisfying (5.23) will be called the average and the jump of u, respectively.

By means of Theorem 4.1, it is possible now to define an operator B : D -.D* that
decomposes A and satisfies (4.11) with 11 = S and 12 = 1\1. Such an operator will
be denoted by J and will satisfy

2(Ju, 11) = 2(AU2' Ill) = -(A[u], ii) (5.26)

by virtue of (4.12) and (5.25). The operator j: fj -+ fj* defined by (5.26) will be called
jump operator. It characterizes S because ju = O<=>u E S.

Equation (5.26) will be used extensively when formulating variational principles for
problems with prescribed jumps in discontinuous fields, and it is worthwhile to
elaborate it further. Let u = UI +U2; v = VI +V2, where UI = (UIR' UIE) E S,
U2 = (U2R, U2E) E 1\1 and similarly for V. Then

<ju, v) = <AU2' VI) = <ARu2R, VIR) + <AEu2E, VIE)

= 2<ARu2R, VIR) = 2<ARu2, VI) = 2<AEu2, VI) (5.27)

where (5.8), (5.12) and the Definition 5.2 of 1\-1 have been used. Hence

<Ju,v) = -<AR[U], ii) = -<AE[U], ii)

by virtue of (5.25). In addition

(Au, v) = (AR[v], u) -(AR[u], ii)

because). = J -J*.
The use of formulas (5.28) and (5.29) will be illustrated applying them to the

previous example. In view of (5.16), the smooth extensions u~ E DR and UE E DE of u£
and uR, respectively, satisfy

U~ = UE; ou'R!onR = ouE/onR, on o3R. (5.30)

In addition

(ARuR' 

VR) = f {VR an
a,R

OUR

~ }dX' -UR :I
un

Applying (5.28)

_ [ A] ~ }dU R on X.
O[tiJR
an

<Ju, 0) = -

Equation (5.23) yields

O[Il]R
on

on a3R (5.33a)[UJR = UE-UR;

O(ii)R
an

(V)R = !(VE+VR);
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by virtue of (5.16). Equation (5.32) can be si~plified if the component to be used is
indicated by the index under the integral sign; thus

~A A f { 06 [au]}<Ju, v) = a.R [u] a;; -6 a;; dx

= fa.E {[u] ~ -6 [~]} dx (5.34)

where [ou/on]R = ouE/on-ouRion, on o3R. The last equality in (5.34) follows from
the second equation in (5.28), but can also be seen because there is a double change of
signs on each term appearing in the integrals; one due to the change in the sense of the
unit normal and the other one due to the change of sign of the jump of U. Equation
(5.29) yields

A. A f { .ov [OD~ (Au, v) = coR [u] (3-;;+ U (3-;;

-jj[~

The following definition and results establish a relation between the problem of
connecting and problems subjected to restrictions of continuation type.
Definition 5.3. Let D, P : D -+ D* and a linear sub-space I cD be given. Then the
problem with linear restrictions (2.1) will be said to be subjected to a constraint of
continuation type, when for some fj = DR (:!:) DE, P : fj -+ fj* and smoothness criterion
S c fj:

(a) D = DR,

(b) P=PR:DR-+D~
and

(c) 1= {u EDI3 U = (u, UE) E ~EUE = OJ. (5.36)

THEOREM 5.2. Assume problem (2.1) is subjected to restrictions of continuation type and
the associated smoothness condition S is regular. Then, if the associated problem of
connecting satisfies existence, the linear sub-space I c D is completely regular for P.

Proof Theorem 3.1 will be applied to show that (I, Ip) is a canonical decomposition
ofD. Here, according to Equation (2.12), Ip = N +Np. By Theorem 3.1, it is only
necessary to prove that I c D is a regular sub-space for P and that the problem with
linear restrictions satisfies existence. Given any u E I and v E I, take UE E DE satisfying
the conditions of (5.36) and similarly VEEDE. Then

<Au, v) = -<AEuE, VE) = <PEVE, UE) -<PEUE, VE) = 0 (5.37)

where use has been made of (5.12). The condition N c I follows from the fact that
N c S, using (5.9) or equivalently (5.10). This shows that I cD is a regular sub-space
for P.

By virtue of Lemma 2.3, it remains to prove that the basic problem

Pu = PU; U E I (5.38)
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satisfies existence. To prove this, given U ED, define 0 = (U, 0) E fj and let
U = (u, UE) be a solution of the problem of connecting

Pu=PO; uE8. (5.39)

Then, recalling definition (5.36), it is seen that U ED satisfies (5.38), and the proof of

Theorem 5.2 is complete.
As an example, in Fig. 1, the functions of D = HS(R), (s ;;.: 2), can be continued

smoothly into functions of HS(E) that are harmonic on E, vanish on alE and whose
normal derivative vanishes on 02E, constitutes a completely regular sub-space for
P : D -+ D*, defined by

f f ov f ou <Pu, v) = vV2udx + uTdx -vTdx.
R aIR un a2R un

Here, the criterion of smoothness is that u and au/on are continuous across o3R. Such
a result can be extended to unbounded regions if suitable radiations conditions are
imposed on the functions considered (Herrera & Sabina, 1978).

6. Variational Principles

The theory developed in this paper will be used in this section to formulate two
types of variational principle for problems with linear restrictions.

The first one applies when there is available a canonical decomposition (I, It), one
of whose elements is the linear sub-space I which specifies the restrictions in problem
(2.1). In this case, P -B, where B: D -+ D* is the operator associated with the
canonical decomposition by means of (4.12), is symmetric; by its use one obtains
variational principles for which the variations need not be restricted. However, it
must be observed that the mere existence of such canonical decomposition is not
sufficient to permit the formulation of these variational principles; it is required, in
addition, that the actual decomposition of every vector U E D in its components Ul
and U2, can be carried out without difficulty, because this is necessary in order to
construct B by means of (4.12). Problems subjected to restrictions of continuation
type, do not fulfil this requirement in spite of the fact that for them (I, I p), frequently
constitutes a canonical decomposition; this can be seen by observing that to obtain
the components U l' U 2 of any U E D with respect to this canonical decomposition, it
is essentially required to solve the problem with linear restrictions (2.1).

When it is difficult to construct the operator B the second type of variational
principle can be applied. It is associated with the operator 2P-A, which is always
symmetric and can be used if variations are restricted to be in the regular sub-space I;
the results are enhanced when the sub-space is completely regular, as is often the case.

Applications are made to the problem of connecting, for which the construction of
B (the jump operator) is possible, as shown in Section 5, and to problems with
restrictions of continuation type, for which, as already mentioned, such construction
is not possible and the operator 2P -A has to be used.

The following lemmas lead to the desired variational principles.
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LEMMA 6.1. Let I c D be a completely regular sub-space for P, then given U ED and
V ED, an element u E D is solution of the problem with linear constraints (2.1), if and

only if

Pu = PU (6.1)
and

<A(u- V), v) = 0, \f v e /. (6.2)

When / is regular, but not completely regular, the above assertion holds for elements
u e V +/.

Proof The mere regularity of / c D is enough to guarantee that equation (2.1)
implies (6.1) and (6.2). When, in addition, / c D is completely regular, conversely,
(6.2) implies that u- Vel; hence, equation (2.1) follows from (6.1) and (6.2), in this
case. The second part of the lemma is now straightforward.

LEMMA 6.2. Assume (I, Ic) constitutes a canonical decomposition of D with respect to P,
and let B:D-+D* be defined by (4.12), taking uz and Vi as components of vectors on
(/, / c), Then u e D is a solution of the problem "'ith linear constraints (2.1) if and only if

Pu = PU and Bu = BJI: (6.3)

Proof By Theorem 4.1, equation (4.11a), u- Vel if and only if B(u- V) = O.

Definition 6.1. An operator P: D -+ D* is said to be formally symmetric when for every
ueD

<Pu,V) =0, 'v'veN=Pu=O. (6.4)

It is customary to call a differential operator L, formally symmetric, when

f R {vLu -uLv} dx = boundary terms. (6.5)

To such an operator one can associate a P : D -..D* which is formally symmetric in
the sense of Definition 6.1 by means of

<Pu, v) = fR vLu dx. (6.6)

As an example, the operator associated by means of (6.6) to the Laplacian, is
formally symmetric in the sense of Definition 6.1. Indeed, in this case P : D -I- D* is
given by equation (2.2) and the null sub-space [equation (2.10b)] is the set of
functions which together with their normal derivatives, vanish on the boundary.
Property (6.4), in this case, amounts to the so-called, fundamental lemma of calculus
of variations.

LEMMA 6.3. Assume P : D -I- D* is formally symmetric and I cD is regular for P. Then

(a) (6.1) and (6.2) hold simultaneously if and only if

«2P-A)u, v) = <2PU -AY; v), V v E I. (6.7)

(b) Equations (6.3) hold, if and only if

(P-B)u = PU-BJI: (6.8)
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Proof Re-arranging, equation (6.7) becomes

<2P(u- V), v) = <A(u- V), v), V V e I. (6.9)

Clearly, (6.1) and (6.2) imply (6.9). Conversely, (6.9) implies

<2P(u-U),v) =0, VveNcl (6.10)
which in turn implies (6.1), because P is formally symmetric. Once this has been
shown, (6.9) reduces to (6.2). This proves (a).

Equation (6.8) can be obtained by subtracting one of equations (6.3) from the
other. Conversely, (6.8) implies

<P(u- V), v) = <B(u- V), v) = 0, V V eN c D (6.11)

because according to Lemma 4.2, B* is a boundary operator (i.e. N ~ ::> N). The first
of equations (6.3) follows from (6.11), because P is formally symmetric. Once that
equation has been proved, (6.8) reduces to the second equation in (6.3).

THEOREM 6.1. Assume P: D -.D* is formally symmetric and (I, 1 J constitutes a
canonical decomposition of D. Then u e D is a solution of the problem with linear
restrictions (2.1), if and only if

Q'(u) = 0 (6.12)
"'here

.Q(u) = t«P-B)u, u)-(PU-BJ/; u). (6.13)
Here B : D -+ D* is the operator associated "'ith (I, Ic) by means of (4.12).

Proof Recall that P-P* = A = B-B*; hence, P-B is symmetric. Applying (2.16) to
this symmetric operator, Theorem 6.1 follows from Lemmas 6.2 and 6.3.

THEOREM 6.2. Assume P is formally symmetric and I c D is a completely regular sub-
space for P. Define

X(u) = <Pu, u)-<2PU -AJI; u). (6.14)

Then u ED is a solution of the problem ",'ith linear restrictions (2.1), if and only if

<X'(u), V) = 0, 'It v E I. (6.15)

When I is regular but not completely regular, an element u E V + I is a solution of (2.1),
if and only if (6.15) holds.

Proof 2P-A is symmetric with quadratic form <2Pu, u), because A is antisymmetric.
From (6.14), it follows that

X'(u) = (2P-A)u- (2PU -AV). (6.16)

Theorem 6.2, follows from Lemmas 6.1 and 6.3, by virtue of (6.16).
The following variational principles are corollaries of Theorems 6.1 and 6.2.

THEOREM 6.3. Take P : fj -.fj* as in Section 5 and let S c fj be a completely regular
smoothness relation for fj. Define J: fj -.fj* by means of (5.28). Then, when P is
formally symmetric U E fj is a solution of the problem of connecting (5.11), if and only if

.Q'(u) = 0 (6.17)
",'here

Q(u) = (P(u-20), u)-(J(u-2V), u).
6



86

I. HERRERA

Proof. According to Theorem 5.1, the pair (S,~) constitutes a canonical
decomposition of D, where ~ is given by Definition 5.2. Hence, Theorem 6.3 follows

A A A. A
Theorem 6.1, because J: D ~ D* IS the operator that decomposes A, associated by
Theorem 4.1 with (S, ~).

THEOREM 6.4. Assume problem (2.1) is subjected to restrictions of continuation type
(Definition 5.3) and the associated smoothness condition S is regular for P. Let the
functional X: D ~ F be given by (6.14). Then, when the problem of connecting satisfies
existence and P: D ~ D* is formally symmetric, u ED fulfils (2.1), if and only if,
(6.15) holds.
Proof. This result follows from Theorem 6.2, by virtue of Theorem 5.2.

7. Applications

The variational principles for the problem with linear constraints presented in
Section 6, supply a systematic frame-work for the formulation of such principles
associated with boundary value problems and boundary methods. There are many
classical problems of partial differential equations that can be cast in this framework;
here, however, it will only be applied to two types of problem: problems formulated
in discontinuous fields subjected to prescribed jump conditions; and problems
subjected to restrictions of continuation type. The corresponding variational
principles will be special cases of Theorem 6.3 and 6.4, respectively.

These two kinds of principles will be derived for potential theory, reduced wave
equation, heat and wave equations, and Elasticity (static, periodic motions and
dynamical). Variational principles for the linearized theory of free surface flows have
also been obtained by this method (Herrera, 1977a). It is of interest to notice that
problems involving two phases can also be formulated in this manner; to illustrate this
fact variational principles are derived for a problem in which the region R (Fig. 1) is
occupied by an inviscid liquid while E is occupied by an elastic solid. For static and
quasi-static problems the regions to be considered are illustrated in Fig. 1. The
regions illustrated in Fig. 3 apply to time dependent problems, which will be
formulated in a finite time interval [0, TJ. For simplicity the regions Rand E shown
in the figures are bounded, but the results can also be applied in unbounded regions if
suitable conditions such as radiation conditions are imposed on the elements
of the spaces DR and DE, Thus, for example, diffraction problems formulated in a
half-space (Fig. 4) can be treated in this manner.

7.1. Potential Theory and Reduced Wave Equation

The function spaces DR and DE can be taken as suitable Sobolev spaces (Babuska &
Aziz, 1972; Lions & Magenes, 1968); generally, DR = HS(R), DE = HS(E), with s ~ 2.
A slight modification has to be made when complex valued functions are considered.
Given p and non-zero constants kR, kE, define

L(u) = V2u+pu, (7.1)

i f av f au } vL(u)dx+ ua-;;dx- va-;;dx " ;

R aIR ozR

17.2)

<PRUR' 

VR) = kR
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FIG. 3

FIG. 4

and PE: DE -.Dl, replacing R by E in equation (7.2). Then, using (5.10) it can be
seen that

IV = {(UR' UE) E DluR = UE = OUE/On = ouR!on = 0; on o3R} (7.3)

and it is easy to verify that P : D -+ D* is formally symmetric, because it satisfies (6.4).
Let the smoothness relation be

S = {u E DluR = uE,kRouR!on = kEoUE/on; ono3R}. (7.4)

For Ii E S and arbitrary U E D

(7.5)

where

[k OU/On]R = kE OUE/OnR -kR ouRfonR" (7.6)[U]R = UE-UR;
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(V)R = (UE+UR)/2; (7.8)

(7.9a)

k~ ) = ~(kE-3V~ + kR~ ).
, on R 2 onR onR

Given 0 E D and Ii E D, the problem of connecting (5.11), is equivalent to

L(U)=!RuE=L(O); on RuE,

U=!l = 0; on ol(RuE),

au 00
a;; = 12 = on oz(R u E),

= vrE
=kE~

UnR

u(u-2fRuE)dx +1",(RuE)

f"2(RUEjU (~- 2f2) dx -f"OR {([U]-2fJl)~ -U ([ k~ -2fJ2)} dx. (7.11)

The problem with restrictions of continuation type of Definition 5.3, in this case
corresponds to

(7.12a)

(7.12b)

Lu = IR = LU; on R,

u = it = U; on a 1 R,

au au~ = 12 = -on a2R.
un

(7.12c)on'

The restriction is that there exists a function UE E DE, such that

(OU OV ) OUE U-V=UE; kR -a-;;-e; =kEa;; ono3R.
(7.13)

Here

LUE=O, onE; UE=O, on alE;

This problem occurs in diffraction studies.

ouEion = 0, on 02£' (7.14)

Here, as in what follows, the components (R or E) to be used when carrying out the
integration, are indicated by the sub-index under the integral sign. From (7.5) and
Lemma 5.1, it can be seen that S is completely regular for P. Applying (5.28), one gets

on' (7.9c)

subjected to prescribed jurnp conditions

UE-UR =fJl = VE-VR;

k ~- k ~ - k ~. nnP '1 171(\\
E~ R~ R~ ' ~"~"'~-- ,---,

unR unR unR

This problern can be formulated variationally by rneans of Theorern 6.3. The
corresponding functional is

fJ2
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Taking I c D as the linear sub-space that satisfies (7.13) with V == 0, Theorem 6.4 is

applicable. Equation (6.14) yields

i f ou X(u) ~ u{Lu-2fR} dx + (u-2h)~ dx-
R o,R un

fO2RU (~- 2f2) dx + fO3R {u~ -V~} dx. (7.15)

Here the factor kR was deleted because it was superfluous.

7.2. Heat Equation

A similar application can be made to the heat equation. In this case (Fig. 3),
R = Rx x [0, 71, E = Ex x [0, 71 and

Lu = V2u-ou/ot. (7.16)

The operator PR: DR ~ D~ can be defined by

(PRUR' VR) = r v * Lu dx + f u * ~ dx-
JR, aIR.

ou r
v .an dx -JR. u(O)v(T) dx (7.17)

zR.
The following notation

u *v ~ f: u(T -t)v(t) dt (7.18)

is adopted. PE:DE-+D~ is obtained replacing R by E in (7.17). The smoothness
condition can be taken as

S = {u E DluR = uE; aUR/an = aUE/an; on a3R} (7.19)

where the subsets aiR = [0, 11 x ajRx (i = 1,2,3), do not cover the boundary aR of
R. When v E Sand U E D is arbitrary,

A. f { av [aUl}<Au, v) = o3R. [a] * 8;; -v * 8;;J dx. (7.20)

Again, use of Lemma 6.1, permits establishing that S is completely regular for
D : D -+ D*. Equation (5.28), yields

A. f {av. [au]}<Ju,v) = o3R. 8;; *[u]-v* 8;; dx. (7.21)

Given 0 ED and V E D, the problem of connecting (5.11), is equivalent to
equation (7.9) supplemented by

u(x, 0) = 10 = O(x,O); on Rx u Ex (7.22)

subjected to jump conditions

avROUE OUR oJ;;I: E '
on -a-;- J2 =-a-;-&; on o3RUE-UR =IJI = VE-VR,
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UE(X, 0) = 0; on Ex.

The functional of Theorem 6.4, is

X(u) = I u* {Lu-2fR}dx + I (U-2fl)*~dX- f U* (~-2f2 )dX-
JR. J aIR. aIRi f { fJV fJU

}{u(O)-2fo}u(T)dx+ u*~-V*a-;; dx. (7.27)
R. a,R. on

7.3. The Wave Equation

The results corresponding to the wave equation are listed below.

(a) R=Rxx[O,I1; E=Exx[O,I1.

(b) Lu = V2u-o2ujot2.
(c) PR : DR --+ D~ is

(7.28)

i f av f au <PRUR,VR)= vLudx+ u*a;;dx- v*a;;dx-

R. iJIR. iJ2R.

fR.{U(O)Vf(T)+Uf(O)V(T)} dx (7.29)

where the primes stand for the partial derivatives with respect to t. To obtain
PE : DE -+ D~, R has to be replaced by E in (7.29).

(d) Equations (7.19) to (7.21) also hold in this case.
(e) Given 0 E fj and V E fj, the problem of connecting (5.11) is equivalent to

equation (7.9), supplemented by
u(x, 0) = fo = O(x,O);

iJ{;(x, O)/iJt = f~ = iJO(x, O)/iJt; on Rx u Ex

subjected to (7.23).
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Here, o3R = [0,11 x o3Rx; thus, fJl and fJ2 are also functions of time t.
The variational formulation of Theorem 6.3, yields the functional

.{).(U)=r U*(LU-2fRUE)dx+ f (U-2fl)*~dX-JR.UE. a,(R.uE.) n

i u * (~ -2/2) dx -r {u(0)-2fo}u(T)dx +
a.(R.uE.) n JR.UE.

fa3R.{u * ([~J -2fJ2) -([u]-2fJl) *~} dx. (7.24)

The problem with restrictions of continuation type of Definition 5.3 in this case is
governed by equations (7.12), supplemented by

u(x, 0) = fo = U(x,O); on Rx. (7.25)

The restriction is obtained by taking kR = kE = 1 in equation (7.13) and
supplementing (7.14) with

UE(X, 0) = 0; on Ex. (7.26)

The functional of Theorem 6.4, is

X(u) = r U*{LU-2JR}dX+ f (U-2ft)*~dX- f U* (~-2J2
) dx-

JR. aiR. o,R
f { av au

}{u(O)-2Jo}u(T)dx+ u*--V*a-;; dx. (7.27)

o,R. on

7.3. The Wave Equation

The results corresponding to the wave equation are listed below.

(a) R=Rxx[O,1]; E=Exx[O,1].

(b) Lu = V2u -o2ufot2.

(c) PR: DR --+ Dk is

<PRUR, VR) = fRVLU dx +

(7.28)

ov f au u *- dx -v * -dx -
---, ~-IR, an o2R, an

fR,{U(0)V1(T)+U1(0)V(T)} dx (7.29)

where the primes stand for the partial derivatives with respect to t. To obtain
PE : DE -+ D~, R has to be replaced by E in (7.29).

(d) ~quations (7.19) to (7.21) also hold in this case.
(e) Given 0 E D and V ED, the problem of connecting (5.11) is equivalent to

equation (7.9), supplemented by
u(x, 0) = fo = O(x,O);

ou(x, O)/ot = 10 = oO(x, O)/ot; on Rx u Ex (7.30)
subjected to (7.23).
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(f) The functional of Theorem 6.3, is

Q(u) = r u * (Lu-2fRuE)dx +
JR.UE.

fO,(R.UJ

fR.UE.'

ou f (au )(u -2ft) .a dx -u. a -2J2 dx-
~J n o,(R.uEJ n

[u(O)-2Jo}u'(T)dx -r {u'(O)-2Jo}u(T)dx +
JR.UE.

fO3R. {u. ([~J -2fJ2) -([u] -2fJl).~} dx. (7.31)

(g) The problem with restrictions of continuation type of Definition 5.3 is given by

(7.12), (7.25), supplemented by
ou(x, O)/ot = f~ = oU(x, O)/ot; on Rx (7.32)

subjected to the restriction that there exists UE E DE, that satisfies (7.13) with
kR = kE = 1, (7.14) and (7.26), together with

OUE(X, O)/ot = 0; on Ex. (7.33)

(h) The functional of Theorem 6.4, is

X(u) = r U. {Lu -2fR} dx +
JR.

f ou f (ou (u-2fl)*andx- u* an-2f2)dx-

aIR. a,R

r {u(O)"- 2fo}u'(T)dx -r {u'(O) -2f~}u(T)dx +
JR. JR., { av au}u.-- V.- dx.

a.R. an "On

7.4. Elasticity

In order to formulate the problems of Elasticity, the elastic tensor Cjjpq is assumed
to be defined in the regions Rand E. It will be assumed to be sufficiently differentiable
on R and on E, separately; for example, it is not too restrictive to assume that Cjjpq
possesses continuous derivatives of all orders on R and on E, that can be extended
continuously to the boundaries of these regions. In addition, Cijpq is assumed to
satisfy the usual symmetry conditions (Gurtin, 1972)

Cjjpq = Cpqjj = Cjjpq (7.35)

and to be strongly elliptic; i.e.

Cijpq~i11j~p11q > 0, whenever ~i~i # 0; 11i11i # O. (7.36)

7.4.1. Static and periodic motions. The elements of the linear spaces DR and DE can be
taken as vector valued functions whose components belong to H"(R) and H"(E), s ~ 2,
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respectively. When treating periodic motions in unbounded domains, it is frequently
convenient to consider complex valued vector fields. Let

-iJup. )tij(U) -Cijpq-::;-, on RuE, (7.37a
uXq

(7.37b)

and
1;(u) = 't;j(u)nj; on oR and oE. (7.37c)

Here k is a function of position which satisfies continuity conditions similar to those
of the elastic tensor. The definition of the tractions T(u) depends on the sense of the
unit normal vector, so that two such tractions which have opposite signs, are defined
on the common boundary oR = oE. As in the case of the normal vector, sometimes
they will be represented by TR(u) and TJu); more often, however, the ambiguity will
be resolved by the suffix used under the integral sign. Observe that when considering
the problem of connecting the following combinations can occur T R(UR), T R(UE),
T JUR) and T JUE)'

The definitions and results for static and periodic motions in Elasticity are listed
below:

(a) PR:DR-+Dlis

<PRUR, VR) = r viLi(o) dx + r Ui 1;{v) dx -r Vi 1i(0) dx
lR lOtR lo,R

and PE : DE -+ Dl is obtained replacing R by E in (7.38).

(b) The smoothness condition can be taken as

S = {u E fjlURi= UEi; 1i(UR) = 1i(OE); on o3R}

(c) When v E Sand U E fj is arbit~ary

<Au, v) = I ,R {[u;]1;{v)-vj[1i(u)]} dx. (7.40)

Here

[uJ = UEi-URi; [7i(U)]R = T:.{uE)-T~(uR)' (7.41)

where the sub-indices Rand E in the tractions refer to the normal vector used,
while the super-indices refer to the elastic tensor used; thus, for example

E E OUEpTRiUE) = Cijpq -:;--- nRj.
uXq

(d) S is completely regular for P : D -+ D*. This result can be established using
Lemma 5.1 and strong ellipticity (equation (7.36)).

(e) Equation (5.28), yields

<Ju, 0) =
fc.R

{[ui]1;{v) -ii;[1;{u)]} dx (7.42)
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(f) Given any 0 ED and V E D, the problem of connecting (5.11) is equivalent to

L;iI =fRuE; = L;O; on RuE (7.43a)

14;=f1;=°i.; ono1(RuE) (7.43b)
1;{iI) = f2; = 1;{O); on O2(R u E) (7.43c)

subjected to the jump conditions

[iI] = fJ1 = [~], [T(iI)] = fJ2 = [T(V)]; on o3R. (7.44)

(g) For this problem, the variational formulation of Theorem 6.3 yields the
functional

Q(il) = r ui(Liu-2fRuEJdx + f (ui-2hJ1iudx-
JRuE o,(RuE)

f ui(1iu-2f2J dx + foz(RuE) o,R
{Ui([1i(U)] -2112;)-

([UjJ -2fJ.JTiu)} dx. (7.45)

(h) The functional of Theorem 6.4, for the problem with restrictions of
continuation type is given by

X(u) = r uj{Lju-2fRJ dx + f (uj-2f.J1;udx-
JR a,R

f U;(1;U-2f2JdX+ f {u;1;{v)-~1;{u)}dx. (7.46)
o2(RuE) o]R

7.4.2 Dynamics. The extension from elastostatics to dynamic elasticity is very similar

to that carried out when going to the wave equation from Laplace's. The operators

have to be defined as

iJ2UjDiu = Liu-p at2

where Li is given by (7 .37b) with k = 0; then

<PRUR, VR) = r Vi .Diu dx + f Ui. 1;{v) dx -
JR. aiR.

f vi*1;{u)dx-r p{ui(O)v;(T)+u;(O)Vi(T)}dx (7.48)
o2R. JR.

where, as in (7.29), the primes stand for the partial derivatives with respect to time.
The regions are shown in Fig. 3. The smoothness condition is given (7.39), with the
new interpretation of o3R. It can be shown that S is completely regular for
P: fj ~ fj*, so that Theorems 6.3 and 6.4 can be applied.

For the jump operator, it is obtained

<Ju, v) = f {[Ui] * -r;{vj -Vi * [1;{u)]} dx,
o.R

(7.49)
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7.5. A Two Phase Problem

Let R in Fig. 1 be occupied by a linear elastic solid, while E will be occupied by an
inviscid compressible fluid. It will be assumed that the motion in E is potential and the
governing equations have been linearized.

For periodic motions of angular frequency OJ, equations (7.43) apply on R, with
k = pOJ2. In general, when the motion is non-periodic, the equations in E are (Meyer,
1972; Landau & Lifshitz, 1959)

~=o; 

onE (7.50)
1 02p

V2p-?~

where p is the pressure and C2 = (dpfdp)o will be taken as constant. The acceleration
a. IS,

op
-, (7.51 )a; = -pax,

The smoothness conditions across the connecting boundary o3R = o3E are:
continuity of tractions and continuity of the normal components of displacements.
For periodic motions p = UE eirot, this leads to

uEni + 1;{u) = 0; on o3R, (7.52)

aUF.

an
- Pm2u.n. = O. on O3RI I , (7.53)

The inhomogeneous form of (7.50), for such periodic motions, is

V2UE + pW2UE = IE; on E.

Therefore, the problem is governed by (7.43) on Rand (7.54), subjected to the
smoothness conditions (7.52). In order to consider the more general problem, for
which the right-hand side in equation (7.53) may be prescribed non-zero functions,
the operator P R : DR -+ D~ will be defined multiplying the right-hand side of (7.38) by
pW2, while PE : DE -+ D: is defined when replacing p by pW2, R by E and setting
kE = 1, in (7.2). Notice that functions of DR are vector valued, while those of DE have
only one component. Then

~ f f { au av}(Au, 0) = pW2 ozR {Vi 1;{U)-Ui 1;{v)} dx + 03£ va;; -u a;; dx. (7.55)

The smoothness relation S c D. is defined as the set whose elements satisfy (7.52).
When o = (VR, VE) E S, while u = (UR, UE) E fj is arbitrary, equation (7.55) reduces to

(Au, 0) = pw2f vi{1;{u)+uEnj dx +
03R

f{ fJUE 2 }o,R TJv) an ni-pW Ui dx
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When strong ellipticity (7.36) is satisfied, it can be shown that Vi and 1;{v) can be
varied independently. Using this fact and equation (7.56), it is not difficult to see that

(Au, v) = 0, \f v E S=-u = (DR' UE) satisfies (7.52); (7.57)

hence, S is completely regular for P. That P is formally symmetric follows from the
fact that

N = {it E DluRi = UE = OURJOn = oudon = 0; on o3R} (7.58)

which involves boundary conditions on o3R, only. Thus, the general theory
developed previously is applicable to P and the variational principles of Theorem 6.3
and 6.4 are applicable to this problem.. It is now a straightforward exercise to obtain
corresponding formulae, but the details will not be included here.
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