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Leaky aquifers constitute complicated hydrological structures, whose inclusion in numerical
models of hydrological systems is difficult, because of their three-dimensional nature. Methods for
treating such systems can be classified as fully three-dimensional and quasi-three-dimensional. The
latter have clear numerical advantages when applicable. In this paper a critical discussion of
existing quasi-three-dimensional models is presented.

INTRODUCTION

When applying mathematical modelling in groundwater
hydrology it is frequently necessary to consider multi-
aquifer systems. This leads to problems in three spatial
dimensions, which involve four independent variables
when transient phenomena are considered. Three-
dimensional models of groundwater flow systems are
available5.19, but owing to economic considerations, two-
dimensional representations when possible, are preferred
in most cases 7.

Theories in which the flow is assumed to be horizontal
in the aquifers and vertical in the intervening aquitards,
are frequently called quasi-three-dimensional. The error
introduced in this manner is generally 5% or less2O which
is acceptable for most engineering purposes. Quasi-three-
dimensional models result in considerable reductions in
computer time as well as in storage requirements, when
compared with fully three-dimensional models whose
only advantage is their complete generality. Hence, in the
critical discussion here presented, attention is restricted to
quasi-three-dimensional models.

In order to profit fully from these advantages, it is
important to eliminate the vertical coordinate from the
governing equations. This was achieved in early work by
assuming that leakage is proportional to hydraulic head
difference across the aquitard11.18; this condition is
strictly satisfied in steady state situations, but in transient
problems it may be quite inaccurate; it implies for
example, neglecting the aquitard storage. Hantush 10

developed a solution for an isolated well that takes
storage into account in an approximate manner. Herrera
and Figueroa14 formulated a manner of incorporating
Hantush's approximations of the aquitard storage into
the governing equations of leaky aquifers and multi-
aquifer systems 12, thus allowing the treatment of a greater
variety of geometries and boundary conditions.
Bredehoeft and Pinder1 using an analytical solution due
to Hanshaw and Bredehoeft9, developed a semi-analytical
procedure to account for the aquitard storage. Fujinawa8
formulated a finite element model in which a linear
approximation of the aquitard response is incorporated.

All the techniques mentioned up to now, for eliminating
the z-coordinate from the quasi-three-dimensional mo-
dels, are of limited applicability. A rigorous and exact
procedure for eliminating the vertical coordinate was
given by the integro-differential approach. Herrera and
Figueroa14 and Herrera1Z obtained a system ofintegro-
differential equations which is strictly equivalent to the
basic equations of motion of the quasi-three-dimensional
theory of multiaquifer systems. These equations were
developed systematically &'y Herrera and Rodarte15.
Later Herrera and Yates16 and Herrera et al.17 presented
a procedure to treat numerically these integro-differential
equations efficiently. Herrera and Rodarte15 established
the equivalence between two different series developments
for the flow into an aquifer from a neighbouring aquitard
produced by a stepwise head change in the aquifer; one of
these developments can be recognized as that obtained by
Hanshaw and Bredehoeft9 and incorporated by
Bredehoeft and Pinder in their theory. However, it is the
alternative series development that is better suited for
numerical treatment as it allows the formulation of a
method whose accuracy is not restricted16.17 because it
can be made as accurate as desired by properly choosing
the truncation of the series expansion of the kernels. The
method includes many other approximate models as
particular cases. In the light of the integro-differential
equations, it is possible to interpret these different appro-
ximations as alternative manners of approximating the
kernel functions. This allows a systematic development of
such models. Corresponding to each approximate theory,
a numerical method to treat multiaquifer systems can be
developed. Up to date only a few of the many alternatives
have been used. For example, Herrera and Figueroa's
correspondence principle14, to our knowledge, has not
been applied in spite of being a very simple and numeri-
cally convenient manner of accounting approximately for
aquitard storage; the range of applicability of this appro-
ximation is essentially the same as that of Hantush'slO
large time approximation13, but it can be applied to
inhomogeneous aquifers in arbitrary geometries and
subjected to general boundary conditions.

Later, Chorley and Frindz developed another method
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of unrestricted applicability, which treats directly the
basic equations of motion. An essential feature of this
scheme is that the aquitard response is obtained by
solving numerically its governing differential equations.

De Marsilly et al.4 have recently published a method
which does not present any major difference with the
integro-differential equations approach here discussed,
except for the fact that it does not incorporate some
refinements16. Frind6, has just published a discussion of
the memory functions occurring in the integro-differential
equations, oriented to numerical applications; this is
related with one presented by Herrera. However, Frind
concludes that it is not clear whether or not his results lead
to an improvement of the original procedure developed
by Herrera and Yates16.

difference between them resides in the treatment of the
flux term qL due to leakage in equations (1) and (1 '), which
by Darcy's law is the product of the permeability K' and
the vertical gradient of the aquitard drawdown s'.

In model A, the aquitard equation remains within the
final set of equations, which consists of three partial
differential equations of parabolic type, one for the
aquitard and two for the adjacent aquifers. For the
aquitards a string of linear elements is used by Chorley
and Frind2. Nothing is assumed with respect to the
vertical variation of the aquitard permeability which can
be arbitrary. However, the explicit consideration of the
aquitard equation introduces a direct coupling between
the aquifers and aquitard equations via the leakage terms
qL which leads to an iterative method of solution: the
aquifers and aquitard are solved alternatively at each time
step, in a way that becomes more complex as more than
two aquifers are considered, even when a sequential
solution procedure is adopted.

In model B, the aquitard equation is integrated out
leading to a set of two integro-differential equations, one
for each aquifer, where the flux terms become con-
volutions with memory and influence functions:
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EXISTING QUASI- THREE-DIMENSIONAL
MODELS

In this section, we describe Chorley and Frind's model2 (in
what follows, model A), and the integro-differential
equations model (in what follows, model B)16.17.22; these
are as far as we know the only existing ones which can be
made as accurate as desired, within the general framework
of quasi-three-dimensional models. For the sake of sim-
plicity, we shall consider the system of Fig. 1, although
both formalisms apply to multiaquifer systems.

Under the assumption of horizontal flow in the aquifers
and vertical flow in the aquitard, the equations of motion
are, for a confined aquifer:
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and a similar expression for qL,. Here t' = a't/b', while15
and for a water table aquifer under the Dupuit
approximation: -1
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where qL is the leakage flux, and the notation is standard
in aquifer mechanics. Boundary conditions are of the
usual Dirichlet and Neuman type. The aquitards are
governed by:

h(t') = 1 +2 L
"=1

-l)"e-n'x't' 

(5)

This procedure does not introduce any approximation as
long as the aquitard permeability K' is taken to be
constant vertically across the aquitard. If vertical va-
riability is permitted, the same procedure remains valid
under the assumption that a vertically averaged K' can be
obtained. In equation (3) the first and second terms in the
right-hand side represent the influence of aquifers 1 and 2
on aquifer 1, respectively. Equation (4) represents an
identity between two alternative expressions for function
f The second of these was used by Bredehoeft and Pinder!
to formulate an approximate method of solution. The first
one has numerical advantages which lead to the method
of unrestricted accuracy discussed here. In this scheme,
the memory and influence terms are approximated by a
truncation of their exponential series done in such a way
as to preserve the values of their integrals. This con-
servation of mass helps to avoid systematic errors. The
resulting equations are directly solved by any standard
finite element technique as for model A. These equations,
owing to the shape of the influence function h, may be
regarded as uncoupled which eliminates the need for an
iterative procedure. Furthermore, the convolution in-
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In both models A and B, a finite element solution for the
aquifers is formulated in the usual way. The main
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tegrals can be evaluated at each time step by a simple
updating procedure, which is independent of any re-
ference time and does not involve past history; this is
possible because of the exponential nature of the series
approximations16. Finally, the dravldown in the aquitard
need not be calculated unless it is required at some time t',
in which case it can be evaluated simply in terms of the
values in the adjacent aquifers and of auxiliary terms
which occur in the calculation:

s'(z, t)=Sl(t')(1-()+S2(t')(-

AQUITARD

(6)

~IFER

If N'=N, dyn(t') is already available; wnen N'>N the
additional terms can be computed simultaneously with-
out any recalculation22.

In their original paper, Herrera and Yates16 formulated
the method for homogeneous aquifers. By an extension of
their procedure this restriction has been eliminated22 and
general heterogeneous aquifers can be treated thanks to a
lumping technique using reduced integration23. This
presents several additional advantages such as increased
stability of the algorithm and simplicity in the treatment
of general boundary conditions, as well as the calculation
of source terms. Finally, the treatment of water table
aquifers under Dupuit's assumption, can be incorporated
using the standard techniques for such systems3.
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Figure 2

Moreover, they are independent of the reference time
chosen.

A rough comparison in computational costs between
models A and B can be carried out as follows for a general
system of N aquifers, separated by (N -1) aquitards, the
Nth aquifer being confined. Suppose that all the aquifers
are discretized by 2D finite elements of diameter k, while
the aquitards are discretized by 1D finite elements of size
k' (Fig. 2). If, for instance, linear elements were used, the
numbers of unknowns (n for the aquifers, n' for the
aquitards) as well as the half bandwidths (w for the
aquifers, w' for the aquitards) of the resulting algebraic
systems would be given by

COMPARISON BETWEEN EXISllNG QUASI-
THREE-DIMENSIONAL MODELS

One of the main points in comparing the two models lies
in the treatment of the aquitard: in model A, even if the
drawdown in the aquitard is not explicitly required, the
aquitard must be correctly discretized to avoid introduc-
ing numerical errors in the aquifer calculation, especially
because the aquifer-aquitard coupling occurs through the
leakage flux across the aquifer-aquitard interfaces. This
flux depends on the vertical gradient in the aquitard by
Darcy's law, which means that special care must be
exercised to evaluate the aquitard drawdown since errors
associated with gradients are typically greater than errors
associated with values. In point of fact, a relatively
involved procedure is used in model A to select the grid in
the aquitard. Moreover, the mesh size in the aquitard will
depend on both its thickness and permeability. In model
B, the aquitard flux is analytically incorporated into the
original equations: therefore it is not required to solve for
the values of the aquitard. Rather these values can be
derived as explained in the previous section. It is interest-
ing to note that increased complexities in model A due to
the aquitard discretization are reflected in model B
through the number of series terms that are required for
comparable accuracies. In model B, for given values of
time, aquifers and aquitard characteristics, and prescribed
accuracy, it is possible to predetermine and dynamically
adapt the number of terms to be retained in the series
approximations. These terms do not significantly increase
the computational costs, because they appear as source
terms, whose evaluation is considerably simplified by the
lumping procedure mentioned earlier. In both models,
arbitrary boundary and initial conditions, as well as space
and time dependent source terms, can be incorporated.

n-k-2 , w-k-1 (7)

and

n'-(k')-l, w'=2 (8)

so that the corresponding number of arithmetic oper-
ations for a matrix factorization (F for the aquifers, Ff for
the aquitards) and for a solution with a given second
member (S for the aquifers, Sf for the aquitards) are21

S=2nw-2k-3F=tnw2-tk-4, (9)

and

S'=2n'w',..,4k'-1.F'=!n'w,2-2k'-1, (10)

If we assume that the bulk of the computational effort
consists of the repeated solution of the algebraic systems
at each time step and of the matrix factorizations in the
first time interval and moreover, that model A requires 1
iterations at each time step, the total computational costs
in numbers of arithmetic operations for models A and B to
be denoted by CA and CB respectively, may be evaluated
supposing that m time steps in total are performed. In this
manner, we obtain in the general heterogeneous case:

CA=NF+(N -1)k-2F'+

lm(NS+(N-l)k-2S') (11)
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because there are k-2 strings of linear elements across the
aquitards in model A. Similarly:

CB=NF+mNS (12)

If a fully 3D model (hereafter model C) is included in the
comparison, the corresponding computational costs are:

Cc=F+mS (13)

showing that the computational costs can be roughly
reduced by an order of magnitude when model B is used
instead of model A. It is easy to check that these numbers
8.2 and 12.2 would become 10 and 15 respectively, if a
scaling m,.., k -2,.., (k') -2 were chosen. Such a scaling is

consistent with a Backward Euler time discretization
scheme where the space errors are still of second order, but
the time errors are only of first order.

It can be seen that the above results are essentially not
altered when homogeneous aquifers are considered.

If the upper aquifer is a water table one, the factori-
zation has to be performed at each time step for this
aquifer and the corresponding computational costs
become

where

F=!nw2, S = 2nw (14)

with
CA=(N -

+m)F+(N-l)k-2F'+

n-k-2(N -1)k'-1, w=min(k-1, (N -1)k'-1)

(15)
A comparison of computational costs based on matrix

factorizations and solutions is, of course, not entirely
satisfactory. In model A, for instance, it does not take into
account the fact that the iterative procedure which
successively solves for the aquifers and the aquitards
becomes more complex as more than two aquifers are
considered, even when the strongest coupling between
neighbouring aquifers is taken into account, leading
eventually to a sequential solution procedure. In model B,
on the other hand, this comparison does not consider the
successive updating of the memory and influence terms in
each aquifer equation. With these restrictions in mind, it
should, however, be clear that such a comparison is at
least qualitatively correct and gives a fairly good idea on
how these models would compare in realistic situations.

If, for example, the scaling m -k -1 -(k') -1 is chosen
which is consistent with a Crank-Nicholson time discreti-
zation scheme where the space and time errors are
expected to be both of second order, it is easy to verify that
in the absence of a water table aquifer

lm(NS+(N -1)k-2S' (22)

and

CB=(N-l+m)F+mNS (23)

The mF term appearing in both expressions is presumably
dominant if m is large, with the consequence that CJCB
will be correspondingly reduced. This is natural because it
reflects the fact that most of the computational effort is
required by the phreatic aquifer which is not linear; thus,
the simplification achieved in the treatment of the aqui-
tard is relatively less important.

Of course, model B is applicable under the assumption
that K' is constant vertically or can be suitably averaged
in that direction. This s~s to be a quite frequent
situation in practice, in particular when the field data are
scattered and do not provide more than a reasonable
average value of K'. On the other hand, if a sufficiently
precise vertical variation of K' is known, which is too
irregular to lend itself to some averaging procedure, an
extension of model B22 to arbitrarily inhomogeneous
aquitards that has just been developed, can be used.

The basic computational costs (and also the memory
requirements) are given in Table 1. As an illustration of

CA = (O.5N + 6NI-4l)m4 + 2(N -1)m3 (16)

CB=2.5 Nm4

Cc = O.5m5 + 2m4

From these estimations of computational costs, it is clear
that model C is not competitive with either model A or
model B. This conclusion is, however, based on the
assumption that even with model C all the matrix
operations are direct, as opposed to iterative; actual
implementations of model C are or at least should be
iterative. In the following, model C will therefore not be
included in the comparison. From (16) and (17), we get:

Table 1. Basic computational costs and memory requirements*

Model A Model B

Number of unknowns
n (Aqf>
n' (Aqt)

Half bandwidths
w (Aqf>
w' (Aqt)

Memory requirement
for Aqf & Aqt
matrix storage

Matrix factorization
F (Aqf>

F' (Aqt)

Solution
S (Aqf>
S' (Aqt)

-k-2
_(k')-l

-k-2

-k-l
2

-k-l

(19) -Nk-3 + 2(N -l)(k')-l -Nk-3

so that if five iterations are assumed per time step (I = 5)
with model A 2, we obtain

1
--k-4

2

1
--k-4

2

-2(k')-1

CJCB-8.2 for N=2 (20)

-2k-3
-4(k')-1

-2k-3
while

CJCB-+12.2
* Aqf= Aquifer, Aqt = Aquitardas N-.oo (21)
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Table 2. Computational costs ratios CA/CB for some possible
situations.

,.
2 aquifers & 1 aquitard 10 x 10 x 10 x 10
no water-table aquifer 40 x 40 x 40 x 40

40 x 40 x 40 x 160

10 aquifers & 9 aquitards 10 x 10 x 10 x 10
no water-table aquifer 40 x 40 x 40 x 40

40 x 40 x 40 x 160

2 aquifers & 1 aquitard 10 x 10 x 10 x 10
with water-table aquifer 40 x 40 x 40 x 40

40 x 40 x 40 x 160

10 aquifers & 9 aquitards 10 x 10 x 10 x 10
with water-table aquifer 40 x 40 x 40 x 40

40 x 40 x 40 x 160

* For model A, five iterations are assumed per time step (I = 5)-

See Chorley & Frind2
** Defined as 'number of intervals in the x direction x number of

intervals in the y direction x number of intervals in the z direc-
tion x number of time steps'.

the above discussion, Table 2 exhibits some numerical
estimations of C JCB in different possible situations.
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