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1 INTRODUCTION
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2. ]NTEGRODIFFERENTIAL MODEL FOR HETEROGENEOUS AQUIF~R~.

Considering for the sake of simplicity a system of two aquifers separated by one
aquitard (see Figure 1), the governing equations are



229

This is a quite frequent situation in practice, especially when the field data are too
scattered to provide more than reasonable average values. Anyhow this is an unnecessary
restriction of the method that has been subsequently removed (6]. In a recent comparison
between existing quasi-three-dimensiona1 models (7), it has been shown that the method
here presented has important advantages over an alternative one that has just been pub-o'
b1ished (8). This is due to the application of a boundary element method which permits
eliminating the aquitard from the numorical treatment and restrict attention to the
main aquifers only. Under the averaging assumption for instance, Eq. (1b) can be inte-
grated out and the set of Eqs. (1) reduces to

0 0 0 0 K' t os1 afT
~(Tl ~ SI) + ay (T1 ay sl) -bT f -a-t (t-T) f( -) dT

.0 b,2

K' t os2 afT+ bT f at (t-T) h( -)dT
0 b'2

oSl~ 51 at" + Q1 .(2a)

and

~

~
n=l

exp (-n21f2t')f(t') = 1 + 2 (3a)

and

Al
g(t') % gN (t') = ~ 6 (t') + ~ an exp(-n2w2t') .(4a)

I I n~l
and

(4b)
NZ

h(t') % h (t') = 1 + ~ b exp(-n2w2t')
NZ nal n

Any standard finite element discretization would then look for
N
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where the u. (x,y) are given piecewise polynomial basis functions, whose support is a
small patchJof elements. In the original integrodifferential model [4), homogeneity was
assumed and consequently t' was a convenient dimensional time which did not depend on
position. Here, however, t' is a function of position and the memory and influence terms
become quite involved in the final Galerkin semidiscrete equations, unless, as we found
out, reduced integration is used [9, p. 537). Under any numerical integration scheme
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In (2), a'= K'/S' while f=l+g and h are the memory and influence functions introduced
in [11. namely s

C»

h(t') = 1 + 2 ~ (-l)n exp (-n2~2t'). (3b)
n=l

For computational purposes, g and h can be approximated (4) by finite expa~sions like
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which is applicable to star-shaped regions,which is the case of most two-dimensional
regions of practical interest. under this assumption, it is easy to find a one-to-one
.(~on-conformal) global mapping which maps Q into a circle of radius a, namely
Q.=[O,aJ x 10,21'J in (p,(j) coordinates. If we assume that the boundary of Q is descri-
bed by a known function r~g(8) obtained for instance by cubic spline interpolation, then
the simple radially expansive map defined by

p = ar/g (0), (9a)

and
tp = 0 .(9b)

* *
puts the points of n into one-to-one correspondence with the points of n .Over n .
standard tensor product discretizations are easily implemented. Since all the mass and
stiffness like matrix elements are evaluated by numerical integration, this mapping does
not introduce any additional complexity, especially when reduced integration is used.
Of course, some care has to be exercized in the node numbering because of the periodicity
condition at tp=O and tp=2~: we found a solution that essentially yields the bandwidth
normally expected in a 2D situation. by numbering the nodes alternatively from tp~O and
tp=2~ for a given p.

All these implementation details are particularly well suited to the specific
applications that we are presently considering. It should however be pointed out that
other finite element discretizations, for instance with triangles or isoparametric
quadrilaterals, would equally fit in the proposed multiaquifer model and lend themselves
to the reduced integration technique of Section 2, which was the main simplification
r~quired in order to overcome the difficulties encountereu in the treatment of heteroge-
neous aquifers.

In the previous versions of our code, time integration of Eqs. (7) was restricted
to the Crank-Nicolson procedure which is known to exhibit poor asymptotil: stability
properties especially in presence of fast transients. This disadvantage has also been
eliminated from the present model by the introduction of a consistent finite element
approximation in space and time (10]. Looking back at Eqs. (7), it is clear that each
of them has the following general structure

A P = -BP -CI(P) + S (10)

where I(P) stands for the integral terms depending on P. If Eq. (10) is integrated over
[ti' ti+1) , we get
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using the fact that the matrices A. Band C are time-independent. In the particular case.
where not only the coefficients which appear in A. Band C. but also the boundary condi-
tions and the pumping rates are constant. the general equations (1) constitute a system
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of coupled p~rabolic p~rtial differential equations, whose solution is a linear combina-
tion of cxpollcntil11s decaying with differ.cnt time constants. After the fast transients
have sufficiently decayed or in any case some time after any modificatinn ocurred to
the boundary conditions and (or) the pumping rates. the solution approximately exhibits
a single mode exponential behavior and it is therefore reasonable to assume that the

components P.,j=l ,N of P over [t..t.+h) are of the form
J 1 1

'"
P.(t) ~ P.(t) = a.+b. exp(~t) .(12)

J J J J

where ~ is some real negative value, which should ideally approximate the algebraically
largest inverse characteristic time, on physical or numerical grounds. Introducing that
kind of behavior in the righthand side of Eq. (11), we obtain the approximate scheme
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'"
I (P) dt-c

t.f 1.+1

ti

+ 5 dt (13)

"-
where p =

'" '"
Pl,...,PN

T
is completely defined by the interpolation conditions
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P (t.) c P.

1. 1. (14a)
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(14b)

'"
p ~ti+~ = Pi+l

so that P = P (Pi' Pi+l)' namely
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---1
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]: -+ p
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].
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with z = ~ (t.+l-t.) = ~h. Eq
In particular~ welhave

(13) thus defines a one-step scheme for Pi+l knowing Pi.

fti+l~dt= h Pi
t.

J.

1- 0 (~.h)J + h Pi+l 0(~.h)
(16)

with

0(~.h) = (exp z-l-z)/ z(exp z-l)
(17)

relating this class of schemes to the classical 0- schemes [11], with the difference that
here 0 is normally not fixed but actually depends on the time step 0 and on the inverse
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characteristic time ~ Qf the mode we want to reproduce. It is easy to show that any ~
satisfying -00 ~ ~ ~ 0 provides an A-stable integration scheme. Some particular cases
are we1l-known:for instance as ~ tends 1;0 zero, e tends to 1/2 so that (16) becomes

t.f 1+1

t.
1.

(18)
'"
P dt = h(Pi+ Pi+l)/2

corresponding to the Crank-Nicolson scheme. Also as ~ tends to -0.,0 tends to 1 and
(16) becomes

'"
ti+h P (19)dt ~ h Pi+l

t.
1.

corresponding to the Backward Euler scheme. The interpolation properties of these schemes
an~ some other ones are sketched on Figure 2. If P is actually of the form a + b exp ~t,
p=p and no approximation is introduced in the calculation of the second member of (13)
if of course the integrals can be performed analytically, which is in general the case
for this class of problems. In fact, one of the major virtues of this approach is that
it provides us with consistent rules to derive the updating rules for the vectors Dknt
based on Eq. (8), mentioned in Section 2. When large times are reached, the previous
considerations also allow us to increase h considerably without any loss of accuracy.

As a final comment, let us poin~ out that the proposed implementation is of the
finite element type in space and time, since the values of P at any point (r,t) can be
retrieved from the nodal values. The present version of our code exhibits all the de-
tails of implementation mentioned in this paper and is presently applieti to the problem
of Mexico City land subsidence. A detailed report of this problem will be published
elsewhere. However, we can advance that the results thus far obtained have been quite

satisfactory.
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e -Scheme
in general
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Fi~ure 2. Some time integration

schemes and their interpolation

properties.
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