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ABSTRACT.

A finite element in time and space model is applied to the quasi-three-dimensional
approach to multiaquifer simulation based on the integrodifferential formalism devel-
oped by Herrera and his coworkers [ 1-4] ., The resulting model is applicable to general
heterogeneous multiaquifer systems over arbitrarily shaped regions and is pPresently
being applied to the problem of Mexico City land subsidence.

1 INTRODUCTION

In a series of papers, Herrera and his coworkers [1-4] developed an integrodiffer-
ential formalism for the modelling of multiaquifer systems, based on the quasi-three-
dimensional theory for such systems where the flow is assumed to be horizontal in the
aquifers and vertical in the intervening aquitards. In most practical situations where

magnitude or greater, the error resulting from this assumption is generally less than
5% [ 5], which is acceptable for most engineering purposes. In the original model, the

neous aquifers can be treated in demensional variables as shown in Section 2. A general
computer code based on the formalism of Section 2 was developed and is being applied to
the problem of land subsidence in Mexico City. Some details of its implementation are
described in Section 3, leading eventually to a consistent finite element in time and
space model.

2. INTEGRODIFFERENTIAL MODEL FOR _HETEROGENEOUS AQUIFERS.

Considering for the sake of simplicity a system of two aquifers separated by ome
aquitard (see Figure 1), the governing equations are '
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where Darcy's law has been used to express the leakage fluxes. The notation used is
standard in aquifer mechanics.

In Eqs. (1), all the coefficients are allowed to vary horizontally. K' and S& would
normally also exhibit a vertical variation, To simplify this presentation, we shall as-
sume that they are constant vertically or can be suitably averaged in that direction.
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This is a quite frequent situation in practice, especially when the field data are too
scattered to provide more than reasonable average values. Anyhow this is an unnecessary
restriction of the method that has been subsequently removed [6]. In a recent comparison
between existing quasi-three-dimensional models [ 7], it has been shown that the method
here presentedhas important advantages over an alternative one that has just been pub--
blished [8]. This is due to the application of a boundary element method which permits
eliminating the aquitard from the numerical treatment and restrict attention to the
main aquifers only. Under the averaging assumption for instance, Eq. (lb) can be inte-
grated out and the set of Eqs. (1) reduces to )

3s
3 (p 3 (g B k£ 05 a'r
coEhiE s r Mgy e) mpr ) w (0 BT an
s
t 1
s Xt -.322(::-1) h( 2T yar
0 b|2
asl
*Si %ty ’ (22)
and
Bp 2oy Dop 2oy Kt 2 o oatt
9x° 2 ox 2 ay 2 93y 2 b' 0 ot b2
9s
+ —'S:— st a—t-z(t:-r)h( et Ydt
. b 0 . bl2
332
"5 tQ - )

In (2), a'= K'/S'! while f=1+g and h are the memory and influence functions introduced
in [1], namely

o
f(e')y =1+2 Z exp (-n?w?¢") (3a)
n=]
and
h(t') =1 +2 £ (-1)" exp (-n2a2¢'). (3b)
n=1

For computational purposes, g and h can be approximated [ 4] by finite expaﬁsions like

Nl .
g(t') & gy (t') = Ay S (¢') + X a exp(-n?#2¢') , (4a)
1 1 n=1
and NZ
h(t') A hy (£') =1 +Z b exp(-n’r’t") (4b)
2 n=]1
Any standard finite element discretization would then look for
N .
s, (X,y,t) & ?Ll ij (v) u, (x,y), k=l1,2, . (5)

where the u, (x,y) are given piecewise polynomial basis functions, whose support is a
small patchJof elements, In the original integrodifferential model | 4], homogeneity was
assumed and consequently t' was a convenient dimensional time which did not depend on
position. Here, however, t' is a function of position and the memory and influence terms
become quite involved in the final Galerkin semidiscrete equations, unless, as we found
out, reduced integration is used {9, p. 537]. Under any numerical integration scheme
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congistent with the expected accuracy implicit in the chgice of the finite elements
the mags-like matrix elements are evaluated as a summation

L

{2 £(r,t) u; (Du, (F)dr xl!: Vi f(?k.:)ui(;k)uj(Ek) TR O

where r, is the sampling point where the integrand has to be found and w , the corre-
sponding weighting. If the sampling points are located at the mesh nodes, as all except
one basis function are zero there, the corresponding matrix becomes diagonal. As a
result, the integral terms are diagonalized and t' is only needed at the mesh points,
which is quite convenient. This lumping by reduced integration presents some additional
advantages: the resulting Galerkin semidiscrete equations are less stiff and their time
integration is therefore easier, the treatment of general boundary conditions is greatly
simplified and finally considerable reductions in computer time and memory requirement
can be achieved by careful programming, as we indeed verified. The final set of equa-
tions obtained from (2) after lumping by reduced integration has been performed exhi-
bits the following general structure

A Nl E‘z ‘
AP = - BlPl -Cc(Zz a Dln -z bn Dzn) + sl A (7a)
n=1 n=0
and
. Ny N, v
AFy= = BPp = C (X a D, -F b D )+ Sp»
n=1 n=0
assuming zero initial conditions for P, = (e .,...,pP ]T and taking into account (4).

In (7), the matrices and B, are symmetric and banggd, C is a diagonal matrix, the

source vectors S, directly derive from the pumping rates Qg while the vectors D, have
components Dkni t) given by : n

- g2 e v 2.2
Dkni(t) exp(-n‘m Ait) é Pki(T) exp (F‘n-ﬂ AiT) dt " (8)

= ! Ve oo
where Ai a'/v (ri)

Once we have coped with the major difficulty due to heterogeneity, namely the treat
ment of the memory and influence terms, thanks to the reduced integration technique, the
final equations (8) exhibit essentially the same properties as in the previous integro-
differential model [4,7]. For the sake of completness, we shall briefly recall them: -
first of all, Eqs. (7a) and (7b) may be regarded as uncoupled, owing to the shape of the
influence function h from one aquifer to the other one.Furthermore, the memory and influ-

vectors D, , which is independent of any reference time and does not involve past history.
Finally, %ﬂe drawdown in the aquitard need not be calculated unless it is required at

3. FINITE ELEMENT IN SPACE AND TIME IMPLEMENTATION OF THE INTEGRODIFFERENTIAL MULTIAQUI-
FER MODEL.

Starting from an early version [4] applicable to homogeneous aquifers in terms of
dimensionless space and time variables, we gradually developed a much more general computer
code, which can treat heterogeneous systems of one or more aquifers separated by arbitra-
ry aquitards. A specific application of this procedure has been the development of a
model for the Valley of Mexico City to study land subsidence due to withdrawal of ground
water. The preprocessing phase, i.e. the finite element mesh generation and the sub-
sequent matrix element evaluation, has been considerably simplified by use of a procedure

B



which is applicable to star-shaped regions,which is the case of most two-dimensional
regions of practical interest. Under this assumption, it is easy to find a one-to-one
(gon-conformal) global mapping which maps Q into a circle of radius a, namely

Q-=l0,al x [0,27] in (p,¢) coordinates. If we assume that the boundary of © is descri-
bed by a known function r=g(0) obtained for instance by cubic spline interpolation, then
the simple radially expansive map defined by

p = ar/g (0), (9a)

and
Y =0 , (9b)

puts the points of  into one-to-one correspondence with the points of Q*. Over Q*,
standard tensor product discretizations are easily implemented. Since all the mass and
stiffness like matrix elements are evaluated by numerical integration, this mapping does
not introduce any additional complexity, especially when reduced integration is used.

Of course, some care has to be exercized in the node numbering because of the periodicity
condition at =0 and y=2m: we found a solution that essentially yields the bandwidth
normally expected in a 2D situation, by numbering the nodes alternatively from ¢=0 and
w=21 for a given p.

All these implementation details are particularly well suited to the specific
applications that we are presently considering. It should however be pointed out that
other finite element discretizations, for instance with triangles or isoparametric
quadrilaterals, would equally fit in.the proposed multiaquifer model and lend themselves
to the reduced integration technique of Section 2, which was the main simplification
required in order to overcome the difficulties encountereu in the treatment of heteroge-

neous aquifers,

In the previous versions of our code, time integration of Eqs. (7) was restricted
to the Crank-Nicolson procedure which is known to exhibit poor asymptotic stability
properties especially in presence of fast transients. This disadvaniayge has also been
eliminated from the present model by the introduction of a consistent finite element
approximation in space and time [ 10]. Looking back at Eqs. (7), it is clear that each
of them has the following general structure

AP =-BP-CI(P) +5 (10)
where I(P) stands for the integral terms depending on P. If Eq. (10) is integrated over
e, t;,), ve get

tinl
A (P(ti+l) - P(ti)]= - B { P dt

i

-c S I(P) dt
t.
1
t.

+ 5 s , (11)
t.
i

using the fact that the matrices A, B and C are time-independent. In the particular case,
where not only the coefficients which appear in A, B and C, but also the boundary condi-
tions and the pumping rates are constant, the general equations (1) constitute a system
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of coupled parabolic partial differential equations, whose solution is a linear combina-
tion of exponentials decaying with different time constants. After the fast transients
have sufficiently decayed or in any case some time after any modification ocurred to

the boundary conditions and (or) the pumping rates, the solution approximately exhibits
a single mode exponential behavior and it is therefore recasonable to assume that the
components Pj,j=l,...,N of P over [ti,ti+hl are of the form )

. 4" ’
Pj(t) v By(n) = a,4b, exp(ut) . (12)

where | is some real negative value, which should ideally approximate the algebraically
largest inverse characteristic time, on physical or numerical grounds. Introducing that
kind of behavior in the righthand side of Eq. (11), we obtain the approximate scheme
Liel
Af Pipp Byl =-8 P dt

t.
1

t. ~
-c S 1) ae
t

i

t,
+ M ogg (13)
t.
i
N ~ v
where P = Pl,...,PN is completely defined by the interpolation conditions
n
P (ti) - Pi (14a)
and
n .
Pl =Py (14b)
AV
so that P = P (Pi, Pi+l)’ namely
o exp z ~ exp u(t-t,) exp u(t-ti)—l
P = p. ‘
Py P (1%
exp z -~} exp z -1

with z = (t:i+ —ti) = ph. Eq (13) thus defines a one~step scheme for Pi+

knowing Pi'
In particular, "we have

1

Liv1 v
f P dt=h P, 1-0 (u,h)] + h P_ . O(u,h) (16)
t i i+l
i
with
O(u,h) = (exp z-1-2)/ z(exp z-1) (17)

relating this class of schemes to the classical O- schemes [11), with the difference that
here O is normally not fixed but actually depends on the time step O and on the inverse
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characteristic time y of the mode we want to reproduce. It is easy to show that any M
satisfying —~ < p < 0 provides an A-stable integration scheme. Some particular cases
are well-known:for instance as U tends to zero, O tends to 1/2 so that (16) becomes

t.
RS T h(P+ P, )02 (18)

i+l
t.
i

corresponding to the Crank-Nicolson scheme. Also as U tends to ~=, O tends to 1 and
(16) becomes

P dt = hP, (19)

corresponding to the Backward Euler scheme. The interpolation properties of these schemes
and some other ones are sketched on Figure 2. If P is actually of the form a + b exp ut,
P=P and no approximation is introduced in the calculation of the second member of (13)

if of course the integrals can be performed analytically, which is in general the case
for this class of problems. In fact, one of the major virtues of this approach is that

it provides us with consistent rules to derive the updating rules for the vectors Dkn’
based on Eq. (8), mentioned in Section 2. When large times are reached, the previous
considerations also allow us to increase h considerably without any loss of accuracy.

As a final comment, let us point cut that the proposed implementation is of the
finite element type in space and time, since the values of P at any point (r,t) can be
retrieved from the nodal values. The present version of our code exhibits all the de-
tails of implementation mentioned in this paper and is presently applied to the problem
of Mexico City land subsidence. A detailed report of this problem will be published
elsewhere. However, we can advance that the results thus far obtained have been quite
satisfactory.
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Figure 2. Some time integration
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