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ABSTRACT

A brief review of boundary methods is presented. Emphasis is
placed in alternatives to boundary integral equations. Different theoretical questions required to give a firm foundation to these procedures -

are. discussed. Extensions to non-linar problems are explained. Some
examples of application to fluid problems are included.

1. INTRODUCTION.

Boundary methods are being used to treat many problems. When
they are applicable the size of the regions that need to be treated
numerically can be reduced.

In general, two situations can be distinguished. One may
consider a boundary value problem.in a region such as R (Fig. la), in
which general analytical solutions are known in the whole region R. or
alternatively, the problem may be formulated in a region such as RUE
(Fig. Ib). and the general analytical solutions maybe known only
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in the subregion R. In the first case, the application of boundary
methods permits restricting the numerical treatment to the boundary 3R
only, and the dimensionality of the problem is reduced. In the second
case, the subregion R bas to be treated numerically but the region E is
eliminated.

Most, frequently, boundary methods have been formulated by
means of integral equations (1-5 I. However, there are alternatives
which present advantages. In general, a complete family of solutions is
required in order to apply boundary methods. There are two possible
ways in which such family can be supplied; one is a denumerable family
of regular solutions (61 and another one. is by means of a fundamental
singular solution. The boundary integral equation methQd is a special
case in which the singularity is placed on the boundary of the region
considered and due to this fact the resulting equations are singular.

When a denumerable family of regular solutios is used the
resulting equations are non-singular; a fact that offers numerical adva~
tages. What is probably more important in complicated problems, is the
observation that generally, it is easier to construct complete families
of solutions, than fundamental solutions; indeed, there are 'methods
available for synthesizing fundamental solutions starting from complete
families (e.g. in terms of plane waves (7 I).

Several recent accounts of boundary integral equations (B.I.E.)
are available (1-3 I. However, alternative approaches that have been the
8ubject of systematic research by the author (8-16] will be the main
concern of this paper. The theoretical basis of these alternatives is
not complicated, but the applicability of the methods has been unnecessarily restricted due to lack of clarity. For example, in acoustics and -

electromagnetic field computations ",Rayleigh hypothesis" introduces se-
vere restrictions (17] which can be avoided altogether if a different
point of view is adopted (18]. -

Generally, the solution of a boundary value problem that is
well-posed depends continuously on the boundary data (19]; thus, all
what is required to consttuct an arbitrary solution, is to have avail-,able 

a family of solutions in terms of which one can approximate any
given boundary values.

The general description of the method is given in Section 2.
A discussion of the theoretical questions which require study is p~esen-
ted in Section 3. An abstract frame-work, developed by the aJthor,
which can be used to make the subject more systematic is briefly described
in Section 4. This can be interpreted in terms of abstract Green's for-
mulas; here, it is only presented in a form which is suitable for appli-
cation to formally symoetric operators, but has recently been extended
to general non-symmetric operators [20]. One of the applications of this
frame-work is the formulation of variational principles; an exposition
of this subject has just been published [131 and it is briefly explained
in Section 5. Problems formulated in discontinuous fields with prescribed
jump conditions such as those that were surveyed by Nemat-Nasser (21],
constitute a general application of the theory; another example, are
problems subjected to continuation type restrictions, i.e. problems for-
mulated in a region such as R (Fig. 1b), subjected to the restriction -
that the solutions can be continued smoothly into solutions of given
differential equations in a neighboring region such as E. An abstract
version of these problems is given in Section 6. The constructio~~ of
complete systems is discussed in Section 7, while Section 8 is de:oted
to explain some extensions to non-linear problems.
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b.u .0, on -.; u. f~R on ~R (2.1)

The region'R and its boundary ~R, are illustrated in Fig. la. General
results on the existence and continuity properties of solutions of elli~
tic equations [19 I ] grant that for every real s, when faREHS(aR) there
is a unique uEHs+1 2(R) which satisfies (2.1); even more, the solution
u depends continuously o~ the boundary data faR'

Assume wnEHs+1/2(R), n=I,2,..., satisfy 6wn-O and their bound-
ary values constitute a basis of the Hilbert space HS(aR). When this is
the case, it is possible to construct a sequence of approximations

N N N
~ u .taw; N -1,2,... (2.2)

..n n0-1
such that uN+faR in the boundary with respect to metric of Hs(aR). The
optimal choice of the coefficients a~ would,correspond to an element uN
of the subspace of Hs(aR), generated by {WI ,...,wN}' which is closest to
faR in the m,tric of HS(aR). Clearly, u};+u on R, with respect to the
norm of HS+1 2(R), because uN+faR on HS(~R). Also uN+u on " with
respect to the metric of HS(R), because convergence on HS+1 2(R) implies
convergence on Hs(R) [19).

Of special interest is ,the case s-O, because HO(aR)-l2(aR), is
the space of square integrable functions. In applications, it offers
numerical advantages to restrict to this space, because of the simplic-
ity of the inner product; also, it is easier to obtain Hilbert space
bases. The above discussion shows that if the sequence defined by (2.2)
converges in £1 (aR) to faR' then u converges to the solution in the
region R, in the least square sense.

The procedure described here, is closely related with the se-
ries expansion method that has been applied in acoustics and electromag-
netic field computations [17). However, for such kind of applications,
severe restriections were imposed by the introduction of the so called
"Rayleigh hypothesis". The above discussion shows that when a more, con-
venient criterion is adopted for the choice of the coefficients a~ in
(2.2), Rayleigh hypothesis is not required; this fact had been pointed
out by Millar [18 I, in connection with such applications.

The computation of the normal derivative on the boundary aRt
using l2(aR) inner product only, becomes more involved. If the boundary
values faREHO(aR), one can only guarantee that au/anEH-1(aR) and in gen-
eral, ~uN/an converges to au/an in this norm only. However, if faR e
H1(aR), then au/~nEHO(aR)=£2(aR) and it is possible to evaluate au/an on
aR, without resource to any other inner product, as we show next.

Indeed, assume the boundary values of the functions wn at the
boundary are in H1(aR)CHO(aR). Then awn/anEHO(aR) and therefore, are
square integrable on the boundary dR. Hence, we can apply Green's for-
mula to obtain

a aw
b -I w -!! dx -I u ~ dx -I -

D aR n an ~ aR on ~ aR ---"

When wn (n-l.2,...) are orthonormal on the boundary; i.e.

I w w dx -6
aR n m ~ nm

R

3wn
faR ~ d~

(2.4)

(2.3)
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~ore generally. the sequence ofbn ar~ the Fourier coefficients of fgR"
funct1.ons Ii

N
q N -t c wI nnn-

on 3R (2.5)

H
wheTe c satisfy

0 H
Ht c I w w dx -b (2.6)0-1 0 aR n m -m

converges to au/an in the sense of l2(aR).
The procedure just described is closely related with a method

pToposed by Picone [23] and studied more extensively by Amerio [24-26]
and Fichera [27-28!. in which one requires to obtain first the normal
deTivative and use a fundamental solution to obtain the desired solution
in the region. However. in the approach explained here, a fundamental solution is not needed when use is made of the sequence of appToximations -

(2.2).
These ideas can be applied to very general boundary value

problems associated with differential operators ".£" and "B" defined in
a generalized sense, on a region R (Fig. la) and on its boundary aR,
respectively. Assume H(R) and H(aR) are Hilbert-spaces of functions
defined on Rand aR, respectively. Let H'(R) and H' (aR) be also Hilbert-
spaces such that .£:H(R)~H' (R) and 8:H(aR)~H'(aR).

Consider the problem which consists in finding uEH(R) , such
thati

~
lu .fR' on R ~ Bu .faR' on aR (2.7)

where fREH'(R) and faREH'(aR) are gi~en. In addition. let wEH(R).
(n-l,2 ). satisfy Lwn-O and BwnEH'(aR) be such that Bwn iU a Hilbert-
apace basis of H'(aR). Choose u.EH(R) such that

I.u. -f (2.8)
.&

Then, it is possible to define a sequence of functions
R N N

u -I a v + u.; N -1,2,... (2.9)
n-1 n n ;!

such that 8uN+f3& in the metric of H'(3R). When the solution depends
continuously on the boundary data, then uN tends to the solution of u of
(2.7) in the metric of H(R).

As mentioned previously, it is numerically advantageous to use
1.2 norms, only. Many of the questions associated with continuity and
convergence properties in these norms can be answered by use of the re-
sults of the general theory of partial differential equations [19]. The
use of Green's formulas, can also be useful in this more general situa-tion, to compute boundary derivatives. .

It must be recalled that the procedures here discussed can be
applied whenever the basic equations are linear; thus, in addition to
steady state situations, they can be used to treat time dependent prob-
lems. Some extensions to non-linear problems, will be discussed in Sec-
tion 7.

i
~

"
3. SCOPE OF THE THEORY.

In the last section it has been explained the use of complete
systems of functions to construct any other solution in a given region.
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The numerical treatment of many problems can be simplified using such
methods, because the size of the regions requiring to be treated numeri-
cally is reduced in this manner. Two general situations can occur in
applications; the first one, illustrated in Fig. la, corresponds to a
boundary value problem for which the basic set of functions is known in
the whole region R and in which only the boundary aR has to be treated
numerically; the second one, illustrated in Fig. lb, in which the prob-
lem is formulated in region RUE, but the basic set of solutions is only
known in R, so that E has to be treated numerically. In both cases, the
size of the regions in which the numerical schemes are applied, are
reduced. A variant of the above, is the case, when the basic sets of
solutions are known both on R and on E; in this case it is required to
connect them across the common boundary between Rand E. This problem
will be referred as the problem of connecting which corresponds in
applications to problems formulated in discontinuous fields and with
prescribed jumps conditions [131.

In general the application of the methods described in this
paper poses the following theoretical questions:

(a) Development of complete systems of solutions;
.(b) Convergence of the approximating procedures; and

(c) Formulation of variational principles.
Section 6 is devoted to discuss (a) while the formulation of

variational principles is presented in Section 5. Questions of conver-
gence can be discussed using the results of available theory for partial
differential equations in a manner similar to that presented in Section
2. This is not difficult to do, for example, for general elliptic equ~
tions by means of the results presented in the first volume of Lions andMagenets [191 book (for many fluid !low p~oblems ~ee Teman [221}. .

4. SYSTEMATIC DEVELOPMENT.

The systematic discussion of the questions proposed in Section
3, can be carried out in an abstract setting recently developed by the
author [13).

Let D be a linear space and D* its algebraic dual (the space
of linear~functionals defined on D). In this paper attention will be
restricted to functional valued operators P:D~D* which are linear. Such
operators are characterized by the bilinear functional <Pu,v>; the transposed. 

functional <Pv,u> is associated with the adjoint operator P*:D~D*~
The theory is based on the development of abstract Green's formulas. 

This will be done in a manner which is suitable for application-
to formally symmetric operators,although the theory has just been extended to general non-symmetric operators [20J. Let -

A -P -p. (4.1)

An operator B:D+D* decomposes A, when Band B* can be varied indepen-
dently (see definition in Herrera (13]), while

A. B -B* (4.2)

When B decomposes A, Band B* are necessarily boundary operators and
(4.2) is an abstract Green's formula. In this abstract frame-work, by

a boundary operator B:D+D*, it is meant one such that NB~A, where NB
and NA stand for the null subspaces of B and A, respectively.

When B, decomposes A, the subspace I. '. NB, enjoya the follo~
ing properties:
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i) I.CD i~ a commutative subspace for Pi
ii) NACI. ;

iii) lor every uED, one has

<Au.v> -0 II vEla'. uEla (4.3)
Subspaces Ilcb which satisfY,i) and ii) are called regular; when. in add.!
tion. iii) is fulfilled, II is said to be completely regular.

Subspaces which are completely regular can be characterized by
connectivity bases [16 J. By this we mean a subset BCI such that ABCD*
is linearly independent, while for every uED. one has

<Au.w> .0 y wEB -uEI. (4.4)

~ -to -

<Bu.v> -<AU2.VI> (4.6)

,

<Pu,v> -0 It' VENA -Pu -0 .(5.1)

Given UED and VED, consider the problem of finding uED such
that

Pu .PU ; Bu D BV (5.2)

U .I, T 12 .i N A .I, .n 12 (4.5)

~
..S. YARIATIONAL PRINCIPLE~. ...

When an abstract Green's formula (4.2) is available and the
operator P:D~D* is formally symmetric, variational principles are easily
formulated.

O(u) .i «P-B)u,u> -«PU-BV),u> (5.3)
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Then (5.2) holds if and only if n'(u) -0; where n'(u) is the derivative
of the functional Q in the sense of additive Gateaux variation.

There are cases 113 J where the subspace II-NB can be charac-
terized easily while it is not possible to give the operator B:D~D*
explicitly. An example of this situation arises in finite element form~
lations when the region R is treated numerically subjected to the restri£
tions that the sought solutions in R, can be continued smoothly into E
(Fig. Ib), as solutions of given differential equations there [13].
When this happens, a more convenient variational principle is associated
with the functional

(5.4)X(u) -<Pu.u> -<2PU-AV.u>

Then equation (5.2) holds if and only if

(5.5)V vElt<X'(u).v> -0

A good sample of applications of these principles has been given in
(8-13] .
6. PROBLEMS WITH PRESCRIBED JUMP CONDITIONS.

A very general example of application of the theory is the
problem of connecting solutions of given differential equations, subject
ed to a smoothness criterion, or more generally, when they are required-
to satisfy prescribed jump conditions across the common boundary.

This problem has been formulated abstractly as the "problem of
connecting" [13). Let DR and DE be linear spaces of functions defined
in R and in E (Fig. 1b), respectively. Take 6-DR$DE as the product space;
elements uED are pairs (uR,uE)' An operator p:fi~fi*, having the additive

property

(6.1)

is considered. ,.. ,..
There is a class of elements SCD called "smooth" which satisfy

a smoothness condition across the common boundar y se paratin g Rand E"" A" ,..
(Fig. Ib). Given UED and vED one considers the problem of finding \lED
such that

pG .PO G-VE~ (6.2)and

This is an abstract version of problems with prescribed jumps. Applica-
tions to potential theory, elasticity, heat flow and many others have
been given [ 13)). ~

When SCD is a complete regular subspace the set
n A A

~I -{(uR'UE)ED I. (uR,-uE)ES} (6.3)

is also a completely regular usbspace and the pair (S,~) is a canonical
decomposition of fl. Associated with this pair of subspaces there is an
abstract Green's formula

A -~ -p* .3 -3* (6.4)

where the operator 3:D+D* characterizes the jump conditions.
Using the results of Section 5 and the Green's formula (6.4)
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variational principles fo~ problems with prescribed jumps and also for
others subjected to continuation type restrictions, have been derived
( 13 ).

1. COMPLETE SYSTEMS.

There are many ways in which complete systems of functions can
be developed. Here. only a few examples are given. The discussion is
concerned with connectivity bases; when a connectivity basis is avail-
able a result mentioned in Section 4, permits to obtain Hilbert space
bases for corresponding boundary conditions. An advantage of using con-
nectivity bases is that this concept is independent of the Hilbert space
8tructure and therefore. the results acquire greater generarily.

A procedure to obtain connectivity bases has been described by
Herrera and Sabina [16]. This is closely related to an idea originated
by Picone. Amerio and Fichera. and generalized by Kupradze [29]. We
illustrate this method by applying it to Laplace's equation.

Consider region R (Fig. la) and define (the linear space D can
be taken as H3/2(R), for example)

<Pu.v> -! vA.udx
B. ~ (7.1)

Then

.Ip -Np + NA (7.2)

Here A-P-P* and Np is the null subspace of P. It can be seen that IpCD
is the subspace of functions whose boundary values {u.3u/3n} coincide on
3R. with those of a harmonic function on R. Standard arguments show that

uEIp. if and only if. the function ,

.

..v (x) -G(x,y) i a-l,2,... (7.4)a ---a
Then the above discussion shows that

d dW

/ {v ~ -u ~}dx -<Au,w > -0 Y a-l,2,... -uEl p (7..5) dR a an an -a

This shows that 8m{WJ ,wz ,...} is a connectivity basis for Laplace's
equation (this result is essentially Kupradze's (29)).

However, there are many other. ways of constructing connectivity
bases. One is to choose a complete system of functions {Pi ,pz ,...} on
the curve C, and require [16)

* In two dimensional problems there are anomal~us curves for which uniqueness is not

granted (3UJ. However, the results presented in [161 are independent of the curve
chosen and therefore, their validity is not restricted by this fact.

~.

vanishes identically in the exterior of the region R. Here, G(x,y)
8tands for the fundamental solution of Laplace's equation in the whole
space. In view of (7.3), W(y) is harmonic in the exterior of R. If C
(Fig. la) is a curve such that the exterior Dirichlet problem for
Laplace's equation satisfies uniqueness*, then it can be shown [16] that
a sufficient condition for W(y) to be identically zero, is that it
vanishes identically on C. II {YI ,Y2 ,...} is a dense denumerable subset
of points on the curve C, define- -
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(7.6)

This yields the system of functions

w (x) -I p (y)G(x,y)dy : a-l,2,... (1.1)a ~ C a -~ ~ -.

as connectivity basis. In a similar fashion one can prove that given
any point Yo of the exterior of R, the system of functions consisting
of G(x,Yo)-together with all its partial derivatives with respecto to y at
Yo' is a connectivity basis. These procedures for constructing connec-
tivity bases are applicable to a very general class of equations incl~t-
ing time dependent ones (16 & 29).

The availability of different connectivity bases for a given
problem is important, because in numerical applications it is necessary
to obt~in reliable systems. For example, Aleksidze (31) has shown that
the connectivity basis defined by (7.4) is unreliable.. For the case
when the region R is a circle, Herrera and Sabina's (16) procedure
yields an orthogonal system, which is reliable; one can expect that th£
numerical properties of this system deteriorate steadily as the region
is deformed away froQ the circle, a fact that has been confirmed numer-
ically for a related system (6).

The methods just described possess considerable generality:
they can be applied to many problems governed by linear differential
equations, such as potential flow, fluids in porous media, heat flow,
wave propagation and Elasticity (static and dynamic). Connectivity bu~
for Stokes problems have just been constructed [15).

The possibility of constructing connectivity bases which are
independent of the regions ~onsidered, is relevant for the treatment of
non-linear problems. Herrera and Sabina [16) obtained systems satisfy-
i~g this property both for bounded and unbounded regions. In general,
problems in which the differential equations are linear and the non-
linearity is introduced through the boundary conditions can be treated
by the methods described in this paper. This is the case of problems
subjected to floating boundary conditions such as seepage flow, Stefan
problem, some problems in Plasticity and contact problems.

8. EXTENSION TO NON-LINEAR PROBLEMS.

As mentioned previously the boundary methods here describ~d
can be applied to non-linear problems, when the non linearity is intro-
duced through the boundary conditions. This is the case of seepage
flow (Fig. 2). which is presented here as an example.

A normalized version o( this probleM is subjected tot
(a) Governing equations

Vi" .0 ; on 1 (8.1)

.Unreliable is used here in the sense that the Gram determinant of the system may
becC1l1e arbitrarily small [31).

t This. as well as. Stefan's problem was treated in collaboration with Prof. Nima
Geffen. of the University of Tel-Aviv and Dr. Herve Gourgeon, of the University of
Paris XI. Orsay. France.
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FIGURE 2

(b) Boundary conditions

O<y<1 (8.2a).p(O.y) .1

O~y~m<l
(8.2b)tp(l.y) .

m < y < Y(l)

{:

O<x<l "--- (8.3);

(8.4s)!'f (x.Y(x» .0
an

(8.4b)tp(x,Y(x» .Y(x)

(c) Points of the region R satisfy

O--x--l 0 < y < Y(x);

Thus. 

Y(x) defines the free surface.
Equation (8.4a) can be rewritten as

,
I
1..
I
I II (x,Y(x»

Y'(x) .~Yix:yix5) (8.6)
x

A convenient procedure to solve the system (8.4b), (8.6) is iterative.
Define for n-O,l,...

(8.7a)'P (x,Y (x» .y (x)
n n n

~ (x.Y (x»I () .~.. n' .-
Yn+l x .~ (x.Y (x»

~ n

I
(8.7b)

The scheme can be started by choosing Y (x) arbitrarily (e.g. Yo(x):l).
If one writes 0

-
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1. Brebbia. A.C.. ed. "Recent Advances in Boundary Element Methods".

England. 

R.. Sabina. F.J. and Herrera. I..

w (x,y) -sin a~x cha~y j aml,2,... (8.ll)a .

In this manner only the free boundary needs to be treated numerically.
The approximation for u is (keeping fixed N)

n

u (x,y) -~ A,IW a (X,y) (8.12)n a-l a

u (x,y (x» a y (X) -~ (X,y (X»
n n n 0 11

~ (x,y) .~ (x,y) + u (x,y)
non

u (O,y) .u (l,y) -0
n n

; O<xC;l

"Scattering of 5H waves

(8.10b)

(8.10a)

(8.9)

(8.8)
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rically. 

it is advantageous to determine the N coefficients A~. byocation; 
i.e. by requiring that (8.9) be satisfied at N points

2<...<xN of the interval (0.1).
Stefan problem has been treated in a similar fashion.
Free-boundary problems have received considerable att~ntion in

nt year using several approaches. Baiocchi. et al (321. for exam-
have based their method on variational inequalities. Liggett. on

other hand. has applied boundary integral equations to this class of
lems; in particular the example presented here has been treated by
method [33).
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