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Boundary methods in water resources
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A brief review of boundary methods is presented. Emphasis is placed on alternatives to boundary
integral equations. Different theoretical questions required to give a firm foundation to these
procedures are discussed. Extensions to non-linear problems are explained. Examples of
application to fluid problems are included.

that is well-posed depends continuously on the boundary
data 19; thus, all what is required to construct the arbitrary
solution, is to have available a family of solutions in terms
of which one can approximate any given boundary values.

'The general description of the method is given first,
followed by a discussion of the theoretical questions
which require study. An abstract framework, developed
by the author ,which can be used to make the subject more
systematic is briefly described next. This can be
interpreted in terms of abstract Green's formulae; here, it
is only presented in a form which is suitable for
application to formally symmetric o~rators, but has
recently been extended to general non-symmetric
operators20. One of the applications of this framework is
the formulation of variational principles; an exposition of
this subject has just been published 13 and it is briefly

explained later. Problems formulated in discontinuous
fields with prescribed jump conditions such as those that
were surveyed by Nemat-Nasser21, constitute a general
application of the theory; another example, are problems
subjected to continuation type restrictions, i.e. problems
formulated in a region such as R (Fig. 1 b), subjected to the
restriction that the solutions can be continued smoothly
into solutions of given differential equations in a
neighbouring region such as E.

DESCRIPTION OF THE METHOD

To fix ideas we first consider a simple example; this is
Laplace equation subjected to Dirichlet type boundary
conditions:

~u=o on R U=!aR on oR (1)

The region R and its boundary oR, are illustrated in Fig.
1a. General results on the existence and continuity
properties of solutions of elliptic equations19, grant that
for every real s, when fiJREHS(iJR) there is a unique
uEHS+ 1/2(R) which satisfies equation (1); even more, the
solution U depends continuously on the boundary datafiJR.

Assume wnEHS+1/2(R), n=1, 2, ..., satisfy dwn=O and
their boundary values constitute a basis of the Hilbert
space HS(oR). When this is the case, it is possible to
construct a sequence of approximations:

(2)N=
N

UN= L a:wn;
n=l

INTRODUCTION

Boundary methods are being used to treat many
problems. When they are applicable the size of the regions
that need to be treated numerically can be reduced.

In general, two situations can be distinguished. One
may consider a boundary value problettl in a region such
a~ R (Fig. la), in which general analytical solutions are
known in the whole region R, or alternatively, the
problem may be formulated in a region such as R E (Fig.
Ib), and the general analytical solutions may be known in
the subregion R, only. In the first case, the application of
boundary methods permits restricting the numerical
treatment to the boundary oR and the dimensionality of
the problem is reduced. In the second case, the subregion
R has to be treated numerically but the region E is
eliminated.

Most frequently, boundary methods have been
formulated by means of integral equationsl-5. However,
there are alternatives which present advantages.. In
general, a complete family of solutions is required in order
to apply boundary methods. There are two possible in
which such family can be supplied; one is a denumerable
family of regular solutions6 and anothe~ one is by means
of a fundamental singular solution. The boundary integral
equation method is a special case in which the singularity
is placed on the boundary of the region considered and
due to this fact the resulting equations are singular.

When a denumerable family of regular solutions is used
the resulting equations are non-singular; a fact that offers
numerical advantages. What is probably more important
in complicated problems, is the observation that
generally, it is easier to construct complete families of
solutions, than fundamental solutions; indeed, there are
methods available for synthesizing fundamental solutions
starting from complete families (e.g. in terms of plane
waves7.

Several recent accounts of boundary integral equations
(BIE) are availablel-3. However, alternative approaches
that have been the subject of systematic research by the
author8 -16 will be the main concern of this paper. The

theoretical basis of these alternatives is not complicated,
but the applicability of the methods has been
unnecessarily restricted due to lack of clarity. For
example, in acoustics and electromagnetic field
computations 'Rayleigh hypothesis' introduces severe
restrictions17 which can be avoided altogether if a
different point of view is adopted 18.

Generally, the solution of a boundary value problem
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own/onEHO(oR) and therefore, are square integrable on the
boundary oR. Hence, we can apply Green's formula to
obtain:

(3)

When w: (n= 1, 2,
I.e.

) are orthonormal on the boundary;

a

(4)wnwmdx = Dnm
f
oR

b" are the Fourier coefficients offaRo More generally, the
sequence of functions

N
qN= L c:wn; on oR

n=l
(5)

where c: satisfy

b

"t1 

C: r wnwmdx=bmFigure 1. (6)
~

aR

converges to au/an in the sense of y2(oR).
The procedure just described is closely related with a

method proposed by Picone23 and studied more
extensive!y by Amer.i024 -26 and~~ichera 2.7 -2~, in which

one requIres to obtaIn first the normal denvatlve and use
of fundamental solution to obtain the desired solution in
the region. However, in the approach explained here, a
fundamental solution is not needed when use is made of
the sequence of approximations (2).

These ideas can be applied to very general boundary
value problems associated with differential operators ':2"
and '!ii' defined in a generalized sense, on a region R (Fig.
la) and on its boundary oR, respectively. Assume H(R)
and H(oR) are Hilbert-spaces of functions defined on R
and oR, respectively. Let H'(R) and H'(oR) be also Hilbert-
spaces such that:2': H(R)-+H'(R) and§: H(oR)-+H'(oR).

Consider the problem which consists in finding ueH(R),
such that:

.2"U=!R, on R; !lJU=!aR, on oR (7)

wherefReH'(R) andfaReH'(oR) are given. In addition, let
wneH(R), (n = 1, 2, ...), satisfy YWn = 0 and .!iJwneH'(oR)
be such that .!iJwn is a Hilbert-space basis of H'(oR).
Choose uOeH(R) such that:

.2"uO = f R (8)

Then, it is possible to define a sequence of functions:

N
UN= ~ aNw +UO. N=L. n n ,

n=1
, 2, (9)

such that !13'uN-+foR in the metric of H'(i3R). When the
solution depends continuously on the boundary data,
then uN tends to the solution of u of equation (7) in-the
metric of H(R).

such that uN~foRin the boundary with respect to metric of
HS(aR). The optimal choice of the coefficients a: would
correspond to an element uN of the subspace of HS(aR),
generated by {W1' ..., WN}, which is closest to foR in the
metric ofH'(aR). Clearly, uN~u on R, with respect to the
norm of Hs+ 1/2(R),because uNfoR on HS(aR). Also UN ~u on
R, with respect to the metric of HS(R), because
convergence on Hs+ 1/2(R) implies convergence on
HS(R).19

Of special interest is the case s = 0, because
HO(aR) =.9'2(aR), is the space of square integrable
functions. In applications, it offers numerical advantages
to restrict to this space, because of the simplicity of the
inner product; also, it is easier to obtain Hilbert space
bases. The above discussion shows that if the sequence
defined by equation (w) converges in !jJ2(aR) to foR, then u
converges to the solution in the region R, in the least
square sense.

The procedure described here, is closely related with the
series expansion method that has been applied in
acoustics and electromagnetic field computations 17.
However, for such kind of applications, severe restric-
tions were imposed by the introduction of the so-called

..'Rayleigh hypothesis'. The above discussion shows that
when a more convenient criterion is adopted for the
choice of the coefficients a: in equation (2), Rayleigh

.hypothesis is not required; this fact had been pointed out
by Millar18, in connection with such applications.

The computation of the normal derivative on the
boundary aR, using .9'2(aR) inner product only, becomes
more involved. If the boundary valuesfoReHO(aR), one can
only guarantee that au/aneH-1(aR) and in general,
auN/an converges to au/an in this norm only. However, if
fOReH1(aR), then au/aneHO(aR) = ,:I'2(aR) and it is
possible to evaluate au/an on aR, without resource to any
other inner product, as we show next.

Indeed, assume the boundary values of the functions W n
at the boundary are in H1(aR)cHO(aR). Then
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suitable for application to formally symmetric operators,
although the theory has just been extended to general
non-symmetric operators 2°, Let

A=P-P*

(10)

An operator B:D-+D* decomposes A, when Band B* can
be varied independently (see definition in Herrera13),
while

As mentioned previously, it is numerically
advantageous to use ~2 norms, only. Many of the
questions associated with continuity and convergence
properties in these norms can be answered by use of the
results of the general theory of partial differential
equations19. The use of Green's formulae, can also be
useful in this more general situation, to compute
boundary derivatives.

It must be recalled that the procedures here discussed
can be applied whenever the basic equations are linear;
thus, in addition to steady state situations, they can be
used to treat time-dependent problems. Some extensions
to non-linear problems, will be discussed later.

A=B-B* (11)

When B decomposes A, Band B* are necessarily
boundary operators and equation (11) is an abstract
Green's formula. In this abstract framework, by a
boundary operator B:D-+D*, it is meant one such that
N B::JN A, where N BandN A stand for the null subspace of B
and A, respectively.

When B decomposes A, the subspace 11 = N & enjoys
the following properties: (i) 11 cD is a commutative
subspace for P; (ii) N A c 11; (iii) for every UED, one has

<Au, v) =0 vEl l=UEl 1

Subspaces 11 cD which satisfy (i) and (ii) are called
regular; when, in addition, (iii) is fulfilled, 11 is said to be
completely regular.

Subspaces which are completely regular can be
characterized by connectivity bases16. By this we mean a
subset B c I such that ABc D* is linearly independent,
while for every UED, one has:

=uEI(Au, W)=O WE

When B decomposes A, the pair of subs paces 11 = N 80
12 = N B. are completely regular and satisfy:

(14)D=Il+12 NA=I1 nI2

An ordered pair (1 1,12) of completely regular subspaces, is
said to be a canonical decomposition of D. There is one-
to-one correspondence between canonical
decompositions of D and operators B that decompose A
(i.e. Green's formulae). Given a canonical decomposition
(11, 12) the desired operator B: D -..D* that decomposes A
is associated with the bilinear form:

SCOPE'OF mE mEORY

In the previous section the use of complete systems of
functions to construct any other solution in a given region
has been explained. The numerical treatment of many
problems can be simplified using such methods, because
the size of the regions requiring to be treated numerically
is reduced in this manner. Two general situations can
occur in applications; the first one, illustrated in Fig. la,
corresponds to a boundary value problem for which the
basic set of functions is known in the whole region Rand
in which only the boundary oR has to be treated
numerically, the second one, illustrated in Fig. lb, in
which the problem is formulated in region R E, but the
basic set of solutions is only known in R, so that E has to
be treated numerically. In both cases, the size of the
regions in which the numerical schemes are applied, are
reduced. A variant of the above, is the case, when the basic
sets of solutions are known both on R and on E; in this
case it is required to connect them across the common
boundary between Rand E. This problem will be referred
as the problem of connecting which corresponds in
applications to problems formulated in discontinuous
fields and with prescribed jumps conditions13.

In general the application of the methods described in
this paper poses the following theoretical questions: (a)
development of complete systems of solutions; (b)
convergence of the approximating procedures; and (c)
formulation of variational principles.

Both (a) and (c) are discussed later. Questions of
convergence can be discussed using the results of available
theory for partial differential equations in a manner
similar to that presented in the previous section. This is
not difficult to do, for example, for general elliptic
equations by means of the results presented in the first
volume of Lions and Magene's book19 (for many fluid
flow problems see Temam22).

(15)(Bu, V)=(AU2' Vi)

Here U2 and V1 are the components of the corresponding
vector on 12 and 11, respectively13. This is an interesting
fact that will be useful when developing abstract formulae; '"
an application is given later.

There is a close connection between Hilbert space bases
and connectivity bases. For the purpose of this paper, it is .
enough to know that when a connectivity basis is
available, corresponding Hilbert space bases for the
boundary values can be easily derived. The precise
statement of this result is given by Herrera14.

VARIATIONAL PRINCIPLES

When an abstract Green's formula (11) is available and
the operator P:D-+D* is formally symmetric, variational
principles are easily formulated.

SYSTEMATIC DEVELOPMENT

The systematic discussion of the questions proposed
above can be carried out in an abstract setting recently
developed by the author3.

Let D be a linear space and D* its algebraic dual (the
space of linear functionals defined on D). In this paper
attention will be restricted to functional valued operators
P:D--+D* which are linear. Such operators are
characterized by the bilinear functional (Pu, v);the
transposed functional (Pv, u) is associated with the
adjoint operator P*:D--+D*.

The theory is based on the development of abstract
Green's formulae. This will be done in a manner which is
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The property of formal symmetry is usually defined for
differential operators. A functional valued operator
P:D-+D* is said to be formally symmetric13 when for
every UED one has

jumps. Applications to potential theory, elasticity, heat
flow and many others have been given13.

When D is a complete regular subspace the set

1= {(UR' UE)EDI(u~, -U~E.!/} (23)
(Pu, V)=O veNA=Pu=O (16)

is also a completely regular subspace and the pair (Y,--A')
is a canonical decomposition of D. Associated with this
pair of subspaces there is an abstract Green's formula:

Given UeD and VeD, consider the problem of finding
ueD such that

Pu=PU;

Bu=BV

(17) A=F-F*=J -J* (24)

where B:D-+D* satisfies the abstract Green's formula (11)
and P:D-+D* is formally symmetric. Define the
functional:

where the operator J:D-+D* characterizes the jump
conditions.

Using the results of the previous section and the
Green's formula (24) variational principles from problems
with prescribed jumps and also for others subjected to
continuation type restrictions, have been derived13.

(18).Q(u)=t«P-B)u, u)-«PU-BV), u)

Then equation (17) holds if and only if ,Q'(u) = 0; where
,Q'(u) is the derivative of the functional ,Q in the sense of
additive Gateaux variation.

There are cases13 where the subspace 11 =N B can be
characterized easily while it is not possible to give the
operator B:D-+D* explicitly. An example of this situation
arises in finite element formulations when the region R is
treated numerically subjected to the restrictions that the
sought solutions in R, can be continued smoothly into E
(Fig. 1 b), as solutions of given differential equations
there13. When this happens, a more convenient
variational principle is associated with the functional:

X(u) = (Pu, u)-(2PU-A~ u) (19)

Then equation (17) holds if and only if:

<X'(u), v)=O veIl (20)

COMPLETE SYSTEMS

There are many ways in which complete systems of
functions can be developed. Here, only a few examples are
given. The discussion is concerned with connectivity
bases; when a connectivity basis is available it permits one
to obtain Hilbert space bases for corresponding boundary
conditions. An advantage of using connectivity bases is
that this concept is independent of the Hilbert space
structure and therefore, the results acquire greater
generality.

A procedure to obtain connectivity bases has been
described by Herraraand Sabina! 6. This is closely related
to an idea originated by Picone, Amerio and Fichera, and
generalized by Kupradze29:. We illustrate this method by
applying it to Laplace's equation.

Consider region R (Fig. fa) and define (the linear space
D can be taken as H3/2(R), for example)A good sample of applications of these principles has been

given in refs. 8-13.

Then

Ip=Np+NA (26)

Here A =P-P* and N pis the null subspace of P. It can be
seen that I pC D is the subspace of functions whose
boundary values {u, ou/on} coincide on oR, with those of a
harmonic functions on R. Standard arguments show that
UEI p, if and only if, the function:

PROBLEMS WITH PRESCRIBED JUMP
CONDITIONS

A very general example of application of the theory is the
problem of connecting solutions of given differential
equations, subjected to a smoothness criterion, or more
generally, when they are required to satisfy prescribed
jump conditions across the common boundary.

This problem has been formulated abstractly as the
'problem of connecting'13. Let DR and DE be linear spaces
of functions defined in R and in E (Fig. Ib), respectively.
Ta.ke fj = DR + DE as the pr~dl!ct space; elements uefj are
paIrs (UR, uFJ.. An operator P:D-.D*, having the additive
property:

~A A ~ ~

(PU, v) = (PUR, VR)+(PU&I!E) (21)

is considered.
There is a class ofelementsYED called 'smooth' which

satisfy a smoothness conditipn across the common
boundary separating Rand E (Fig. Ib). Given OED and
~ ~. .A ~

VED one consIders the problem offindmg UED such that:

~A ~ ~ A ~ ~

Pu=PU and U- VE9' (22)

oR

vanishes identically in the exterior of the region R. Here,
G(x, y) stands for the fundamental solution of Laplace's
equation in the whole space. In view of equation (27), ~y)
is harmonic in the exterior of R. If C (Fig. la) is a curve
such that the exterior Dirichlet problem for Laplace's
equation satisfies uniqueness, then it can be shown 16 that
a sufficient condition for W(x) to be identically zero, is
that it vanishes identically on C. If {Y1' Yz' ...} is a denseThis is an abstract version of problems with prescribed
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potential flow, fluids in porous media, heat flow, wave
propagation and elasticity (static and dynamic).
Connectivity bases for Stokes problems have just been
constructed 15.

The possibility of constructing connectivity bases
which are independent of the regions considered, is
relevant for the treatment of non-linear problems.
Herrera and Sabina16 obtained systems satisfying this
property both for bounded and unbounded regions. In
general, problems in which the differential equations are
linear and the non-linearity is introduced through the
boundary conditions can be treated by the methods
described in this paper. This is the case of problems
subjected to floating boundary conditions such as seepage
flow, Stefan problem, some problems in plasticity and
contact problems.

~

R

~

x

-

); !X=1,2,... (28)

,)=0

V' !X = UEI p (29)

, V2cp=0; on R

~,
(b) Boundary conditions:IP~(Y)W(Y)dY=O; 

!X=1, 2, ...(30) cp(O, y)=1; 0~y<1

{m r~ ~

: cp(1,y)=y j-.~J~-

ocpf a(x, 0)=0; O~x~
, P ~(y)G(x, y)dy; !X = 1, 2, ...(31) Y

c ocp
.--~ _.an(x, Y(x))~O

cp(x, Y)(x)) = Y(x)

(c) Points of the region R satisfy:

O~x~ 1;

Thus, Y(x) defines the free surface.
Equation (35a) can be rewritten as:

¥'(x) = CPy(x, Y(x))

CPx(x, '((x))

CPn(x Yn(x) = ~(x)

---,.
I

~

denumerable subset of points on the curve C, define

W,,(X) = G(x, Y"

~~~

Then the above discussion shows that

~~~

EXTENSION TO NON-LINEAR PROBLEMS

As mentioned previously the boundary methods heredescribed 
can be applied to non-linear problems, whenthe 

non-linearity is introduced through the boundaryconditions. 
This is the case of seepage flow (Fig. 2), whichis 

presented here as an example.
This, as well as Stefan's problem, was treated in

collaboration with Prof. Nima Geffen, of the University of
Tel-Aviv and Dr. Herve Gourgeon, of the University ofParis 

XI, Or say, France.
A normalized version of this problem is subjected to:
(a) Governing equations:'

This shows that!! = {W1' W2' ...} is a connectivity basis
for Laplace's equation (this result is essentially
Kupradze's29.

However, there are many other ways of construction
connectivity bases. One is to choose a complete system of
functions {P1' P2' ...} on the curve C, and require16:

~~

(32)

~~

(33)

~~~~

1m1m

~

This yields the system of functions

~

(34)

~~

w ~(X) =

(35a)

~~

0:::;; v:::;; Y(x (36)

~~~

(37)

A convenient procedure to solve the system (35b), (37) isiterative. 
Define for n = O. 1. ...

~

(38a)

as connectivity basis. In a similar fashion one can prove
that given any point Yo of the exterior of R, the systems of
functions consisting of G(x, Yo) together with all its partial
derivatives with respect to y at Yo' is a connectivity basis.
These procedures'for constructing connectivity bases are
applicable to a very general class of equations including
time dependent ones16.29.

The availability of different connectivity bases for a
given problem is important, because in numerical
applications it is necessary to obtain reliable systems. For
example, Aleksidze31 has shown that the connectivity
basis defined by equation (28) is unreliable. For the case
when the region R is a circle, Herrera and Sabina's16
procedure yields an orthogonal system, which is reliable;
one can expect that the numerical properties of this
system deteriorate steadily as the region is deformed away
from the circle, a fact that has been confirmed numerically
for a related system6.

The methods just described possess considerable
generality; they can be applied to many problems
governed by linear differential equations, such as Y~+l(X)=~Yn(X)J

fPn)X, Yn(X»
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The scheme can be started by choosing Yo(x) arbitrarily
(e.g. Yo(x) = 1). 9

10
(39)CPn(X, y) = cpo(X, y) + Un(X, y)

It is seen that: 11

12
Un(X, ~(X))= ~(X)-cpo(X, ~(X)) (40)

In addition

Un(O, y)=un(l, y);=O (41a)

14
(41b)o~x~

A connectivity basis convenient for this problem, because
it satisfies equation (41) is

w~(x, y)=SintX1CxchtX1CY; 2, (42)IX=

In this manner only the free boundary needs to be treated
numerically. The approximation for Un is (keeping fixed
N):

18

19
(43)

N

Un(X, y)= L A:wa(x, y)
~=1 20

21
Numerically, it is advantageous to determine the N
coefficients A:, by collocation; i.e. by requiring that
equation (40) be satisfied at N points Xl <X2 < ...<XN of
the interval [0, 1].

Stefan problems has been treated in a similar fashion.
Free-boundary problems have received considerable

attention in recent years using several approaches.
Baiocchi, et al.32, for example, have based their method on
variational inequalities. Liggett, on the other hand, has
applied boundary integral equations to this class of
problems; in particular the example presented here has
been treated by that method33.

24

27

28

29

30

31

hybrid element method, Proc. Nat. Acad. Sci. USA, 1977,74,2595
Herrera, I. Theory of connectivity for formally symmetric
operators, Proc. Nat. Acad. Sci. USA, 1977,74,4722
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London, 1979, pp. 115-128
Herrera, I. Theory of connectivity: a systematic formulation of
boundary element methods, Appl. Math. Modelling, 1979,3,151
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