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ABSTRACT  The application of methods which constitute
an alternative to boundary integral equations to specific prob-
lems depends on development %];:omplete systems of solutions,
convergence of approximating procedures, and formulation of
variational principles. This paper establishes a criterion for
eomgl leteness. In tfus manner, greater flexibility of the theory
is achieved; for example, systems of functions which are com-
pletg for different types of boundary conditions are devel-
ope

When boundary methods are applicable, the size of the regions
considered can be reduced. In general, two situations can be
distinguished. One may consider a boundary value problem in
a region such as R (Fig. 1 Upper), in which general analytical
solutions are known in the whole region B. Alternatively, the
problem may be formulated in a region suchasR v E (Fig. 1
Lower), and the general analytical solutions may be known only
in the subregion R. In the first case, the application of boundary
methods permits restricting the numerical treatment to the
boundary dR and the dimensionality of the problem is reduced.
In the second case, the subregion R has to be treated numeri-
cally, but the region E is eliminated.

Most frequently, boundary methods have been formulated
by means of integral equations (1-5). However, there are al-
ternatives which present advantages. In general, a complete
family of solutions is required in order to apply boundary
methods. There are two possible ways in which such family can
be supplied: one is a denumerable family of regular solutions
{6) and the other is by means of a fundamental singular sclution.
The boundary integral equations method is a special case in
which the singularity is placed on the boundary of the region
considered, and due to this fact the resulting equations are
singular. When a denumerable family of regular solutions is
used the resulting equations are nonsingular, a fact that offers
numerical advantages. What is probably more important in
complicated problems is the observation that, generally, it is
easier to construct complete families of solutions than funda-
mental solutions; indeed, there are methods available for syn-
thesizing fundamental solutions starting from complete families
[e.g., in terms of plane waves (7)].

Several recent accounts of boundary integral equatlons are
available (1-4). Alternative approaches have been the subject
of systematic research by me (8-15). The theoretical founda-
tions of these alternatives are not complicated, but their ap-
plicability has been unnecessarily restricted due to lack of
clarity. For example, in acoustics and electromagnetic field
computations, the “Rayleigh hypothesis” introduces severe
restrictions {16) which can be avoided altogether if a dlfferent
point of view is adopted (17).
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Regions for boundary methods.

In general, the application of such methods requires the
following studies:* (1) development of complete systems of so-
lutions; (i1) convergence of the approximating procedures; and
(#i1) formulation of variational principles.

Generally, the solution of a boundary value problem that is
well posed depends continuously on the boundary data with
respect to a suitable norm (18); thus, in order to construct an
arbitrary solution, it is only required to have available a family
of solutions that is complete with respect to this norm.

Questions of convergence can be discussed by using results
of the theory of partial differential equations in a manner
similar to that presented elsewhere!; for example, for elliptic
equations, the results presented in ref. 18 can be used. General
variational principles applicable to boundary methods have
been developed recently (13).

Generally, these methods are applicable to linear problems;
however, they can also be applied to an important class of
nonlinear problems. These are problems for which the gov-
erning equations are linear, and the nonlinearity is introduced

t Herrera, 1. (1980) “Boundary Methods in flow problems,” Proceed-
ings Third International Conference on Finite Elements in Flow
Problems, Banff, Canada, 10-13 June, Vol. 1, pp. 30-42,
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through the boundary conditions only. This is the case of free
boundary problems, such as seepage flow, Stefan problems, and
contact problems.

This paper establishes a criterion for completeness of systems
of solutions. In previous papers (15), the notion of connectivity
basis was introduced. The main result to be presented here es-
tablishes a connection between this concept and Hilbert-space
bases, which permits one to obtain the latter when connectivity
bases are available. An advantage of using connectivity bases
springs from the fact that this concept is independent of the
Hilbert-space structure and it is more flexible in applications,
This allows developing systems of functions that are complete
independently of the boundary conditions considered. For
Laplace’s equation, for example, a system of functions that is
complete for the Dirichlet problem is necessarily complete for
the Neuman problem, also. In elasticity, this leads to systems
that are complete for displacements, tractions, and mixed
problems, simultaneously. By using the criterion for com-
pleteness given here, it is not difficult to derive Hilbert-space
bases, that were obtained by Kupradze (19) for a large class of
problems, from connectivity bases that can be obtained by a
procedure developed by Herrera and Sabina (15). As a further
illustration, later in this paper, Hilbert-space bases are obtained
for a general class of problems that was introduced previously
under the title “Problem of Connecting™ (13).

In previous articles (13), linear spaces D were considered and
the null subspace N of an antisymmetric operator A was in-
troduced. The quotient space D = D/N corresponds to the
space of boundary values in applications; e.g., in potential
theory, members of this space are defined by the values of the
functions and their normal derivatives on the boundary. Here,
only these spaces need to be considered. The notation is con-
sistent with that used in other papers by me.

THEORETICAL DEVELOPMENTS

We shall be concerned with functional valued operators P: D
~> D* which are linear. Here, D is any linear space in the field
of real or, alternatively, complex numbers and D* is the alge-
braic dual of 9. The notation <Pu, v>> is adopted for the value
of the linear functional Pu& D* evaluated at v & D). The fol-
lowing notations and results were given previously (13).

Definition 2.1: The operators P:0 — D* and Q:D — D*
can be varied independently if and only if, given UE D and
V& D, there exists u & 2 such that

Pu = PU and Qu = QV, [2.1]

In what follows, A:D — £* will be an antisymmetric op-
erator which will be assumed to be one-to-one; i.e.

N=Ns={ucD | Au=0} =0} [2.2]

Definition 2.2: An operator B:D — £* said to decompose
A when B and B* can be varied independently and

A=B-B* [2.3]

The concept of canonical decomposition of 2 with respect
to A was introduced in ref. 13, and a connection between such
concept and operators that decompose A was also discussed. For
the purpose of this paper it is only necessary to recall that, when
B:D —» D* decomposes A, the null subspaces N, Nps consti-
tute a canonical decomposition of 2. In such case, one has

Ng + Nge = D;Np nn Nge = N4. (2.4]

In what follows, it will be assumed that an operator B:D — D*
that decomposes A is given and we write I) = N, I3 = Ng».
Definition 2.3; Let a linear subspace Ip ¢ D, and elements
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U& D, VED be given, Then, an element u& D is a solution
of the reduced problem with linear restrictions if

utU&lp,andu — VENg =1 (2.5]

Definition 2.4: A linear subspace Ip D is said to be com-
pletely regular when

<Auw> =0V w&lp = utlp. [2.6]

Definition 2.5: A subset BcCIp is said to be c-complete (or
complete in connectivity) when for every u& 2 one has

<Auw> =0V wEEB == ulp [2.7]

The set B is called a connectivity basis if, in addition, A B D*
is a linearly independent subset of D*.
As before, let B:D — D* decompose A; write

Iy = Ng; Io = Nps. [2.8]
In addition, take
Ne=Ip ol 2.9]

Notice that & D is a solution of the reduced problem with
linear restrictions with vanishing data, if and only if u&N ¢.
Assume:

(a) I, and I are Hilbert spaces. The inner product will be
denoted by (,).

{b) There is an {algebraic and topological) isomorphism G:I;
—» I3 between these Hilbert spaces.

(¢) For every u = u) + ug, ¢ = v1 + vg (where u1 €1,
ug6=1I, and similarly for ©), one has

<Au,o> = (v9,Guy) — (us,Goy). [2.10]

In this case I is a Hilbert-space and one may write (GN )+ for
the orthogonal complement of GN / in I5.

THEOREM 2.1. Assume N ¢ is closed in 1,. Let Ip be com-
pletely regular and hypotheses, a, b, and ¢ hold. Given any
subset BcClp define

Bo=weCls | 3w EL Fw=w; + ws&EB}. [2.11]

Then BoC{GN )+ spans the Hilbert space (GN o)~ if and
only if BUN Clpis c-complete. In addition, BC D is linearly
independent mod (N ) if and only if so is Bs.

Proof: To start with, let us recall that, when Ip is completely
regular and w = w; + wa&Ip, then wo& (GN £ )+ necessarily.
Indeed, let tEN = I, Ip; then

<Aw,p> = —(ws,Gv) = 0.

This proves the desired result, because v is an arbitrary element
of N..

First, taking as an assumption that BUN , Clp is c-complete,
it will be shown that for every ua&(GN )+ I, one has

(ugwe) = 0 ¥V wa& By = uy =0. [2.12]

Assume that premise 2.12 is satisfied. Write us = Gop, with
v1EN § cIy; clearly, this is possible. Take v = v}, then

<Avw> = (wy,Gvy) = (wa,ug) = 0, VwEBUN,. [2.13]

Here, the fact that wEN ; = ws = 0 has been used. This
implies v = v;E&Ip because B is c-complete for Ip. Hence,
v1E1nIp = N 1. Therefore, 016N £ nN£;ie., v1 = 0and uy
= Gp; = 0. This shows that By spans {(GN )+ cIs whenever
B is c-complete. The proof of the converse statement is more
complicated and I prefer to show the linear independence
properties first. Under the hypothesis that 3 is linearly inde-
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pendent, assume that for some N there are nonzero scalars a1a,,

, ax such that Z a,wsq = 0. Then, Z aw.Elhnlp =
a=1
N £, a contradiction. Thus, By is necessarily linearly indepen-
dent. To prove the converse, it is only necessary to observe
that

Zl Qg = N.E = Z QW3 = 0. i2°14]
We proceed now to prove that when Bg spans (GN )+, then
BuUN_ is c-complete in Ip. Let {ey.e9 .. JC(GN )+ bean
orthonormal Hilbert-space basis of (GN 1} obtained by or-
thonormalization of Bs. Takee Elp (¢ =1,2,...) as the linear
combination of elements of B which has the same coefficients
as € 49. Using this notation, the desired result will follow from
the following Lemma.
LEMMA 2.1. Given Bclp, assume By spans (GN )+ and

take ley,es, . . .| as explained before. Then, when v, vE D are
such that {Au,w) =0V w& BuN and similarly for v, one
has
(i) & (GN )+, {2.15]
(“) (Uz,Ceal) = (eaz,cul), [2-16]
(iti) (vo,Guy) = E (ug,Gea)(vo,ea2):
ug = Zl (02,ea2)602 [2‘17]
(iv) <Au,v> =0 ¥ vEIp. [2.18]
The case when u = e in 2.18 has special interest; it is
(ep2.Gear) = (€az,Gepn). [2.19)

Proof: Proposition ¢ follows from the remarks made at the be-
ginning of the proof of Theorem 2.1. Eq. 2.186 is straightforward
when use is made of the fact that every e, is a linear combina-
tion of elements of B and Eq. 2.10 is applied.

The second of Eqgs. 2.17 is clear by virtue of Eq. 2.15; the first
one follows from the fact that {e o] is an orthonormal basis of
(GN 1)+ and Eq. 2.16.

Assume v&Ip. By using Egs. 2.15 and 2.186, a direct com-
putation yields

{v3,Guy) Zl (u9,Geq) (v2,42)
=

= éx fgl (ug.ep2)(V2.600)(€0n2.Gepr). [2.20]

This shows (02,Gu1) = (ug,Gvy), because (Geq1,e52) is sym-
metric in « and 8 by virtue of Eq. 2.19. This establishes i and
the proof of the Lemma is complete. Recall that the complete
regularity of Ip together with Eq. 2.18 implies u & Ip. Hence,
the proof of Theorem 2.1 is complete.

The flexibility supplied to the theory by the results contained
in Theorem 2.1 can be better appreciated by considering a few
examples. For Laplace’s equation, Dirichlet’s problem possesses
a unique solution; thus, the boundary values associated with any
connectivity basis of Laplace’s equation constitute a Hilbert-
space basis of H® (dR). On the other hand, the subspace N/ of
solutions of Neuman’s problem with vanishing data are the
constant functions. Thus, the normal derivatives of any function
such that {5z 9u/dndx = 0 can be approximated in H° (3R)
by means of a connectivity basis. This is the well-known re-
striction imposed on the data for the boundary values of the
normal derivatives, in order for Neuman’s problem to possess

Proc. Natl. Acad. Sci. USA 77 (1980) 4397

a solution. Theorem 2.1 shows that one can use the same system
of functions for both Dirichlet’s and Neuman’s problems and,
indeed, for many other combinations of boundary conditions.
In elasticity, displacement, traction, and mixed problems can
be treated in this manner. More general examples are given
next.

HILBERT-SPACE BASES FOR THE PROBLEM
OF CONNECTING

In a previous paper (13) the problem of connecting was for-
mulated and general variational principles were derived. In this
section a procedure for constructing Hilbert-space bases for such
problems is given.

This problem is an abstract version of the problem of ob-
taining solutions to partial differential equations defined in
neighboring regions such as R and E in Fig, 1 Lower and which
satisfy prescribed jump conditions across the connecting
boundary d3R = 933E. The jump conditions are relative to a
smoothness criterion.

Let Ag:Pg — Dy and Ag: Dy — D be functional valued
operators defined on linear spaces Dg and Dg. Consider D =
Dr®Dg and a linear subspace Ig C Dy and let Brclg bea
connectivity basis of Ig. Corresponding relations are satisfied
by i}g, IE, and 335 Define D = Dr® Dy and Ip = In@®Ig.
Take A:D — DH* as

Aﬁ > = <Agugp,og> + <Apup0p> [3.1]

for every il = (ur,up)ED and 6 = (vp,05)ED.

Smoothness criteria were defined previously (13). For our
purpose it is enough to recall that a smoothness condition is a
linear subspace $cZ; a smoothness condition is said to be
completely regular when as a linear subspace it is completely
regular.

It has been shown (13) that, when a smoothness condition is
completely regular, there is an operator J:&) — D* called the
jump operator, such that the null subspaces of J and its adjoint
J* satisfy

§=N];AA4=S{P [3.2]

where Mc 9D is the set of zero mean elements, defined in
(18).

Corresponding to assumptions ¢, b, and ¢ in the preceding
section, it will be assumed

{a) & and M are Hilbert spaces with inner product (,).

(b) There is an isomorphism G:§ — M such that

{Au,v) = (Oz,cul) - (uz,Clu) [3.3]

for every il =iy + g, 1) E&, 1,EM and correspondingly for
every & = 61 + 0o

In what follows the following notation and assumptions are
adopted. Ip = In®@Igc D where Iz € Dy and Iz € Dy are linear
subspaces; Br Clg and Bg C Ik are connectivity bases of Ig and
Ig, respectively. The reduced problem of connectmg (13) is
defined as the special case of Definition 2.3, in which Ip is
taken as fp and I is &.

THEOREM 8.1. Let § be a completely regular smoothness
condition such that assumptions a and b are satisfied and the
reduced problem of connecting satisfies uniqueness. Write
B = $R®3ECIP, and let

By = b EM | 3 0, ES30 = by, + b, EB). [3.4]

Then By is a Hilbert-space basis of M.

Proof: In view of Theorem 2.1, it is enough to prove that
Bclp is a connectivity basis. The following Lemma establishes
this result.
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_ LEMMA 3.1. The set B = Bp® B is a connectivity basis of
Ip.
Proof: 1t is required to show that

<AGD> =0V wEB =il [3.5]
This is immediate because the premise in [3.5] implies that
<Agup,wg> =0 V wg& Br and
<Apug,wg> =0 VY wg< Bg. [3.6]
Hence, ug &Ig while up &1k,

SPECIFIC APFLICATIONS

As specific applications of Theorem 2.1, consider Laplace’s and
reduced wave equations. In a previous paper (18), connectivity
bases for these equations in two and three dimensions were
given. Theorem 2.1 shows how to derive Hilbert-spaces bases
for the boundary values associated with such problems.

A slight modification of the arguments presented in ref. 15
permits deriving the bases that were obtained by Kupradze (19).
When the region is two-dimensional and bounded there is an
anomalous situation when the exterior problem for Laplace’s
equation does not have a unique solution (20). Due to this fact,
when considering that equation, the constant function has to
be included among the members of the resulting system in
order to grant that Kupradze's procedure vield a Hilbert-space
basis. It can be seen, however, that such restriction does not
apply to the connectivity bases derived by Herrera and Sabina
(15) because they were obtained by using a circle of arbitrary
radius.

In the case of Laplace’s and reduced wave equations, it is
convenient to define (Fig. 1 Lower)

<Prug,or> = §gror VZugrdx

fuﬂ—drl— fvg CUR 1y [4.1]

MR 29R

while Pg:Dg — Dy is taken correspondmgly When the linear
subspace $CD of smooth functions is taken as functions
{(ur,ug) such that they are continuous together with their nor-
mal derivatives across the common boundary d3R = 3E,
which vanish on 9;(R UE) and with vanishing normal derivative
on dx(RUE), the jump operator is given by

Proc. Natl. Acad. Sci. USA 77 (1980)

<Jap> = [[a]g‘i- o] au”dx
$r n on
—f dx+f v——dx [4.2]
2(RUE) A2(RVE)

Similar results hold in elasticity, heat equation, wave equa-
tion, and many other problems and can be derived by using
operators introduced in previous articles (8-15).
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