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Extension of the Integrodifferential Approach
to Inhomogeneous Multiaquifer Systems
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In the original integrodifferential model developed by Herrera and his co-workers for multiaquifer sys-
tems and based on the quasi-three-dimensional theory for such systems, homogeneity was assumed at
least in the vertical direction. This restriction is eliminated here, and the integrodifferential approach is
extended to general heterogeneous multiaquifer systems. Finite element approximations in time and
space are also introduced which include as particular cases most of the well-known time integration
schemes and lead to consistent updating schemes for the influence and memory terms.

subject to boundary conditions

s' (0, t) = SI (t) (2a)

s' (b', t) = S2 (t) (2b)

and initial conditions taken, for instance, to be '

s' (z, 0) = so'(z) (3)

To treat this problem, it is convenient to introduce the ei-genfunctions 
cf>..(z) and the corresponding eigenvalues A..2(n =

1, 2, ...) of the auxiliary problem

~ (K' ~) + A..2S.'cf>.. = 0 z E (0, b') (4)

with boundary conditions

cf>..(0) = cf>..(b') = 0 (5)These 

eigenfunctions will be assumed to be normalized, that
is,

1. INTRODUCTION

The assumptions of horizontal flow in the aquifers and of
vertical flow in the aquitards characterize the mathematical
description of leaky aquifer systems. Under these assump-
tions, leaky aquifers are governed by a system of in-
tegrodifferential equations. For the case of vertically homoge-
neous aquitards such equations were derived by Herrera and
Rodarte [1973], and a corresponding numerical method was
developed by Herrera and Yates [1977] and applied to the ho-
mogeneous aquifer case. Its application to the short time
range has just been analyzed by Chen and Herrera [1981].

The mathematical basis of this procedure is, however, not
restricted to vertically homogeneous aquitards and can be ap-
plied even if the aquitard is completely heterogeneous. What
is characteristic of the method is the use of eigenfunction ex-
pansions in order to eliminate the treatment of the aquitard.
When this is arbitrarily heterogeneous, the eigenfunction ex-
pansion has to be derived numerically. However, efficient
computational schemes are available to do this [Wilkinson and
Reinsch, 1971].

This, pa~er is devoted to developing such an approach for (b' S.'l/>nl/>m dz = b'nm
an arbItrarily heterogeneous leaky aquifer system in which the /0
properties of the system are arbitrary functions of position, in so that
both the horizontal and the vertical directions. Section 2 is de-
voted to the treatment of the aquitards and their elimination, (b'
leading to a system ofintegrodifferential equations. In section /0-
3 the details of the numerical implementation of the resulting
system are given, with a particular emphasis on the efficient Other auxiliary functions to be used in the sequel are Vk(Z),
approximation of the horizontal heterogeneity in the aquifers k = 1, 2, defined by

as well as on the use of a class of finite element in time in- a ( a )tegration schemes, including as particular cases most in- -K' ~ = 0 z E (0, b') (8)
tegration schemes previously used and leading to self-consis- az az

tent updating formulas for the memory and influence terms. and
Pre~ary co~parisons [Herrera et al., 1980] with other v 0 = v b' = 1 v b' = v 0 = 0
available numencal schemes [Chorley and Frind, 1978] show l() 2() l() 2() (9)

that the method presented here offers significant advantages It readily follows that
in both computer time and memory requirements. ,
2. REDUCTION OF A SYSTEM OF INTEGRODIFFERENTIAL -(IOn)

EQUATIONS

The basic heterogeneous aquitard equation is

~(K'~ ) =S'~
az az .at .V .".."'.,,:,:__:~~
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(6)

(7)

K' 

~ ~~ dz = ;\ 28
iJz iJz n nm

v,(z) = !
I b' dz

la z K

V2(Z) =! (z dz'
la Jo K

where(1) l b'dz' t= -
a 0 K'
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Let us define and therefore by virtue of (11) and (18),

s'(z, t) = f I
k-1 I

(II)
_Sk(I)Vk(Z) -"~l bk"dk,,(I)4>,,(Z) ] (24)

.Let us assume that at 10 = 0 the initial drawdowns in the aqui-
fers and the aquitard are given, namely, Sk(O), k = 1, 2, and
so'(z). Alternatively, the past history of the drawdown may be
known from say 1 = -00 to 1 = O. This case is also quite im-
portant and will be discussed in Appendix A. Let Wk(Z, I), k =
1, 2 be solutions of (1) subject to boundary conditions

WI(O' I) = w2(b', t) = 1

w.(b', t) = W2(O, t) = 0

(12)

subject to

w(O, t) = w(b', t) = 0 (13)

With
(25a)

(25 b)(b'On (1) = /0 S.'WCP. dz (14)
and initial conditions

and after multiplying (12) by </>.. and integrating the resulting
equation from 0 to h' one obtains (26)Wl(Z, 0) = W2(Z, 0) = so'(z)

From (20), (22), and (24) it follows that

~

Wk(Z, t) = Vk(Z) -L bkn exp (-An2t) cl>n(Z)
n-1

(27)
~

+ L Cn exp (-An2t) 4>n(Z)
n-1

and an alternative expression for s'(z, t) in terms of the Wk is

From (15) it follows that functions dkn(t) of t can be in-
troduced such that

2

s'(z, t) = L
k-l

It os-
Sk(O)Wk(Z, t) + /0 Wk(Z, t -1") -: (1") d1"

(17) ~

+ L C" exp (_;\,,2t) </>,,(Z)
,,-I

(28)
with

This expression is the basis of the modification to the in-
tegrodifferential approach [Herrera and Rodarte, 1973; Her-
rera and Yates, 1977] presented here; it generalizes equation
(3) of [Herrera and Yates, 1977]. In particular, (28) takes into
account any initial conditions in the aquifers-aquitard system;
also, the functions Wk are given in terms of the eigenfunctions
</I.. Actually, (28) can be derivated with respect to the z vari-
able to get expressions for the leakage fluxes from the aqui-
tard to the adjacent aquifers at z = 0 and z = h'. For instance,

2

an = L bkndkn (18)

At the given initial time to it follows from (10) and (14) that

(19)
2

an(to) = L bknSk(tO) -Cn

where
l b' Cn = n S.'s'(z, to)CPn dz

(20)

Tlfe initial conditions for dkn can be selected in many ways, a
convenient choice being

dkn(tO) = Sk(tO) -8kcn/bkn (21)

with -to f. Cnbl.An2 exp <-An2t)Jn-1
(29)

where we used the definitions

11(1/8'ta) = -t.K'(O) (iJW./iJZ)I.-o

h.(t/S'ta) = + t,.K'(O) (iJw2/iJZ)I.-o
(300)

(30b)

2

L Ok = 1
k-l

An explicit expression for dkn(t) is

dkn(t) = exp (-An2(t -to)]dkn(tO)

1, as
+ exp (-An2(t -T)] -ak (T) dT

'0 t (22) S' being the mean storage coefficient in the aquitard, and the
fact that

Since the set {~..} of eigenfunctions is complete, definition
(14) implies «()cI>,,/iJz)(O) = ;\,,2b.,,/ K'(O) (31)

(23) as shown in: Appendix B. From definitions (30) and equations
(27) and (31) it follows that

~

w(z, t) = L an(t)cl>n(z)
n-l

*1'_0
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and
.x-I 

l(tIS'ta) = I + ta L An2b1n(b1n -Cn) exp (-An2t)
n-l

~

= I + LAin exp (-An2()
n-1 (32a)

hk(t/S'ta) = hkMk(t/S'ta)

Mk
= 1 + L bkn exp (-X,,2t)

,,-I k= 1,2 (37b)
and

~

h.(t/S'ta) = 1- ta ~ An2b.n(b2n -cn) exp (-An2t)
n-1

In a similar way the last tenn of the right-hand side of (29)
and (33) will be limited to N' tenns.

To conclude this section, a few comments are offered about
a practical implementation of what has been discussed above.
At each node in the plane of the aquifers, a string of linear
elements can be established in the vertical direction. If K de-
notes the number of nodes in that direction, one should have

~

= 1 + L Bin exp (-i\n2t)
n-l (32b)

Similarly,

as'
l =+

ai z-b'

-(t

( t-T )/0 12 S'i:
K~ max (Hk' Mk, H') k = 1,2 (38)

1
t,.K'(b')

Then at each node in the plane, one looks for Vk and cf>n of the
form

(390)

(33)
(39b)

K

VI = L VI,uAZ) + UO(Z)
i-I

K

V2 = L V2I~'{Z) + UN+I(Z)
i-I

K

<1>. = L <I>.,~,{Z)
i-I

(39c)

~

-ta L Cnb2nAn2 exp (-An2t)
n-l

with the definitions

f2(t/S'ta) = +taK'(b')(iJW2/iJz)lz-b'

h2(t/S'ta) = -taK'(b')(iJw./iJz)lz-b'
(34a)

(34b) where the Ui are given piecewise polynomial basis functions,
whose support is a small patch of elements. Typically, Ui
would be associated with node i such that Z = Zi, with Zo = 0
and ZK+I = b', and, moreover, u,(Z) = 8ift so that the ex-

pressions (39) automatically take into account the boundary
conditions on the Vk (equation (9» and on the cf>n (equation
(5». Standard Galerkin equations for the unknown vectors Vk
= [Vkl, ..., VkK]T and cf>n = [cf>nl, ..., cf>nK]T read

so that
..,

12(1/8'la) = I + la L An2bln(bln -en) exp (-An21)
n-1

~

= 1 + L A2n exp (-An2t)
n-l (35a)

and

(40a)

(40b)

(40c)

~

hJt/S'ta) = 1- ta L An2b2n(b1n -Cn) exp (-An2t)
n-l

-Kv, = f,

-KV2 = t

(-K + A.2M)f/>. = 0~

= 1 + ~ B2n exp (-An2t)
n-l (35b)

where K = (k/j)' M = (m/j) are K X K matrices with elements

(4Ia)
l b' , au, au

k/j= K -.=Ldz
0 az az

(b'm/j = /0 S.'u,Uj dz (4Ib)

It is easy to check that in the homogeneous aquitard case,
with so'(z) = 0, f 1 = f 2 and hi = h2 reduce to the memory and
influence functions introduced by Herrera and Rodarte [1973]
and that in particular the following equivalences hold (where
t' is dimensionless time):

t/8'to- t' (36a)

A.2t- -n2~t' (36b) while f1 and f2 are vectors with K components f II and f 2/ given

by

(b'
11;= Jo

(b'12/ = Jo

(420)K'~~dz
iJz iJz

(42b)

The source problems (40a) and (40b) and the eigenproblem
(40c) are quite standard (see, for instance, Wilkinson and
Reinsch [1971]) and especially easy to solve, since they are
one-dimensional ones. Moreover, they have to be solved once
for all, since the coefficients are time-independent.

A1,,- 2 (36c)

B1,,- 2(-1)" (36d)

For computational purposes, gk(= f k -I) and hk, k = 1,2, can
be approximated [Herrera and Yates, 1977] by truncated ex-
pansions like

gk(t/ S'to) ~ gkN.(t/ S'to)

= AkN.8(t/S'to)

N.
+ L ak" exp (-A,,2t) k = 1,2 (37a)

,,-I
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z

~ 

/ / / / / / / / Ab{ j/ // hij"//////l

7///////////~~!'~/#/- X

mk,ij = L SkU,uj df (48c)

while Gk = (gkJ, Hk = (hkJ, and Fk = (fkJ are N vectors with

components
N l l l ' ( t-T )gki = ~ Ui -gkN" -;;;- PkjT)Uj df dT (490)

j-1 II ta 0 i> ta

N l l l ' M ( t-T ) O hki = ~ Ui -hk" -;;;- PkAT)Uj df dT (49b)
j-l II ta 0 i> ta

f ki = L UiQk + L Ui ~ Sk(O)gkN" (ft:) df
y

Fig. 1. The aquifer system.

i. (T2 ~ )+ ~ ( T2 ~ ) -K' ~ I = S2 ~+ Q2 (43b)
ax ax ay ay az z-b' at

in ~(O, 7], They are, moreover, subject to boundary condi-
tions

Sk(X, y, t) = 0 k = 1,2 (44)

on rx(O, 1], where r = .0. -.Q, and initial conditions taken,
for instance, to be

L WJ(fk' t)UAfk)u}(fk) = wJ(f" t)8ij
K

(51)

Sk(X, y, 0) = SkO(X, y) k = 1, 2 (45)

in n. Here for the sake of simplicity the particular case of a
two-aquifer system separated by one aquitard is considered
(see Figure 1), with homogeneous Dirichlet boundary condi-
tions. Extensions to multiaquifer systems with non-
homogeneous Dirichlet, Neumann, or mixed boundary condi-
tions are straightforward.

Any standard finite element discretization of equations (43)
would then lead to

N

Sk(X, y, t) ~ L Pkjt)UjX, y)
j-l

k = 1,2 (46)

since u,(ffl = 6;j' As a result, all the masslike matrices are diag-
onalized. This is true in particular for the memory and influ-
ence terms, and tl S'ta is only needed at the mesh points,
which is quite convenient. By careful programing, consid-
erable reductions in computer time and memory requirement
can be achieved, as we indeed verified. Also, when lumping
by reduced integration is used, the resulting Galerkin semi-
discrete equations are less stiff, and their time integration is
therefore easier.

To be more specific, assume that lumping is being used, and
define the following N x N diagonal matrices:

W = diag (w;) (52a)

T = diag [ta(f;)] (52b)

Sk = diag [Sk(f;)] k = 1, 2 (52c)

S = diag [S'(fJ] (52d)

Ak * = diag [AkNk(f;)] k = 1, 2 (52e)

Akn = diag [akn(fJ] k = 1, 2 n = 1, "'j Nk (52!)

Bkn = diag [bkn(f;)] k = 1, 2 n = 0, "', Mk (52g)

where the ulx, y) are given piecewise polynomial basis func-
tions, whose support is a small patch of elements. Using (46)
for Sk in equations (43) and the standard Galerkin semi-
discretization, after some algebraic manipulations we get

-(K. + M)P. -G. + HI = M.P. + F. (47a)

-(K2 + M)P2 -G2 + H2 = M2P2 + F2 (47b)

where Kk = (kk,ij)' M = (mij)' and Mk = (mkJ) are N X N ma-

trices with elements

(480)

(48b)

where k* = 3 -k, k = I, 2. Clearly,

Pk = (Pkl, ..., PkN]T k = I, 2

In the original integrodifferential model [Herrera and Yates,
1977], homogeneity was assumed, and consequently, a conve-
nient dimensionless time t' could be introduced which did not
depend on position. Here tl S'ta is a function of position, and
the memory and influence terms become quite involved in the
final Galerkin semidiscrete equations (47) unless, as we have
found, reduced integration is used [Zienkiewicz, 1977, p. 537].
Under any numerical quadrature scheme consistent with the
expected accuracy associated with the choice of the Uj in (46),
the masslike matrix elements are approximated as follows:

r f(f, t)u,{f)Uj{f) df ~ L WJ(fk' t)u,{fk)uj{fk) (50)
In K

where fk is the sampling point where the integrand has to be
evaluated and Wk is the corresponding weight. If the sampling
points are taken to be the mesh nodes, as all except one basis
function are zero there, the corresponding matrix becomes di-

agonal, namely,

11 -
mij= -u,~jdr

n ta



1048 HENNART ET AL.: INHOMOGENEOUS MULTIAQUIFER SYSTEMS

With these notations the general aquifer equations (47) be- and Dupont, 1970], although the point of view adopted here is
come, after lumping, in terms of finite elements in time, with an underlying ex-

HI ponential fitting capability: This allows greater generality and
W(SI + SAI*)PI = -(KI + wr-1)PI- wr-1 L AlnDln provides at the same time a consistent piecewise continuous

n-1 behavior of the solution in space and time; thus the values of
M, P at any point (P, t) can be retrieved from the nodal values.

+ wr-1 L BlnD2n -FI (53a) Recalling equations (55), it is clear that each of them has the
n-O following general structure:

and .
AP = -BP -C/(P) -F (56)

H,
W(S2 + SA2*ip2 = -(K2 + wr-1)P2 -wr-1 L A2nD2n where /(P) stands for the integral terms depending on P. In-

n-I tegrating (56) from tj to tj+1 = tj + h, we get

M2

+ Wil L B2nDln -F2
n-o

(53b) 1'1'"1 A [P(tj+l) -P(t)] = -B

'I

Pdt 

-c f'J+l

J'i
I(P) dt _1 ')+1

.' j

Fdt
where

(57)Dkn = [dknl' ..., dknN]T k = 1,2

with

dk".{t) = exp [-X,,2(f,)t] l' exp [+X,,2(f,)-rJpk,{-r) d-r (54)

Moreover, it was assumed that bkO (f,) = 1 and Xo2(f,) = 0 to
extend the last summations in equations (53) to n = O.

Consequently, the final set of equations (53) exhibits the
following general structure:

( N, M'
)A,P,=-B1P1-C LA1"D1,,- LB1"D2" -F1 (55a)

,,-1 ,,-0

( N2 M2

)A2P2 = -B2P2 -C L A2"D2" -L B2"D2" -F2 (55b)
,,-1 ,,-0

where the matrices Ak and C are diagonal, the matrices Bk are
symmetric and banded, while the source vectors F k directly
derive from the extraction rates and the initial conditions (45)
for the aquifers.

Once we have coped with the major difficulty due to hetero-
geneity in the aquifer treatment, namely, the approximation
of the memory and influence terms, thanks to the reduced in-
tegration technique, the final equations (55) have essentially
the same properties as in the previous integrodifferential
model [Herrera and Yates, 1977; Herrera et al., 1980]. For the
sake of completeness these properties will be briefly recalled
here: first, owing to the shape of the influence functions hk, k
= 1, 2, from one aquifer to the other, (55a) and (55b) may be
regarded as uncoupled. Furthermore, the memory and influ-
ence terms can be evaluated at each time step by a simple up-
dating procedure for the vectors Dk", k = 1, 2, which does not
depend upon a particular reference time and does not involve
past history (see discussion below). Finally, the drawdown s'
in the aquitard need not be calculated unless it is required at
some time, in which case it can be evaluated simply in terms
of the Sk and of auxiliary terms already present in the calcu-
lation.

In previous versions of this model [Herrera and Yates, 1977;
Yates and Herrera,'1977] the Crank-Nicolson (CN) finite dif-
ference procedure was used to carry out the time integration
of equations (55). This procedure is "known to exhibit poor
asymptotic stability properties; thus it has been improved by
imbedding it in a wider class of time integration schemes
which, besides the CN, includes forward Euler (FE) and back-
ward Euler (BE) procedures. All these are 9 schemes [Douglas

where we used the fact that matrices A, B, and C are time-in-
dependent. In most cases of practical interest, linear triangular
or quadrilateral elements in space would be used to discretize
the aquifers. Even if higher-order elements such as quadratic
ones were used, the time integration schemes are not likely to
exhibit orders higher than 2 as with the CN scheme. Consis-
tent with this order of approximation for the time integration
is the so-called constant parameter assumption, whereby all
the possible time-dependent effects on the coefficients, bound-
ary conditions, and source terms level are averaged over [tft
tj+.J. After the transients have sufficiently decayed, the solu-
tion approximately exhibits a single-mode exponential behav-
ior, and it is therefore reasonable to assume that the com-
ponents Pi' i = 1, ..., N of P over [tft tj+.J are of the form

p,(t) ~ p,(t) = aft + bji exp ()it) (58)

where Ii is some real negative value, eventually different from
one time step to the following one, which should ideally ap-
proximate the algebraically largest inverse characteristic time.
Assumption (58) is certainly approximately correct locally,
that is, when Ii = 11./, i = 1, ..., N. It should be quite accurate
also enough time after any modifications occurred to the
boundary conditions and (or) the pumping rates (since we as-
sume the coefficients in the equations to be constant), pro-
vided of course that the resulting numerical scheme correctly
damps out the fast transients. When this is the case, the time
step can be considerably increased without any loss of accu-
racy. The above rationale for introducing exponentials in (58)
should not be misleading and leave the reader with the im-
pression that the functional form for the components Pi has
been restricted too much. Actually, as we shall see below, the
proposed schemes constitute a broader class of time in-
tegration schemes than are normally used and in particular in-
clude well-known schemes based on an implicit polynomial
behavior of the Pi' Combining (58) and (57), we obtain the ap-
I?roximate scheme

f tJ+l I tJ+1 I tJ+1 A(pl+l_P')=-B Pdt-C I(P)dt- Fdt

t t} t}

(59)
where P = Ift,(t), ..., p~t)]T is completely defined by the inter-
polation conditions

p(t) = pj (60a)
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2. As p. -+ -00, 8 -+ 1,

p,(t) -+ p;+1 (65a)

and

Pdt-hpi+l
It 1

corresponding to the BE scheme,
3. As p. -+ +00, 8 -+ 0,

(;> Scheme
in general

Cronk-
Nicolson

""~"""""""""""""-

PAt) -+ pi

and

1+1

Some time integration schemes and their interpolation prop-
erties.

Fig. 2.

l 'J+1 Pdt-hpi (66b)

t J

corresponding to the FE scheme.
The interpolation properties of these schemes are sketched

in Figure 2. If P is actually of the form A + B exp ,lLt, P = P
and no approximation is introduced in the calculation of the
second member of (59), provided of course that the integrals
can be performed analytically or even numerically in a way
consistent with the underlying assumption on P. (For more
details, the readers are referred to Bennart [1979].)

In fact, one of the major virtues of the above approach is
that it provides us with consistent rules to update the vectors
Dkn defined in (54). Using (58), it is easy to verify that in the
general case we have

(60b)P(ti+J = pi+1

so that P = p(pi, pJ+l), namely,

dk.,{tj+l) = exp [-~.2(f;)h]dk.,{t) + (P/+l

1 

[exp (Jtih) -exp [-A,,\f,)h)] (67)
exp(Jt'h) -1

from which it is easy to derive particular updating formulas
consistent with the CN scheme,

/'1+1 Pdt = hP11 -()(}l, h)] + hPj+I()(}l, h) (62) dkn,{tj+J = exp [-An2(f,)h]dkn,{t)

with 1 -exp [- ;\,,2(fJh] (68)
-pI) ;\,,2(fJh+ (PI+(J{Jt, h) = (exp z -1 -z)jz(exp z -1) (63)

which relates this class of scheme to the classical (J schemes.
Some differences, however, should be pointed out here: in the
classical (J schemes, (J is normally fixed, with the consequence
that unless (J = 0.5, the resulting schemes are of first order
only. Here (J actually depends on p. and h: with a given p., as h
tends to zero, z = p.h will also tend to zero, and (J to 0.5. It is
easy to check that as a result the proposed schemes are always
of second order, even when p. " 0 [Hennart and Gourgeon,
1980]. Moreover, one can show that any p. satisfying -00 :S p.
:s 0 provides an A -stable integration scheme. Among the par-
ticular cases of interest, let us point out the following ones:

1. As p. -0, (J -t,

and with the BE scheme,

dk.,{tj+J = exp [-A.2(f;)h][dk.,(tj) + p/+l -p/j (69)

As the contributions of the Dkn to the integral terms on the
right-hand side of (57) are of the form

I tJ+1 Dkn(t) dt (70)

I j

a general expression for the ith component is obtained by us-
ing (58) in (54). It reads

/ '1+1 dkn;{t) dt = hdkn;{t) 1 -exp [- An2(fJh]

, hAn2(fJ
(64a)

and

['ft! Pdt -+ h(pi + pi+l)/2
J

(64b)

(71)
corresponding to the CN scheme.
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By choosing k = 1,2, one gets

K'(O)<p.'(O) = A.2bt.

from which again particular expressions may be derived for
the CN and BE schemes.

Here it should be pointed out that the physical decoupling
mentioned above and due to the shape of the influence func-
tions implies that the seCond terms in (71) is dropped in the
corresponding contributions to the right-hand side of (57).

and

ApPENDIX A

In many practical situations the past history of the draw-
downs may be known from, say, 1 = 1-1 (often taken to be -ooJ
to 1 = 10. In that case, (22) may be rewritten as

dkn(tO) = exp (-An2(tO -t-.)]dkn(t-u

+ {to exp (-An2(tO -'1")] ~ d'l"
1,_, at (AI)

At t = t-1 the drawdowns are normally assumed to be zero, so
that a final expression for dkn(tO) is

j 'o as (T)
dkn(tO) = exp (-An2(to -T)] -L- dT (A2)

'-I at

where aSk(T)/at is known from the past history of the draw-
down in the aquifers. The drawdown in the aquitard at t = to
is then reconstructed from (24).

APPENDIX B

Useful expressions for </>n'(O) and </>n'(b') can be obtained
without loss of accuracy as follows. Multiply (4) by Vk and (8)
by </>n to obtain equations (4') and (8'), respectively. Then in-
tegrate (4') -(8') from 0 to b' to get, after integration by parts,

S.'vktl>n dz = 0 (Bl)

K'(b')c/ln'(b') = -An2b2n (B4)
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