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Chapter 19
Boundary Methods for Fluids

I. Herrera

19.1 INTRODUCTION

In recent years it is usually understood that a boundary method is a
numerical procedure in which a subregion or the entire region is left out of
the numerical treatment by use of available analytical solutions (or, more
generally, previously computed solutions). Boundary methods reduce the
dimensions involved in the problem, leading to considerable economy in the
numerical work. They constitute a very convenient manner of treating
adequately unbounded regions by numerical means. Generally, the dimen-
sionality of the problem is reduced by one, but even when part of the region
is treated by finite elements, the size of the discretized domain is reduced (1,
2).

There are two main approaches for the formulation of boundary methods;
one is based on the use of boundary integral equations and the other on the
use of complete systems of solutions. In numerical applications, the first of
these methods has received most attention (3). This is in spite of the fact
that the use of complete systems of solutions presents important numerical
advantages; for example, it avoids the introduction of singular integral
equations and it does not require the construction of a fundamental solution.
The latter is especially relevant in connection with complicated problems,
for which it may be extremely laborious to build up a fundamental solution.
This is illustrated by the fact that there are methods for synthetizing
fundamental solutions starting from plane waves, which can be shown to be
a complete system (4).

One may advance some possible explanations for this situation. Although
the principle of superposition is a standard procedure for building up
solutions of linear equations, many of its applications have been based on
the method of separation of variables. This has led to the frequent but false
belief that complete systems of solutions must be constructed specifically for
a given region. Of course, this is not the case; as will be seen later, most
frequently the completeness of a system of solutions is independent of the
detailed shape of the region considered. In Tables 19.1 and 19.2 of section
19.2 we exhibit systems which are complete for any bounded region and
others possessing the same property in the exterior of any bounded region.
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404 Finite Elements in Fluids

Also, in some fields of application procedures which constitute particular
cases of the approximation by complete systems of solutions have presented
severe restrictions and inconveniences. A survey of such difficulties for the
case of acoustics and electromagnetic field computations was carried out by
Bates (5). For these kinds of studies the so-called ‘Rayleigh hypothesis’
restricts drastically the applicability of the method. However, work by Millar
(6) implies that these difficulties are due mainly to lack of clarity, since he
avoided Rayleigh hypothesis altogether by adopting a different point of
view. Work by other authors has similar implications (7).

Motivated by this situation the author started a systematic research of the
subject (8-15). The aim of the study has been twofold; first, to clarify the
theoretical foundations required for using complete systems of solutions in a
reliable way, and second, to expand the versatility of such methods, making
them applicable to any problem which is governed by partial differential
equations that are linear.

The aims of this research have been satisfactorily achieved, to a large
extent, and this chapter is based on the results. Preliminary reports have
already appeared (16-17), and a more complete study will soon be pub-
lished (18). The task has been facilitated by progress that has been made in
the understanding of partial differential equations (19). The methodology
presented here also owes much to the work by Amerio, Fichera, Picone,
Kupradze, and Trefftz (20-24). The systematic development of the proce-
dures, in a way which is applicable to any linear problem, was made
possible, however, by an abstract theory that has been developed by the
author in a sequence of papers (8-13, 25-27). A summary of this theory is
given in reference 27, in which the emphasis is placed in applications to
variational principles. A more complete summary has appeared (28).

Taking into account that the application of complete systems of solutions
in arbitrary regions is a relatively unknown method in which many readers
prabably lack experience, we prefer to start with an example, to be ex-
plained in sections 19.2 and 19.3, leaving for section 19.4 the explanation of
the scope of the theory, when it will probably be more meaningful to the
reader.

19.2 FOUNDATIONS OF THE METHOD

We first consider a simple example. Take the Laplace equation in a bounded
region R, illustrated in Figure 19.1, and subjected to conditions of Dirichlet
type on its boundary dR. For definiteness, assume u e H**V3(R), where the
standard notation for Sobolev spaces is used (19).

Let us denote by N**'*(R)< H**"%(R) the subspace of harmonic func-
tions in R, which belong to H**'?(R); i.e. a function u belongs to N****(R)

o




022 S VA A

Boundary Methods for Fluids

oR

/

Q /
k,/ Figure 19.1 The region considered

if and only if ue H**"3(R) and
Au=0, on R (19.2.1)

If B={w;, wy,.. }=N**Y¥R) is a system of harmonic functions which
spans N**V2(R), then there is a sequence of approximations

N _
uN=3Y a¥w,; N=1,2,... (19.2.2)
n=1
such that
uN —u in N°**Y%(R) (19.2.3)

Note that a} depends on the number of terms N, of the approximation. This
is essential in order for Equations (19.2.2) and (19.2.3) to hold. When aY is
independent of N, Equation (19.2.2) becomes a series, and the approxima-
tion by a series can only be granted when the system of functions 3 is
orthogonal. This fact explains some of the difficulties that were encountered
in applications to electromagnetic field studies (5).

In order for Equation (19.2.2) to be useful it will be required to have a
procedure for deriving the coefficients a’ from boundary data only. This is
indeed possible. General results on the existence and continuity properties
of solutions of elliptic equations (19) show that when ue H**"*(R) then
ue H(3R) while (du/dn)e H* ' (9R). If the coefficients a¥ are chosen so
that

u™ — u on H(aR) (19.2.4)
then Eguation (19.2.3) necessarily holds, Similarly
™ du rey L
e on H* HaR] (19.2.5)
dn am

also imply Equation (19.2.3), except for a constant function on R. Applica-
tion of Equation (19.2.4) allows solving a Dirichlet problem, while Equation
(19.2.5) permits solving a Neuman problem.

If B={w,, w,,...} spans N**V?(R), then the continuity properties of
elliptic equations imply that

{wy, w,, .}spans Ni(dR)=H*(3R) (19.2.6a)
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while
[Twy  dws t gz — o
t—o— . pspans Ny RIS HY R (19.2.60)
[ a0 |

Flere NHAR) represents the range of houndary values that hirmone fune-

tions on Rotuke on R, while N3 AR 5 the corresponiding range of nornl
derivatives. As is well known. the latter is the subspace of Tunctions wilh
vanishing imepral on the boundary AR,

These observations show that the coefficients a) can be chosen so that
Equation (19.2.4) holds; alternatively, they can be chosen sa that Equation
(19.2.5) holds, Clearly., Eguation {19.2.4) holds if «™ is tuken as the
projection of the boundary values we H'GR ) on the subspace spanned by
Py, ..o we b, On the other hand, Equation {1925 holds i ar™in is the
projection of the houndary values (dafin)c H' AR 1 on the subspace span-
ned by {iaw, jand, o ldwg/and) Therefore in Both coses the coeflicients can
bie computed by the standard procedure for projecting on a subspace,

Note that in the first ease the projections are taken in the sense of the
inner product associated with F*(AR), and in the second, it s assooated
with F* 1R}, Numericallv, it is simpler to use only #71aR) = HGR ) wner
products.

This can be done if i1 15 assumed that

Dy Way .o bspans NAR = HY AR (19,2.7a)
while
Ay s E “ ) =
— —— . .. pspans NLlaR == HY AR (19.2.7h)
i i ) g

In Equation (19.2.7b) the orthogonal complement of the constant function
1 has been taken with respect to Hilbert space HY(GR 1
Conditions 19.2.7) will be satisfed if and only if

@ =lwweoo b= NYHR) spans NER) R e

In fact conditions (19.2.7) are granted whenever 28 spans NTHHRY with
$3= 1, but choice (19.2.8) 1s epumal in the sense that it corresponds w the
least & that can he taken, granting Equations (19.2.71

There is an alternative method of imposing condition 119281 Let Dy, =
H'Z{ R} be the linear subspace’ with the property that for every we 0y, the
boundary values satisfy ue HYAR), while (au/anis H @R Define for every
we Dy oand ve Dy the bilinear functional

i [iH
CARU, U= l lt et ¥ } cx (1925
dam A ar ik

FThe hnear subspace 5o defined. s not closed
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Let I = Dy be the linear subspace of Dg with the property that v € I, when
there is a harmonic function w € Dy such that

v=w; ondR (19.2.10a)

and 5 5
D™ on aR (19.2.10b)
on dn

We should note another fact. Let us define N(R)c Dy as the linear
subspace of harmonic functions that belong to Dg. From the fact that
(du/on)e H°(AR) it is easy to see that N(R)= N*?(R), which is a closed
space in the metric of H**(R).

When a system of functions 8 < N(R)< Dy is given, results that have
been reported recently (13, 28) can be used to show that conditions (19.2.7)
hold if and only if for every u € Dy one has

(Au, w)=0 Va=1,2,...2ucly (19.2.11)

When Equation (19.2.11) is satisfied, the system {w,, w,, ...} = N(R) is said

to be c-complete.t Thus the system @ is c-complete if and only if Equations

(19.2.7a) and (19.2.7b) hold simultaneously. But since Equations (19.2.7)

and (19.2.8) are equivalent, we can summarize our results as follows.
Given a system of functions B ={w,, w,, ...} = N(R), satisfying Equation

(19.2.1), the following statements are equivalent.

(1) 9B is c-complete;

(2) B spans N(R)=N**(R)c H¥*(R)< Dg;

(3) The boundary values {w,, w,,...} span H°(BR) and simultaneously

{(dw,/an), (dw,/an), .. .} span {1}* < H°(3R).

Note, finally, that ¥ spans NV2(R) whenever B spans N*2(R), which can
easily be verified.

Assume that we look for a function u e H'*(R) which satisfies Equation
(19.2.1) and is subjected to the boundary condition

U = far, ondR (19.2.12)

for some given function f;z€ H°(BR). If a c-complete system @B =
{wi, ws, .. J= N**(R) is given, then the desired approximating sequence
(19.2.2), can be constructed so that on the boundary

u¥—>u,  on H°GR) (19.2.13)

The least-square condition on H%3R) leads to the system of equations

N
Y M,al=q, (19.2.14)

n=1

+ This concept has some relation with ideas put forward by Trefftz (24).
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where

M,,.= I w,Ww,, dx 19.2.15a)
aR

and
Cn = J frrWm dX (19.2.15b)
3R

Here the bar refers to the complex conjugate. With this choice, u™ — u in
H'?(R) (19).
Similarly, for Neuman problems Equation (19.2.12) is replaced by
2
== gr; OndR (19.2.16)
an
where the boundary values g,z € {1}* © H*(@R). The previous argument still
holds if Equations (19.2.15) are replaced by

M, = j AW W 4o (19.2.17a)
br On on
Qﬂd - ]
0= j gor m iy (19.2.17b)
aR on

In this case u™ — u in H¥*(R); therefore also u™ — u in HY*(R) (19).

Computation of the boundary values when they are required may need a
special method. In general, if the normal derivative (duNfan) — g,r in
H°(3R), then u™ — u in H¥*(R). Hence on the boundary u™ — u in H'(R),
which implies u™ — u in H°@R). Thus in the case of Neuman problems,
the unknown boundary values can be derived directly from the approximat-
ing sequence.

However, for Dirichlet problems the unknown normal derivatives cannot
be derived from the approximating sequence u®, because from u™ — f, on
H°@BR) one can only grant that (du™/an) — (du/dn) in H™*(dR) (19). Thus
ouN/an diverges in H°(3R) in general. If the boundary data are sufficiently
smooth, i.e. if f,r € H'(3R), it is known that (du/on)e H°(3R) (19) and the
following approximating sequence can be used:

N du
Y, b':w,,—>a—n, in H°(3R) (19.2.18)

n=1

where the coefficients can be obtained from the system of equationst

N
Y K..bN=d, (19.2.19)

n=1

+This procedure is based on a relationship derived by Italian mathematicians in the 1940s
(29).
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Here
K = I w,w,, dx (19.2.20a)
aR
where
u _ {-Twm
d, = J — W, dx= J for— dx (19.2.20b)
hr Oh R on

We recall that in Equation (19.2.18) the boundary values of the basic system
of functions have been used to approximate the desired normal derivatives on
the boundary. This is possible due to the reciprocity relation

j v—-dx=j uﬂdx (19.2.21)
aR bR ON

being satisfied by any pair of harmonic functions u and v (29).

Herrera and Sabina (14) have given the following c-complete systems.

In Tables 19.1 and 19.2 J,(r) and H(r) are the Bessel and Hankel
functions of the first class (30, 31). P2 is the associated Legendre function
while j, and h} are the spherical Bessel and Hankel functions (30). We
recall, in addition, that the c-complete systems given in Tables 19.1 and
19.2 for the Laplace equation in a bounded region are harmonic polyno-
mials expressed in polar and spherical coordinates. Of special interest is the

+ Some of the systems given here have been used in electromagnetic field computations

Table 19.1 c-complete systems in two dimensions

Bounded R R =exterior of a bounded region

Laplace equation

{1, r" cos né, r" sin n@} {Inr,r ™" cos né, r " sin nd}

Reduced wave equation Au+u =0
{Jo(n), J.(r) cos n6, I, (r) sin n6} {H®(r), H(r) cos n8, HV(r) sin nd}
n=1,2,...

Table 19.2 c-complete systems in three dimensions

Bounded R R =exterior of a bounded region

Laplace equation

{r"P(cos §)e"+*} {r""1P3(cos §)ei**}
Reduced wave equation

{i.(r)P,(cos 8)e"+*} {hD(r)P3(cos §)e9®}

n=0,1,2,..;-n<q=<n

T A T S —
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410 Finite Elements in Fluids

fact that these systems are c-complete independently of the particular region
considered as long as the condition of being bounded or, alternatively, of
being the exterior of a bounded region is fulfilled. This is a useful property
that permits treating problems which satisfy a floating boundary condition. )
As an illustration a problem of seepage was previously solved by this N
method (16, 17). . WES

For the reduced wave equation the author has exhibited systems of plane :
waves which are c-complete (4). For Stokes problems and the biharmonic
equation they can be derived from corresponding systems for the Laplace
equation (32, 33).

19.3 EXTENSION TO PROBLEMS WITH
PRESCRIBED JUMPS

In many applications one has to deal with problems in which not only
boundary conditions are prescribed but also jump conditions across surfaces
on which discontinuities occur. For the Laplace equation, for example, one
prescribes the jump of the function and its normal derivative; this corres-
ponds to prescribing the jumps in the pressure (or piezometric head) and
fluid velocity in problems of flow through porous media or potential flow.
This class of problems has been formulated systematically by the author
(9, 11, 12, 27). The procedure is introduced here by means of an example.
Consider the regions R and E illustrated in Figure 19.2. Take Dr c HY}(R)
and N(R) = N**(R) as in section 19.2. The definition of the linear subspace
Dg becomes more involved when E is unbounded. Such technical difficulties
can be avoided altogether if attention is restricted to boundary values. The
details of such procedure have been given previously (4). For simplicity,
here we illustrate the case when both R and E are bounded, although the
results-are valid generally when either R or E, or both, are unbounded.

4, R= 5. E
s d,E

MIN /T_}\
pd
3,R

NP > NE

S X B A RS I oo e e e Mo i A 19 o5 PO S
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The problem we pPropose consists in finding a harmonic potential u in the
region RUE, such that

u=f, on (R UE)=9,R Ud E (19.3.12)
0
a—: =f»  on&(RUE)=0,RU4,E (19.3.1b)
while
[ul=j, [:_:]=fz, on ;R =,E (19.3.2)

Here, f,, f,, J1, and j, are prescribed functions, while [ Irepresents the jump
discontinuity across 3R =9,E.

i wounecton with this problem we consider pairs of functions {ug, ug}
such that up e Dy c H 2(R) and Ug € Dg < HY(E); the linear space of such
pairs will be denoted by D= Dr®Dg. Here, D.cH Y2(E) is defined
replacing R by E in the definition of Dg; a similar statement holds for the
linear space N(E)< D which is used in the following. The space N =

A

N(R)®N(E)< D will be made by pairs {ug, ug} such that ug € N(R), while

ug € N(E). Note that these are harmonic functions on R and on E, sepa-
rately. However, in general they are discontinuous across the common part

auR avR
Up = vg; — == on dR (19.3.3a)
RTOR on  9n
and simultaneously
JUE  Jug 10 2 -
Ug = Ug; (-' - ;' , ondE (19.3.3b)
Jdn on
Associated with every function g ={ug, ug}e D, defined in RUE, there
is a unique system of four functions
O ou o o .
{“]'?H (;R), —le H (0. R), ueH ‘U;R U['.),
on
ou o (19.3.4)
—e€H"(0,RUE)
an
where the jump discontinuities are
dul dug au
[u]=ug —ug; [—] =—=_"R. o ;R (19.3.5)
on on  dn

Here, for definiteness, it is assumed that the unit normal vector n is taken
point-outwards from R in the common part of the boundary 9,R =03E.

g
e
o ar i s
iy e LT
———— ——

B e
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In addition to the bilinear form Ag given by Equation 19.2.9) we
introduce Ag by

ou av
(Agug, vg) = L; {UEa_:_“EEn—E} dx (19.3.6)
Define
<Aa’ ﬁ) = (ARuR, vR)+ (AEuE’ DE) 19-3'7)
Then
(Aa, 0y =(Ja, 6)—(J5, ay+(Ba, 6)—(Bo, i) (19.3.8)
Where the jump operator J (27) is given by
R F) i
(Ja, 3)= j {[a] —”) —(u)a[a—“]] dx (19.3.92)
2R n/a an
while
(Bil, ;‘:}=[ uf—'"dx—{ P (19.3.96)
3 RuE; O SfpuE; dn

In Equation (19.3.9a) we use the notation

) d du'’ [ 1+ PRE, | i
(v}, = (Vg + )2 [-_— = ff—‘h_—fj/z (19.3.10)
S a vein on
A system B ={W,, s, ...} = N is said to be c-complete for the problem
with prescribed jumps (Equations (19.3.1) and (19.3.2)) when for every
ti= [} one has

(Ao, w)y=0 Vwed>ael, (19.3.11)

At this point it is convenient to recall that with every function & e D one
can associate in addition to the four functions given by Equation (19.3.4)
four other functions

WeeHGR). () cHoaR),

3 (19.3.12)

a—“e H°G,RUE), ueH%3RUE)
n
where the notation introduced by means of Equation (19.3.10) is used.

It can be shown that 8 < N is c-complete if and only if {wg,, Wgo, . . }<
N(R) spans N(R) while {wg,, Wg,, .. .} = N(E) spans N(E). This in turn is
equivalent (13, 28) to the condition that the system of quadruplets

d
{[wa], [—w"], W —aw"}, a=1,2, (19.3.13a)
on an

e T e T




Boundary Methods for Fluids 413

defined by Equation (19.3.4) spans H°(3;R)® H°(3;R)® H°(5,RU E)®
H°@,RUE), and, simultaneously, the system of quadruplets

aw,\ aw, } _
{(Wa)a’ (an )ay an W¢ a= 2, (19.3.13b)

defined by Equation (19.3.12) spans H°(3;R)® H°3;R)®H°(3,RUE)®
H°(@,RUE).

Now every one of the elements W, has two components, wg, defined on
R and wg, defined on E. The pair Wwg, ={Wga, 0} corresponds to a function
which is harmonic in R and identically zero on E. Clearly, wg, € N for every
a=1,2,...; similarly, wg, ={0, wg,}e N for «=1,2,.... In view of our
previous discussion it is not difficult to see that when the system of harmonic
functions {wg;, Wga,...}< N(R) is c-complete on R and simultaneously
{wWg1, Wes, .. .}= N(E) is c-complete on E, then the system

B=B,UB<N (19.3.14)

is c-complete for the problem with prescribed jumps. In Equation (19.3.14)
the notation

a

Br ={Wr1, Wr2, -} (19.3.15a)
Be = {Wey, Wer, (19.3.15b)

was used. N
When {W,, Ww,,. =N is c-complete it is possible to construct approx-

imating sequences

anw,; N=1,2, (19.3.16)

z=>
]
itz

such that @V — @ in the metric of HY>(R)® HY*(E). In this case the
coefficients a)) again satisfy the system of Equations (19.2.14) if Equations
(19.2.15) are replaced by

M,, = * , ! (w, [w,, ]+ [‘\\ﬁ“ﬂvﬁ‘ ‘ dx

aw, dw,,

+ J w, W, dx+ j T O¥m 4% (19.3.17a)

3, RUE ,RUE On 3n

and
e . |ow,,
Cm =J {h[W...]+Jz[—a ]} dx
3;R n

+ s , dx 3.17b)

3,(RUE) !

i



414 Finite Elements in Fluids

Comparing Equations (19.3.1) and (19.3.2) with Equation (19.3.4) it is
seen that in the problem with prescribed jumps considered here the system
of four boundary functions (Equation (19.3.4)) is given as problem data. In
some applications it may be required to evaluate the complementary system
(19.3.12), from which the values of the functions and normal derivatives at
the discontinuity surface ;R =;E can be derived. When this is the case the
approximation of (3u/dn)e H%@,RUE) and (3u/an), € H%3,R) is not di-
rectly possible. However, the approximating sequences

f 3w~ (24)

’
a

in H°(3;R) (19.3.18a)

N

ad
b,’:’w,,—aﬁ, in H°3,R UE) (19.3.18b)
=1

n

can be used. Here the coefficients b~ satisfy Equation (19.2.19), with
Equations (19.2.20) replaced by

oo, ) e

J' _ Bud
u— w, X
A on

]dx

£, m o (19.3.19)
an

|

3

19.4 SCOPE OF THE THEORY

In order to apply the procedure presented in sections 19.2 and 19.3 to any
linear problem, it will be necessary to have available a system of solutions,
%, of the homogeneous equations in terms of which any other solution can be
approximated. If the solution of the problem depends continuously on the
boundary values (and this is an assumption satisfied in most cases of
practical interest), this will be granted if the system 9% is such that any
boundary values can be approximated by using it. As a first step it is
necessary to define the space of boundary values in which we will work. It
has numerical advantages to remain in £%@R) for the boundary values, i.e.
in H°(3R), if the notation for Sobolev spaces is used. In this connection, we
have seen by means of an example that c-complete systems possess precisely
this property, and in what follows we introduce a generalization of this

TS e
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concept applicable to any linear equation. It can be shown that in general
c-complete systems enjoy this property (13).

Once the boundary values are properly approximated the actual con-
vergence of the approximating sequence (Equation 19.2.2) in the region
depends on the space of functions in which the problem is formulated. Much
progress has been made in the study of partial differential equations, the
existence of their solutions, and their continuity properties (19); in the study
of fluids the results by Temam (34) have special interest. Of course, there
remain open questions but many equations which occur in fluid problems
are well understood by now. However, for the application of this knowledge
to problems of practical interest it is necessary to introduce formulations
which are suitable for numerical applications, and the notion of a c-
complete system seems to be quite adequate for this purpese.

Computation of boundary information, complementary to boundary data
is, most frequently, difficult. This was illustrated in the example given
previously and by the fact that the approximating sequence for the normal
derivative does not converge in the boundary; this is a general phenomenon
observed in many problems. Fortunately, the procedure for computing such
boundary values, as explained earlier, possesses complete generality when it
is properly formulated.

In the following sections the concepts and procedures presented in sec-
tions 19.2 and 19.3 are generalized to make them applicable to any linear
problem governed by partial differential equations.

There is an additional point that must be taken into account in order to
enhance the versatility of the methods described here. It is necessary to
develop general techniques for constructing complete systems of solutions.
Generally, the completeness of a system may depend not only on the partial
differential equation or system of partial differential equations considered
but on the region and type of boundary conditions for which the problem is
formulated.

An additional advantage of using c-complete system is that they can be
applied irrespectively of the boundary conditions considered. For example,
the c-complete systems given in Tables 19.1 and 19.2 can be applied not
only to Dirichlet or Neuman problems but also when one prescribes other
boundary conditions, such as a{du/an) +Bu, or u on 3, R and (du/on) on 9,R,
where ;R and d,R is a partition of the boundary aR.

There are many examples of systems of functions which are c-complete
independently of the detailed shape of the region considered (14). It seems
that in general,i when a system is c-complete in a region R it also has this

T Professor S. Antman informed the author that this result has actually been shown.
Unfortunately, we have not been able to locate the result and the precise conditions under
which this proposition is true.

o < B s A N S S g

A e

g i et e .



416 Finite Elements in Fluids

property in any subregion of R. This is a very useful result that permits
treating, by these methods, non-linear problems in which the non-linearity is
due to boundary conditions (16, 17), such as a floating boundary.

The adequacy of a c-complete system for the treatment of a problem
depends not only on the completeness property but also on other charac- L
teristics, such as the stability of the numerical schemes to which they lead ‘
(35), and this is an additional reason for the usefulness of having available
procedures for deriving c-complete systems which can supply alternative
systems. Unfortunately, we will not be able to deal with this subject in
detail, because it would mean going beyond the scope of this chapter.
Therefore it seems appropriate to mention here some of the procedures
available. A method of considerable generality was apparently originated by
Italian mathematicians (29), applied to a good sample of problems by
Kupradze (23), and modified and extended by Herrera and Sabina (14).
Separation of variables also yields quite general systems of c-complete
functions; of especial interest in connection with boundary methods are the
biorthogonal systems obtained in this way (36). However, frequently it is not
difficult to develop them in an ad hoc way. For example, we have given a
general procedure for generating c-complete systems for Stokes problems
and the biharmonic equation (32, 33). A system of plane waves which is
c-complete for the reduced wave equation has been given by Sanchez-
Sesma et al. (4).

The methodology explained here owes much to the progress that has
taken place in the general theory of partial differential equations (19, 37).
The notion of c-completeness bears some relation to ideas first presented by
Trefftz (24). The systematic development of these procedures in a way which
is applicable to any linear problem was made possible, however, by an
abstract theory which has been developed by the author in a sequence of
publications (see the references at the end of the chapter) and recently
summarized (27, 28).

The situations occurring in applications can be classified into three general
groups. First, there is the group with boundary values on a region R (Figure
19.1) on which a c-complete system is known, such as the example discussed
in section 19.2. The other two are associated with the case when the
problem is formulated in a region RUE (Figure 19.2), consisting of two
subregions R and E, and a solution to a boundary value problem satisfying
prescribed jumps (possibly zero) across the common boundary 3;R =9,E is
required. We will refer to this problem as the problem of connecting or
matching. In general, two situations can occur for the problem of connect-
ing; on one hand, c-complete sytems may be known both on R and on E, so
that only the boundary of the region and the connecting boundary between
R and E have to be treated numerically. Another variant of the problem of
connecting is the case when the c-complete system of solution is only known
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in R, so that the other subregion E has to be treated numerically. In this last
case, it is required to have efficient procedures for matching the analytical
solution available for R with the numerical solution on E (1, 2); a possible
method of achieving this is by means of variational principles.

Formulation of variational principles has been discussed extensively (38,
39). However, the abstract theory mentioned above provides variational
principles of complete generality which can be applied to any linear prob-
lem. We prefer, however, to refrain from discussing these topics in detail
here; a recent summary can be found in reference (27), where the problem
of matching solutions in a region R with solutions in a region E was treated
abstractly (the problem of connecting), with generality applicable to any
linear problem.

In section 19.5 a classification of boundary values is introduced. When a
boundary value problem is formulated only one part of this boundary
information is prescribed and the other part must be derived after the
solution has been obtained. This way of breaking the boundary information
is associated, in section 19.6, with canonical decompositions. Every canoni-
cal decomposition is in turn associated in a one-to-one way with operators
that decompose an antisymmetric bilinear form characteristic of each prob-
lem. This is explained in section 19.7, and the notion of c-complete system
is introduced in section 19.8. This concept is incorporated in the Hilbert-
space formulation in section 19.9. Finally, section 19.10 derives the general
representation of solutions and the corresponding approximation for the
complementary boundary information. This procedure is also applicable in
obtaining such information at surfaces of discontinuity by using the general
formulation of the problem of connecting (27), mentioned above; however,
the details are not given here.

19.5 BOUNDARY VALUES

In order to develop boundary methods along the lines explained in sections
19.2 and 19.3 which are applicable to a wide range of boundary value
problems it is necessary to focus attention on some properties which occur in
all these problems. In this section we introduce a notation which is suffi-
ciently general for our purposes. In addition, we present a general procedure
for defining what can be considered as the relevant boundary values for each
of these problems.

We consider a bilinear functional P defined on an arbitrary linear space
D. This will be denoted by P:D — D* because it can be thought as an
operator defined on the linear space D .and taking values on its algebraic
dual D* (this is the space of linear functionals defined on D) (25). The value
of such bilinear functional at elements uc D and ve D will be denoted by
(Pu, v). The transposed bilinear functional of P: D — D* will be denoted by
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P*:D — D*: thus
(P*u, v)=(Pv, u) (19.5.1)

The theory is applicable to general non-symmetric linear operators (28),
although its application to formally symmetric ones is simpler because it
does not require the introduction of the formal adjoint. Given an operator
P:D — D*, we define the antisymmetric bilinear form

A=P-P* (19.5.2)

The operator A given by Equation (19.5.2) plays a central role in the
theory. First, we are going to use it to introduce a classification of boundary
values. For this purpose, we consider the null subspace N, of A; i.e.

Njo={ueD|Au=0} (19.5.3)
With reference to the reduced wave equation
Au+k*u=0, on R (19.5.9)

as an example (recall that Equation (19.2.1) corresponds to the case k =0)
consider the bilinear functional P: D — D* given by

{Pu, v)= J v(Au+ k2%u) dx (19.5.5)
R
Then A=P-P*is
(Au, v)=J {vﬂ—uﬂ)} dx (19.5.6)
bR on on

The null subspace Np is the linear subspace of functions that satisfy
Equation (19.5.4).
There are many ways of defining the linear space D. A convenient one is

D= {u e H"(R) ‘ :—:e H°(aR)} (19.5.7)

This defines a linear subspace of H'?(R), which is not closed in the topology
of H*(R). We note that the null subspace N, is well defined if Equation
(19.5.4) is interpreted in the sense of distributions (19). Also well defined is
the bilinear form A :D — D*, given by Equation (19.5.6); however, the
operator P: D — D*, given by Equation (19.5.5), is not. In order to avoid
going into too much detail we will not make any further reference to the
operator P,
It is easy to see that

u '

In [ (19.5.8)

e T T B A s S g B T . TS

N ol

P et W e Pt . o i, S P T o, e,



Boundary Methods for Fluids 419

Due to Equation (19.5.8) the relevant boundary values for Laplace and
reduced wave equations (19.5.4) will be u and du/dn, on dIR. We note that,
given ue D and ve D,

u=v —=— ondR (19.5.9)

if and only if u—ve N,.
The notions that we have formulated can be applied to any linear
differential equation. Let us consider the biharmonic equation

Au=0; on R (19.5.10)

which occurs in connection with incompressible flows at low Reynolds
numbers. Define

(Pu, v)= J vAZ%u dx (19.5.11)
R
Then

(Au,v)=J {UQA—"—A KLU 9}dx (19.5.12)
IR an an on

Again, a convenient definition of the space D is

D={ue H"*}R) eH°(aR) Aue H%BR), -——eH"(aR)}

(19.5.13)

Then, A as given by Equation (19.5.12) is well defined, and N, can be taken
as the linear subspace of D which satisfies Equation (19.5.10) in the sense of
distributions. The operator P:D — D*, given Equation (19.5.11), is not
defined for this space D, and we omit it from our discussion.

The null subspace N, is

‘7 . Ju dAu - J " <
=\ueDju=—=Au= =0, Onwl\j’ (19.5.14)

dn on

N4

The classification of boundary values induced by Equation (19.5.14) is
characterized by quadruplets of functions u, du/on, Au, 3Aufon; recall that
these functions yield enough information to determine u and its derivatives
up to order 3.

The homogeneous stationary Stokes equations are

vAu—-Vp=0 ~(19.5.15a)
V-u=0 (19.5.15b)

where v is the viscosity. In this case it is conveneient to define the bilinear
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form P:D — D* by
(P, )= I {v:-(vAu—Vp)+qV - u} dx (19.5.16)
R

Here & represents a pair of functions; u, which is vector-valued and defined
in R, and p, which is scalar-valued and also defined in R. With § we have
associated the pair v, g. Then

(Aa, B)= J‘

3,

0 0
. {v- (va—s—pn>—u- (v;;f—qn)}dx (19.5.17)
Let us denote by H'*(R)® H™""*(R) the linear space of pairs of functions
[, p] with the property that we H?(R), while pe H-"*(R). Then a con-
venient choice for the linear space D is
D= "E(I} ceH"? (RY&H V3(R)| v?l!fpn?H”MR ) ‘

aon ‘

(19.5.18)

Use of this linear space (which is not closed) grants that A is well defined.
Then Np < D is taken as the set of functions that satisfy Stokes Equations
(19.5.15) in the sense of distributions in R. Again, P:D — D* is not
defined, and it will be left out of our discussion. The null subspace

d
NA={ﬁeDlu=va—:—pn=0, on aR} (19.5.19)
The classification of boundary values induced by Equation (19.5.19) is
characterized by the values of w and v(3u/an)— pn on the boundary aR.

19.6 BOUNDARY DATA AND DERIVED
BOUNDARY INFORMATION

A systematic discussion of boundary values and boundary conditions will
facilitate the application of boundary methods to many problems. This
section is devoted to presenting the corresponding theory.

In the definitions that follow it is assumed that there is available an
antisymmetric bilinear form A : D — D*.

A subspace I< D is said to be regular for A when
(1) For every ueI and vel,

(Au,v)=0 (19.6.1)
i.e. I is a commutative subspace for A.
(2) I>N, (19.6.2)

In section 19.5 we have seen that the null subspace N, induces a
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classification of D which defines what could be properly called the boundary
e values which are relevant for the differential equation considered. In the
light of this, condition (2) implies that a regular subspace is characterized by
boundary values only.
To illustrate this, assume I< D is a regular subspace. In connection with
the examples given in section 19.5 let ue D and v e D be such that

ou_av

=—, on dR (19.6.3)
an on

u="v;

when the reduced wave equation is considered; or

ou o ‘ 8Au dAv
e u_& Au =Av - ondR
on dn n A

(19.6.4)

for the biharmonic equation. Then there are only two mutually exclusive
possibilities:

(a) u and v belong to I; or

(b) neither u nor v belongs to I.

A corresponding proposition holds forieD and $€D,in connection with
Stokes equations, when it is assumed that

Ju ov R
=y — —_— gy —— — : o aR 1 6.
u=v, Va pn—va qn n ( 965)

To summarize this discussion: a cuhepace is a commutative sub-

is defined through boun

ir subspaces for the reduced wave equation are

I.={ueD|u=0, on R ]| (19.6.6a)
f‘ | du 'W )
[,=ueD|—=U, on dR | (19.6.6b
R |on )
and
ou
I,= gll eDja—~ Bu=0, on 6R} (1966C)
an

where a’>+B*#0.
Many examples of regular subspaces can be given for the biharmonic
equation; an interesting set of such subspaces is

I;fjuel)ju;mf:“. on FeRl (19.6.7a)
\ an J

[ hi : - 3 € T
I,= “uv;l),lti.lufu nnuRl- (19.6.7b)
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19.6.7¢)

These are particular cases of the following, which is more general. Let a,,
ay, as, a4 and by, b,, by, b, be two linearly independent quadruplets of real
numbers such that

a1b4+ a3b2 = a2b3+a4b1 (19.6.8)
Consider the restriction

du dAu du dAu ,
al“"'aza"'asA“*’aa'é‘n_=b1u+b2£+b3Au+b4;’=0 19.6.9)

Then the subspace
I={ue D | u satisfies Equation (19.6.9)} (19.6.10)

is regular for A, as given by Equation (19.5.12).

To see that these subspaces are regular it is enough to verify that they
satisfy conditions (1) and (2), with A : D — D* given by Equation (19.5.12)
and N, by Equation (19.5.14).

For Stokes problem we have the following regular subspaces

I,={aeD|u=0, on dR} (19.6.11a)
r_ au !

IL={teD|v—-pn=0, on 4

- an

19.6.11b)

?J

Of course, many more can be given.

Of special interest is the case when a regular subspace I< D has the
following additional property.
(3) For every ueD

(Au,v)=0 Vvel>Duel (19.6.12)

A regular subspace which enjoys condition (3) is called completely regular.
It is not difficult to verify that in all the examples given in Equations
(19.6.6)-(19.6.11) the regular subspaces are actually completely regular.
Given an antisymmetric bilinear form A :D — D* we say that a pair of
subspaces {I,, I} is a canonical decomposition of D for A when

(1) I, and I, are regular subspaces; and
2) D=L+1I, (19.6.13)

It has been shown (27, 28) that when {I,, I} is a canonical decomposition
of D then I, and I, are necessarily completely regular and

Na=ILNI (19.6.14)
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Now, condition (19.6.13) is equivalent to the requirement that, given any
ue D, one can find elements u, €I, and u,€ I, such that

u=u,+u, (19.6.15)

In the presence of Equation (19.6.14) this representation of u is unique
except for elements of the subspace N, ; more precisely, if uj €I} and uzel,

are such that
u=u\+us (19.6.16)

then u; —u’ € N, and u,—uj e N,. Taking into account that N, is the set of
functions with vanishing boundary values, it is seen that the boundary values
of u, and u, are uniquely defined. Thus, when a canonical decomposition
{I,, I} is available, representation (19.6.15) supplies a convenient manner of
dividing the information on the boundary values of the function u into two
parts, u,€I, and u,el,, which is useful in the formulation of many
boundary value problems.

For the reduced wave equation the pair {Il,Iz} defined by Equations
(19.6.6a) and (19.6.6b) constitutes a canonical decomposition of the space
D, as given by Equation (19.5.7), with respect to A, defined by Equation
(19.5.6). In this case, representation (19.6.15) breaks the boundary informa-
tion in the following manner:

u=u,; a—u-—g—'ﬁ ondR (19.6.17)
an dn
The pair {I,, I }, given by Equations (19.6.6a) and (19.6.6¢c), is also a
canonical decomposition whenever a# 0. In this case, if u=u,+us;, with
u, eI, and use L, then the boundary values are given by
ou du, Ju,

Uu=u+us; 5_T+a_n on dR (19.6.18)
n

If we define
du .
I,={ueD ‘ya—n+ du=0, ondR i (19.6.19)

it is easy to see that {I5, I,} is a canonical decomposition whenever ad—
By#0. Clearly, the previous examples are particular cases of this more
general one.

For the biharmonic equation the following pair is a canonical decomposi-
tion:

I, {u eD|u= u_ 0, on SR} (19.6.20a)
on )
I, = {u eD|Au= dfl‘j 0, on EﬁR} (19.6.20b)
on
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Also
Li={ueD|u=Au=0, n dR} (19.6.21a)
12={ueD du odu 19.6.21b)
Finally, for Stokes problems, one has
I,={teD|u=0, on R} (19.6.22a)
12={aeD|v:—:—pn=0, ~ 19.6.22b)

Of course, many more examples can be constructed.

In many boundary value problems the prescribed boundary data are given
by means of one of the elements in Equation (19.6.15). For example u,, and
the complementary boundary information U,, can only be obtained after the
boundary value problem has been solved. In Dirichlet problems, for exam-
ple, u is prescribed on R and the derived boundary information du/an on
dR is obtained only after the problem has been solved. A group of Italian
mathematicians, in connection with the representation of the solution by
means of fundamental solutions, developed a procedure which permitted
them to obtain directly, without solving the problem, the derived boundary
information (29). Their procedure, which was applicable to a restricted class
of partial differential equations, will be generalized in section 19.10, making
it applicable to any linear partial differential equation. However, the method
discussed here does not require a representation by means of fundamental
solutions, as do their methods.

19.7 OPERATORS THAT DECOMPOSE A

The notion of canonical decomposition, introduced in section 19.6, is closely

related to that of operators that decompose A ; in fact, there is a one-to-one

correspondence between them. This section is devoted to explain operators

that decompose A because they will be used in further developments.
Let B:D — D* be a bilinear form such that

\Au, v)=(Bu, v)—(Bv, u) 19.7.1)
We say that B decomposes A when, in addition,
D = Ng + Ngs (19.7.2)

When Equation (19.7.2) is satisfied one says that B and B* can be varied
independently.

There is a general result of the theory (18, 27, 28), according to which
there is a one-to-one correspondence between canonical decompositions
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{I,, I} and operators that decompose A. This is established as follows:
(1) Given B:D — D* that decomposes A, define

.
LR A

then {I,, I} is a canonica! decomposition
(2) Given a canonical decomposition {I,, I}, let B:D — D* be defined
by

(Bu, v) ={(Au,, vy) (19.7.4)

Here, representation (19.6.15) of every element ueD of the space
in terms of its components u, € I, and u, € I, has been used.

To illustrate these concepts in the case of the Laplace and reduced wave
equations we note that if we define

{(Bu, v)= J va—u dx (19.7.5)
on

9R
then Equation (19.7.1) is fulfilled. Also, the canonical decomposition {I;, I},
given by Equations (19.6.6a) and (19.6.6b), satisfies Equation (19.7.3).
In the case of the biharmonic equation the canonical decomposition
(19.6.20) is associated with

{Bu, v)=j {vﬂ—Aug—:} dx (19.7.6)

IR

The canonical decomposition (19.6.21), on the other hand, yields

{uﬂ+Au-a—u} dx (19.7.7)

(Bu, v)= .[ on on

R

Finally, for Stokes equations the canonical decomposition (19.6.22) is as-
sociated with

(Ba, 6)= J'

9,

v (»3'3— pn) dx (19.7.8)
R an

19.8 COMPLETE SYSTEMS

With every operator P: D — D* we can associate a linear subspace Ip < D

defined by
Ip=Np+N, (19.8.1)
This equation implies that every element u € I, can be written as
U=1up+us (19.8.2)
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with up € Np while u, € N,,. Since U, vanishes on the boundary we sce that a
function u belongs to I, if and only if the boundary values of 1 coincide
with some solution up of the homogeneous partial differential equation,

For example, in the case of the reduced wave equation (19.5.4) a function
velp if and only if there is a solution u e D of Equation (19.5.4), such that
v=wu and (9v/an)=(3u/on) on the boundarv aR.

It can be shown (28) that I, as defined by Equation (19.8.1), is always
regular. Due to this fact the concept of c-complete systems wil be useful,
Let I< D be regular and # be a subset of I ; then we say that 2 = [ is
c-complete for I when for every ueD

(Au,w)=0 VweB Duel (19.8.3)

It is easy to see that a c-complete system exists if and only il =17 s
completely regular. Therefore the existence of such systems for I, is granted
for most cases of interest because it has been shown (27) that, under VETY
general conditions, I is completely regular. In this case, from its definition
(Equation (19.8.1)), it is easy 1o see that Np is necessarily c-complete for 1.
For the representation of solutions it is, however, of greater interest to have
subsets B < N, whose elements are solutions of the homogeneous equations
especially when & is denumerable.

Examples of such systems were given in Tables 19.1 and 19.2 {p. 409).

19.9 RELATIONSHIPS WITH THE HILBERT
SPACE FORMULATION

Most of the developments of the general theory of partial differential
equations have been carried out in the setting of Hilbert spaces (19). It is
therefore important to incorporate our discussion into that framework in
order ‘to be able to make use of the results of that theory.

For this purpose we focus our attention on boundary values: i.c. we
identify functions possessing the same boundary values. More precisely, two
functions u and v of D are identified whenever u—veN,. The resulting
space @ is called the quotient space; i.e.

@D =DJIN, (19.9.1)
Corresponding to each of the examples given in section 19.5 we obtain:

(1) For the Laplace and reduced wave equations @ consists of pairs of
functions u, du/an, defined on the bound ry dR and square-intcgrahle
there. Thus :

Ju du
= — d— J q( "'__\
P {[u,an] ueH"(aR),aneH"(aR)} (19.9.2)
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(2) The biharmonic equation

ou JAul | U 1Au
— Au.— || each one of u, —,Au, —— H9R) 19.9.3)
on in | in n

(3) The Stokes equation
ou
2={[uvin-on]
wvo pn

In each of these examples one can give to 9@ the structure of a Hilbert
space. The corresponding inner products are

wec H'GR), vg-s— pne H"(aR)}
(19.9.4)

1) J {uﬁ+y—92}dx '19.9.52)

5R an dn

ou ad D .

) j {uﬁ+—"—3‘—’+Au Aﬁ+‘lAi‘§‘3} dx 19.9.5b)

SR on dn an dn

Ju ov
--+ —— . —_—0 9.

3) LR {u v (van pn_) (Van qn)} dx (19.9.5¢)

where the bar refers to the complex conjugate. With this inner product, the
linear space @ is isomorphic to the following Hilbert spaces:

(1) H°(GR)®H°@R) (19.9.6a)
2 H°(6R)® H°(OR)® H°(GR)®H(3R) (19.9.6b)
3) H°(3R)DH"(3R) (19.9.6¢)

Thus in the following developments it will be assumed that &= 4
possesses a Hilbert-space structure; this means that there is an inner product
defined on @, and 9 is complete with respect t0 the metric induced by this
inner product (i.e. every Cauchy sequence converges).

Now, given any canonical decomposition {I;, I} of the space D=, we
know that there is an operator B:D — D* such that

(Au, v)={Bu, v)—(Bv, u) '19.9.7a)
and
I,= Ng= I,=Ng (19.9.7b)
In " -
(Bu, v) =(Bu,, v2) (19.9.8)

In what follows we will be interested in the case in which there is a linear
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mapping B: — ¥ such that
(Bu, v)= (v, Bit) = (v,, Bii,) (19.9.9)

where i represents a unitary antilinear mapping.

A sufficient condition for Equation (19.9.9) to hold is that the bilinear
form B be continuous with respect to the metric of %.

As an illustration, when the operator B: D — D* is given by Equation
(19.7.5) then, given u =[u, (3u/an)]e X(BR),

Bu= [ﬂ s 0] (19.9.10)
on
When B:D — D* is given by Equation (19.7.6), given
T 9 oA
- M. u]e%(aR)
on
then
Bu= [a—A—'f,—Au, 0,0] (19.9.11)
an
If Equation (19.7.7) holds, then
dAu i
Bu= [—“,O,a—",o] (19.9.12)
on on

Finally, for Stokes equations, when Equation (19.7.8) holds, given
. du 2
= [u, Van pn] e #(BR)
then

Bii= [V?—pn,O] (19.9.13)

19.10 REPRESENTATION OF SOLUTIONS

For the formulation of the general boundary value problem to be considered
here, we assume there is a canonical decomposition {I;, I,} and an operator
B:D — D* that decomposes A, satisfying Equation (19.7.3). Using rep-
resentation (19.6.15) we formulate the problem as follows. Find ue Np
such that

u=U, (19.10.1)

where U, is a given elemgnt of I,. _
Let Np = Np/Ny © 9D = # be the linear space generated by the boundary

| L
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values of solutions of the homogeneous equation. Then every u e N, can be
written as

u=u,+u, 19.10.2)

where u, € §, = I,/N, while u,€ $,=I,/N,.Let ¥, © $, be the range of values
taken by u, in Equation (19.10.2) when u ranges over Np. Similarly, let
N, <= #, be the range of values taken by u, in Equation (19.10.2) when u
ranges over Np.

Given a system of functions 3 ={w,, w,,...}< Np, using representation
(19.6.15) we can write

Wo = wa1+wa2 (19.10.3)
We denote
By ={wq1, way, w3, S By ={wyz, W3, w3y, .} F,
(19.10.9)

Clearly, we will be able to approximate the boundary values of every
solution of Equation (19.10.1) if and only if

span B, =N, (19.10.5)

Here the bar refers to the closure of A,.

The following result (13, 28) supplies a criterion for completeness which
possesses considerable generality and flexibility.

Assume Ip =Np+N, is completely regular. Then the following state-
ments are equivalent:

(1) B<Np is c-complete for Ip; and :
(2) span B, =N, while span B, = ¥, (19.10.6)

A proof with a more precise and elaborate form of this result is given in
reference 28. Therefore when B is c-complete it is possible to construct
approximating sequences ~

N
uN=13 adw,; N=1,2,... (19.10.7)
n=1

such that u} — U, whenever U, € ¥,. Therefore if problem (19.10.1) has a
solution u, then

uN—u (19.10.8)

The convergence in Equation (19.10.5) is in any metric in which the solution
of the problem depends continuously on the boundary data U,.

The results of section 19.9 give an efficient procedure to compute the
complementary boundary data. From Equations (19.10.1), (19.9.9), and
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(19.7.1) it follows that for every w, € B, we have
(WaZ, 301) = (Wa2’ Bal) = (Wal’ BEZ) (19~10-9)

which gives (w,, Bil,) in terms of the boundary data U This gives the
approximating sequence

N
Bay= Y biw,  N= 19.10.10)
n=1
where the coefficients b} satisfy, for every fixed N, the system of equations
N
(Wanzs BUD = X bYWy, W) (19.10.11)
n=1

The convergence of sequence (19.10.10) is assumed whenever the solution
U, exists. A more detailed discussion of these points is given in reference
18.
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