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ABSTRACT

A boundary method for solving the biharmonic equation is pre-
sented. It is based on the use of systems of solutions of the
homogeneous equations, which are complete. A convenient crite-
rium for the completeness of such systems, is the notion of
c-completeness. Using a convenient representaticn of solu-
tions for the biharmonic equation a procedure for constructing
c~complete systems for this equation is developed. Examples

of such systems are constructed.

1. INTRODUCTION

In recent years, by a boundary method, it is usually understood,
a numerical procedure in which a subregion or the entire
region, is left out of the numerical treatment, by
use of available analytical soluticns (or more
generally, previously computed solutions). Boundary
rethods reduce the dimensions involved in the problem leading
toconsiderable economy in the numerical work and constitute a
veryconvenient manner of treating adequately unbounded regions
by numerical means. Generally, the dimensionality of the
problem is reduced by one, but even when part of the region is
treated by finite elements, the size of the discretized domain
is reduced [ Zienkiewicz, 1977, Zienkiewicz, et al., 1977].

There are two main approaches for the formulation of
boundary methods; one 1s based on the use of bound-
ary integral equations and the other one, on the use
of ccmplete systems of solutions. In numerical
applications, the first one of these methods has
received most of the attention [ Brebbia, 1978]. This is in
spite of the fact that the use of complete systems of solutions
presents iwmportant numerical advantages; e.g., it avoids the
introduction of singular integral equations and it does not



requirée the construction of a fundumental solution. The lat-
ter is especizlly relevant in conncction with complicated
preoblezns, for which, it may be extremely laborious to build up
a fundamental solution, This is illustrated by the fact that
there are methods for synthetizing fundamental solutions star-
ting from plane waves, which can be shown to be a complete
systenm [ Sinchez~Sesma, Herrera and Aviles, 1981].

One may advance some possible explanations for this situation.
Although, the principle of superposition, is a standard proce-
dure for building up solutions of linear equations, many of

its applications have been based on the method of separation

f variatles; this has lead to the frequent, but false, belief
hat complete systems of solutions have to be constructed
pe
a

rt O
c

]

cifically for a given region. Of course, this is not the
se; indeed,most frequently systems of solutions are complete
independently of the detailed shape of the region considered’
[Herrera and Sabina, 1978}, and the systems developed here for
the biharmonic equation possess this property.

]

Alsc, in some fields of application, procedures which consti=-
tute particular cases of the approximation by complete systems
of sclutions, have presented severe restrictions and inconve-
niences. For the case of acoustics and electromagnetic field
computations, a survey of such difficulties, was carried out
by Bates [1975). For this kind of studies, the so called
"Ravleigh hvpothesis", restricts drastically the applicability
of the method. However, work by Millar {1973}, implies that
these difficulties are due, mainly, to lack of clarity, since
he avoided Rayleigh hypothesis, altogether, by adopting a
different point of view.

Motivated by this situation, one of the authors, started a
systematic research of the subject [ Herrera and Sabina, 1978;
Herrera, 1977a, 1979b, 1980e], oriented to clarify the theoret=-
ical foundations of the method, allowing its systematic and
reliable use. The aims of the research have been satisfacto-
rily achieved to a large extent and have just been reported
[Herrera, 1981b,c]. This has been possible due to the progress
that has been made in the understanding of partial differen-
tial equations [Lions and Magenes, 1972; Temam, 1977]. The
methodology also owes much to work of Amerio, Fichera, Picone,
Kupradze and Trefftz [Miranda, 1955; Kupradze, 1967; Trefftz,
1926] . The systematic development of the procedure, in a
manner which is applicable to any linear problem, was made
possible, howaver, by an abstract theory that has been devel-
oped by Herrera [1979a,b, 1980b,c,d,e, 198lal.

The numerical solution of Stokes and Navier-Stokes equations,
is a problim of great practical interest at present, and it is
not our purpose to review it, since recent surveys are avail-
able [ Glowinski and Pironneau,1978; Temam, 1977]. Taking this
iaterest for granted, we explain briefly the method mentioned



before, in connection with the biharmonic equation and supply '™

an efficient procedure for developing c-complete systens Zor
this equation, starting from c-complete systems for Laplace
equation.

2. THE BOUNDARY METHOD USED
Consider the biharmonic equation

V% =0 in 0 (2.1)

This equation must be satisfied in the sense of distributions
by elements of some spaces of fupctions. In general, we ask
u to be in a linear subspace DCH? (), so that the equation
(2.1) is between elements of H 2. f

On this assumption the biharmonic problem {(2.1) is equivalent
to the formulation

u € Ker P, P:H2(Q) + (42)*

defined by
<Pu,v> = [ V*'u v dx ¥ u&%(Q) (2.2)
5 v vEi? ()
Integration by parts gives
<Pu,v> = é V2u 9%v dx + g; gég‘v - &a'r”}dk {2.3)

In (2.3) four different boundary values occur. We note that
[Lions and Magenes, 1972]

u EHYQ) = u € u¥200

du e yi/2 30

o

au € B2 (50
3u
an

Let us associate with the operator P, an antisymmetrvic opera-
tor A by

e w3200

A =P - Px
<Au,v> = <Puy,v> - <Pv,u> C(2.4)
¥ u,vGD <Au,v> = S Av %i‘ﬁu - Au éﬁ.+ bv 33 -1 fél 1 dx
50 on on on an

{2.5)

in which, only boundary values appear. Let us incroduce the
Boundary operators B and B':

T We use the usual notation for Sobolev spaces.



¥ u,v €D <Bu,v> = /v 2 Au dx (2.6)

ap  on
<g'u,v> =+ [ Av %E dx C (2.7
an ~ °n
Then .
A=B+ B'" -« B'% .. % T (2.8

In fact we can directly define A by (2.5) in a different space
D:

D= {u€a/2() | ueERr® <afz>, ea Q) ;

dbu
on

D 15 not a Scbolev space, but we note the inclusions:

Au € E°00) €1 cam}

/2@ cpcu/2q (2.9)

o
and that C (§{) is dense in D.

Define
Il = Ker(B + B") and 12
Then it can easily be shown that {I.,I.} is a canonical decom-
position of D, in the sense defined in“[Herrera, 1980b}: i. e,
11,12 are completely reguiar:
<Au,v> =0 ¥ v E I1 ®qu € I1 (2.11)
<hu,v> =0 ¥ v E 12 @y € Iz (2.12)

= Ker(B* + B'%) .. (2.10)

and

T = N =
I + 12 D Il 12 Ker A

This implies that every u€D can be written as u=u,+u,, with
u €I 1 and u EI?, and this representation is uniqué, except for
e} =énts of“KeE A.

Another canonical decomposition would be

zi = Ker (B - B'#) : Ié = Ker(B* - B') . (2.13)

Notice that the boundary values of elements of D, can be
characrer.zed as follows:

uED - [ua,ub,uc,u ] € D/Ker A C:[HO(Z)Q}]‘b

d
with
du )
u = u = — u =Au u,= 7 Alu 2.14
a % " Bn c d an ' ( )
on ¢fl. Now, associated with the canonical decomposition
{I,,1.}, we have

D/Ker A = Il/Ker A® Ileer A

o7



— e e I T | lul’uzfa u = Ul =+ u2 ‘(56

u, € Ker(B + B') uy = [ua , uc] . (2.15)
© * ' =
u, Ker (B* + B'%) u, [ud, ub] (2.16)

with these notations then it is easy to exhibit the identity:

<Au,v> = (u2 R vl) - (u1 , VB) (2.17)
where it is understocd that if [a,bl, [e,d] E»{HO(BQ)]z
(fa,b] , [cd]) = J (ac + bd)dx (2.18)
af

Using the other decomposition we would have similarly
D/Ker A = Ii/Ker A® Ié/Ker A

c = ! 1
u D/Ker A u Uy + uz,

= S o= -
u [ua,u ] uy [ud, uc] ’ (2.19)

'
1 b
and the identity:
= ' 'y ' ! :
<Au,v> (u2 , vl) (ul . v2) (2.20)

Let N, be the subspace of solutions of the biharmonic equation
(2.1) and define

IP = NP + NA ‘(2.21)

Then IP is completely regular; i.e.

<Au,v> = 0 ¥ v E IP ®y€1x (2.22)

P
This comes straight forwardly from some results of existence
of solution of the biharmonic equation with compatible bound-
ary conditions, the density of C () in D and results reported
previously [Herrera, 1980b]. Define I_ = IP/Ker A. The
results of uniqueness imply that N_ O Rer aP= {0} so that I

is neturally imbedded in D/Ker A, with the notations intro-
duced. The following definition is relevant, for our discus—
sion. '
Definition: A denwnerable set B ='{w1,w2,...} 0f N, L&
c-complete (complete in connectivity), with fte,épec,tf 1o A'LS
<Au,wa> =0 ¥aEN=qy€E IP' ,

For any canonical decomposition {I,,I.}, T_ is decomposed as,

1
= ®
ZP I1P I2P’ Il? < Il’IZP < IZ

The following can be. proved [Herrera, 1980e, 1981b,c].

2 P

Proposition 1. The 3 statements are equivalent
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ii) 1 Wy ey sPans g

iii) BZ = {wZQ}GEN spans IZP'

Let us suppose that we have a c-complete system

- c
8 . {wa}awl,... NP

and a canonical decomposition {11,12}. Consider the problem;
find u3D such that

AR

i

0 in 9

u) = ug given on the boundary

Assume U 611 , in order to have existence of a solution to the
problem.” Ia view of the Proposition, we know that {w a}a .
spans [ so that any element of I can be approxima%ed by

i 1P . .
linear ¢ombinations of {w, }; more precisely, one can choose
coefficiencs {aN} _ . Such that
a Ci“'l,.a.s
N
N N
Uy ? 3, Y14 o (2.24)
has the property that u? + oy in [HO(BQ)]z.
Then N
N N
= Z 2.2
u : ay Yo (2.25)

is tha diharmonic function in §}, such that the boundary value
uY approximates the data. Therefore, uN is an approximation

td a solution of the problem and as N - « one has uN + u in the
sense (at least) of H'/?(Q) [Lions and Magenes, 1972].

I1f the missing boundary value u, is required, and if it is

- o - 2 - » . .
known to be in [H (32)]° in 1,5, we can indeed approximate it
by

(2.26)

hut we can also compute it using (2.17). Indeed

= =
(uz,wla) (ul’w2a) ¥ &N

1f {w {} is orthonormal (and if it is not, we can orthonormal=-
ize i%zby the well krown Gram-Schmidt orthonormalization
- process), then, u, is given by

[+~

u., = & (u

9 (2.27)

o0
Y1 e ¥ B (v,

Jw
ae=l a=1 o’ lo



3. C-COMPLETE SYSTEMS FOR THE BIHARMONIC EQUATION 131

-In this section we give a general procedure for constructing
c~ccmplete systems for the biharmonlc equation, whenever a
c~complete system for Laplace's equation is known.

Proposition 2. Let {y,, .} be hanmoyic functions such
that they are a c-compﬁ 5 Agétém fon Laplace equation in the
region Q. Assume {¢1,¢2,...} arne also harnmonic and such that

3¢

4

"'8")'{"3 u}a ; a = 1,2,0.0 (,3‘1)

Then the system {y DAY {x¢l,x¢2,...} are bihaumonic and
c-complete fon equ&t&un (2.1).

Proof. Consider the canonical decomposition (2.15), (2.16),
then

Ip = {u) = [u,bu]| &1} = (%)) 2 (3.2)

Here, u, Au refer to the boundary values on 3. The biharmon-

ic problem with u, given, is the biharmonic equation (2.1),
subjected to the %oundary conditions

u = f1 , on 93 (3.3a)
Au = f2 , on of (3.3b)

where £, and £, are given functions of HO(BQ). Equivaleatly,
one can solve

bLp = 0 s in Q (3.4a)
p=1£f, , on3dQ (3.4b)
and
Au = p , in (3.5a)
u=f , on?0 | (3.5b)

In view of Proposition 1, it is enough to prova that the
system of boundary values {[wl Aw 1, wz,Au yeost U
{[x¢l Ax@l}, [x¢ &x@ l,...} spans T % (3)12%. To this

end, notice that

ﬁwa = 0 H A(x¢a) = 2¢a , o=1,2,... (3.6)

Therefore, given [f ,f ] € [8°(20)]2, consider the following
approximating sequence

N N
Nz Ay o+ Nk (3.7)

a=1 a=1
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. N N .

N N N :

p = L ba Ax¢a = 2 I bg wa (3.8)
o=1 a=1

and choose bg, 8o that (as Nom)

N O
p - fz , on K (3Q) (3.9)

This is possible, because {Y ,¥.,.. } is ¢-complete. Relation
(3.9), implies that there exists v&H 5/2 (8Q) such that as N,

PN v 3 in HY/2(R) (3.10)

Therefore
N

* v

,  in B2 () (3Q) (3.11)

‘ N
Choose tnow aa so that

N z
% a b, £ - , on R2(30) (3.12)
o=l '

This is z2gain possible because {w ¥
Kence, cleartly

(o, auM]

2,...} is c-complete.

o}
> 1f,6,] , [B70G®]? (3.13)
and the proof of Proposition 2, is complete.
As an example of the application of Proposition 2, we exhibit
a polvnonial system which is c~complete for biharmonic equa-

tion in any bounded region fl.

Proposicicrn 3. let (a=1,2,...)

¥, = Re o (a-12/2 when a 1is odd (3.14a)
Y, = Im /2 when o s even (3.14b)

Dedine
ba ™ Yoro (.13

Then {¢l,¢q,...} U {xd,,xd,,...} 46 c-complete fon the bihanr-
monde etualion, {n any bowided region Q.

Prcof. It has been shown [ Herrera and Sabina, 1978}, that
¢1'V7""} is c-complete for Laplace's equation in any
oundéd region. In addition, it is easy to see that equation
2.1} is satisfied.

LT A

We recall finally, that a c-complete can be used to approximate
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any other boundary value problem prescribed by means of regular
subspace; this, by virtue of Proposition 1.

4. THE EXTERIOR DOMAIN

Let © be the exterior of a bounded domain. A c-complete
system for Laplace's equation, which satisfies a radiation
condition, in £, is given [Herrera and Sabina, 1978}, by

W, 0,50}

wl = Re Log z 3 (4.1a)
Y, = Re 2O D/2 1y paa > 3 (6.1b)
wa = Im z~a/2 ; 0 even {(4.lec)

Applying Proposition 2, it can be seen that system {wl,wzx...}
U {x¢l,x¢2,...}, where

b, = Re(z log z-z) 3 ¢2 = Im log 2z (4.2a)
= > » 4.2
O = Vg2 42 3 (4.2b)

is a c-complete system for the exterior problem.
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