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ABSTRAe! 

A bou~dary method for solving the biharmonic equation is pre­
sented# It is based on the use of systems of solutions of the 
homogeneous equ3tions, which are complete. A convenient crite­
riun for the completeness of such systems, 15 the notion of 
c-completeness. Using a convenient representation of 501u­
tions for the bihilnnl.Jnic equation a proccdurc for canstructing 
c-com~lcte systems for this equatíon is developed. Examples 
of such systems are constructed. 

l. INTRODUCTIOH 

In recent years, by a boundary method, it is usual1yunderstoo~ 
a nunerical pracedure in which a subregion or the entire 
regian, is l~ft out of the nurnerical treatment, by 
use of available ana1ytical soluticns (or more 
generally, previously computed solutions). Boungsry 

rr.ethods reducethe dimensíons involved in the problem leading 
toconsiderable ecanomy in the numerical work and constitute a 
veryconvenient manner of treating adequately unbounded regions 
by numerical means. Generally, the dimensionality of the 
problem is reduced by one, but even when part of the regian i5 
treatcd by finite elements, the size of the discretized daruain 
is reJuced fZienkiewicz, 1977, Zienkiewicz, et al., 19771. 

There are two main approaches for the formulation of 
boundary methods; ane is based on the use of bound­
ary integral equations and the other one, on the use 
of complete systems of solutions. In numerical 
applications, the first ane of these methods has 
received most of the attention [Brebbia, 1978]. This i5 in 
spite of the fact that the use of complete systems of solutions 
presents important numerical advantages; e.g., it avoids the 
ir.troduction of singul~r integral equations and it does not 



=equire the cO~5truetion of a funJ~~~nral solution. rile lat­
ter is es?eeially relevant in con~cction with co~plicatcd 
pro~l~=s, for Wllich, it ~ay be extrcmely la~orious to build up 
a funda~cntal solution. Ihis is illustratcd by the face that 
there are ~ethods for synthetizing fundamental solutions star­
ting fro~ plane waves, which can be ShO~l to be a complete 
systco [S¡~ehez-Ses~a, Herrera and Aviles, 1981]. 

One cay adV2nee sorne possíble explanations for this situation. 
Although, the principIe of superposition, is a standard proce­
dure fer building up solutions of linear equations, many of 
its applieations have been based on the method of separation 
of variables; this has lead to the frequent, but false, belief 
tnat co~?lete systems of solutions have to be constructed 
specifieally for a given region. Of course, this is not the 
~ase; indeed,rr.ost. frequently systems of solutions are complete 
independently of the detailed shape of the region considered 
[Herrera and Sabina, 1978], and the systems developed here for 
the biharmonic equation possess this property. 

Als0, in so~e fields of application, procedures which consti­
tut2 particular cases of the approximation by complete systems 
of 501utions, h2ve pr~sented severe restrictions and inconve­
niences. For the case of acoustics and electromagnetic field 
co~?uta[ions, a survey of such difficulties, was carried out 
by Bates [1975). For this kind oE studies, the so called 
HRay1eish hypothesis", restricts drastic211y the applicabi1ity 
of the recthad. However, work by Millar [1973], implies that 
these difficulties are due, main1y, to lack of c1arity, since 
he avoi¿ed Rayleigh hypothesis, altogether, by adopting a 
different point of view. 

Xotivated by this situation, one of the authors, started a 
systecatic research of the subject [Herrera 2nd Sabina, 1978; 
Herr~ra, 1977a, 1979b, 1980e], oriented to clarify the theoret­
ieal found~tions of the metilod, allowing its systematic and 
reliable use. The aims of the researeh have been satisfacto­
rily achievea to a large extent and have just been reported 
{Herrera, 1981b,cl. This has been possible due to the progress 
that has been made in the understanding of partial differen­
tia1 equations [Lions and Magenes, 1972; Temam, 1977). The 
~lethodology also owes ~uch to work of ~üerio, Fichera, Picone, 
Kupradze and Trefftz (Miranda, 1955; Kupradze~ 1967; Trefftz, 
1926]. The systematic development of the procedure, in a 
~anner which lS applicable to any linear problem, was made 
possible, however, by an abstract theory that has been devel­
oped by Herr¿ra [1979a,b, 1980b,c,d,e, 1981a]. 

me nur.,erícal solution of Stokes and Navier-Stokes equations, 
i5 a problcm of great practical interest at present, and it ~s 
not our purpose to review it, since recent surveys are avail­
able lClowinski and Pironneau.1978; Temam, 19771. Taking this 
interest for granted, we explain briefly the method mentioned 



before, in connection with the bihar~onic equation and supply 
an éfficient procedure for developing c-co~plete syste=s :or 
this equation, starting'from c-cooplete systems for Laplace 
equ3tion. 

2. THE BOUNDARY HETHOD USED 

Consider the biharmonic equation 

(2.1) 

.This equation must be satisfied in the sense of distributions 
by elements of sorne spaces of functions. In general, we ask 
u to be in a linear subspace ~~2(n)) so that the e~uation 
(2.1) is between elements of H 2(Q).T 

On this assurnption the biharmonic problem (2.1) is equívalent 
to the. formulation 

u E Ker P , P:H2 (Q) + (H 2 )* 
defined by 

<Pu,v> = J V4 u V dx V uEH 2 (Q) (2.2)
Q 

Integratíon by parts gives 

<Pu, v> :: J 'l2u 'l2v dx + J {aa~U v - 6u ~~}dX (2. J) 
. n an 

In (2.3) four different boundary values occur. We n~te that 
[Lionsand Magenes, 19721 

u E H2 (n) ~ u E H3 / 2 (an) 

dU H1/ 2(an)
3n 

~u E H- 1 / 2 (an) 

_daL\nU E H- 3 / 2 ( aQ) 

Let us associate\>¡ith che operator P, an antisymmetric "?i'era­
tor A by 

A = P - p* 

<Au,v> = <Pu,v> - <Pv,u> . (2.4) 

a dV dU (;6v ,
\} u,vED <Au,v> -= J {v - Au - Au - + Av -~ - u -:) n . J d Yo3n dn cm oan (2.5) 

in which, only boundary values appear. Let us i~troduce the 
Boundary operators B and B': 

t We use the usual notation for Sobolev spaces. 



"'Tv7v u~v E D <Bu,v> == f v ~ l:Iu dx 	 (2.6)ari an 
a

<:sfU~V> "'" + 	 f 6v 
dn 

dx (2.7) 
an 

Then 
A = B + B' - B'* - B* . (2.8) 

In fact we can directly define A by (2.5) in a different space 
D: 

,D = {:JEH 1j2(n) 1 u E HO(an); ~~ E HO(an) ; 

ílu E HO «¡Q) ; aa~U E HO (an)} 

D i5 not a Sobolev space, but we note the inclusions: 

(2.9) 

and that e 
00 

(~) is dense in D. 

Define 

1 = Ker(B + B~) and 1 = Ker(B* + B'*) 	 ,(2.10)1 2 
Then it can easily be shown that {I ,1 } is a canonical decom­

1 2position of D, in the sense defined in [Herrera, 1980b]; i.e., 
1 ,1 are completely regular:

1 2 

<Au.v> = O l¡ v 1 <»u E 1 (2.11)


1 1 
<Au~v> = O lJ E 1 ~u E 1 (2.12)v 2 2 

and 
1 () 1 = Ker A 

1 2 

This, i~?lies that every uEn can be written as u=u +u ' with
1 2

ulEIl and u2~I2' and this representation is unique, exeept for 
e e=ents oí ~eL A. 

A...lother canonica1 decol!lposition would be 

Xi = Ker (B - B'*) ; 1i = Ker(B* - BY) • (2.13) 

Notice that the boundary vaIues of eIements of D, ean be 
character~zed as fo11ows: 

uEn -¡. [ti ,U. ~ U ,ud] E D/Ker A e [H «30) 1'+ 
a O e ° 

""ith 
dU (2.14)u == u 	 u == 6u 

a ~ "" 3n e 

on a~. Now, associated with the canonica1 decomposition 

{I l' 1 .... ;\ ~ \..'e have
. 	 ¡

i. 



u :;:-1 .,""' .... "lo .:1 ~aol!,A1 , !,A2 ¡-1 u1 ..... u
2 

u E Ker(B + Br ) u ::: [u , u ] (2.15)1 l a e 
u E Ker(B* + B'*) u = [Ud' ~] (2.16)2 2 

with these notations then it is easy to exhibit the identity: 

<Au,v> = ' v ) - (u ' v 2) (2.17)(u2 1 1 
where it is understood that if [a,b], [e,d] E [H (an)] 2 

o 
([ a,b] , [cdJ) = J (ae + bd)dx (2.18)

aQ 
Using the other decomposition we would have similarly 

D/Ker A = Ii/Ker A e I 2/Ker A 

u E D/Ker A u = u'
1 

u , - [u u 1 u':: [u -u 1 (2.19) .
1 - a' b 2 d' e 

and the identity: 

(2.20) 


Let Np be the subspace of solutions of the biharmonie equatio~ 
(2.1) and define 

(2.21) 

Then Ip is completely regular; i.e. 

<Au,v> = O VvEI p «>uEI p (2 .. 22) 

This comes straight forwardly from sorne results of exi~tence 
of solution 'of the biharmonic e~ation with compatible bour.d­
ary conditions, the density of e (n) in D and results reported 
previously [Her~era, 1980b]. Define lp = Ip/Ker A. The 
results of uniqucness imply that Np n Ker A = {O} so that Ip 
is naturally imbedded in D/Ker A, with the notations intro­
duced. The following definition is relevant, for our discus­
S10n. 

Definition: A denwileJta.ble ,~d B = {w1 ,w2 , ••. } 06 N 
c.-c.omp-C.de (c.omp.te;te in c.onnecUvUy) 1 wuh JtMPe.ü! 
<Au,w > = O V a E N~ u E Ip.

a 

For any canonical decomposition {Il,IZ}' Ip is decocposed as 
Ip ~ IIP ~ 12P ' I¡p e I 1,I 2P e I 2 

The following can be.proved [Herrera, 1980e, 1981b,cl. 

Proposi tion 1. The 3 iltatemey!.Ú alte. equ.,¿valen.t 

http:c.-c.omp-C.de


i) b 1.5 c-compl.et:e l.Il .L ' ""' ....... ......... y_ ... _ ___ _
p
 
ií) B =: {Yla}~~ spans 11p·
1 

B ,..iii) {wza}aEN spans lZp'2 

Let us suppose that we have a e-complete system 

B = {w } e N 
. a a-1,... P 

ar:.d 3 canonical decomposition {I ,I }. Consider the problem;
1 2find u=n su(:h that 

V'+u = O in n 
u = U given on the boundary

l s 
Assume ~lEI1P' in order to have existence of a solution to the 
problem. Iñ view of the Proposition, we know that {w1 } EN 
spans I,p so that nny element of 11P can be approximaE~daby 
linear combinations of {w }; more precisely, one can choose 

Nl, 1CLcoefficients { a-) -1 N such thata. 0.-- , •••• 

N ~ N
"" l.,; (2.24)aa wlau l 

1 
has the property that u~ -+ u1 in [HO(an)]2. 

'Ihen 
(2.25) 

is the )iharmonic function in n, such that the boundary value 
ui ap?~~xi~ates the data. Therefore, uN is an approximation 
to a solution of che prohlem and as N ~ ~ one has uN ~ u in the 
sense (at Ieast) of H¡j2(O) [Lions and Magenes, 1972] .. 

If the i.'tissing is required, and if it is 
know"'TI to be in we can indeed approximate it 
by 

(2.26) 

but ~e can also compute it using {2.l7). Indeed 

If {'v } i5 orthonornal (and if it is not, we can orthonormal­
ize it(\y the "",all known Gram-Schmidt orthonormalization 
process), then, u is givpn by

2 

u ...
2 



3. C-COMPLETE SYSTEHS FOR THE BlHARMONIC EQUATION 


,In this seetion we give a general procedure for constructing 
e-complete systems for the biharmonic equation, whenever a 
c-complete systenl for Laplace's equation is kno~~. 

J?roEo~ition 2. Lu {lJ; ,lJ; , ••• } be haltmoni.c bUrtc.tiOitó .4uc.1t 
;tha:t they a/te a. c-e.omplc.,t~ ó y~tem ÓOIr. Lapla.ce. eqLUtt.iott .ot tite. 
Iteg'¿on n. M/.) ume {q, I ' q, 2' ••• } Me a"U, o haJUnO rúe. and .4 u.ch ;tha,t 

d<Pa 
-: ~J ., <:x = 1,2, ••• (3.1)

dX a 

The.n :the. !.>yó:tem {lP1,,~f.'."} U {x<P I ,xq,2""} Me biha/ui1CHÚC and 
c- complete 6olr. equa.Uli n (2. I) • 

Proof. Consider the canonícal decomposítíon (2.15). (2.16), 
then 

(3.2) 


Here, u, flu refer to the boundary values on an. Ihe bíharmon­
íc problem with u gíven, is the bíharmonic equation (2.1),

1
subjected to the boundary conditions 

u = f 
l 

, on an (3.3a) 

flu = f 2 
, on an (3.3'b) 

where f l and f 2 are 
one can solve 

given functíons oof H (an). Equivalently, 

flP = O , in n (3.l¡a) 

p = f , on aa (3.4b)
2and 

lm == p , in n (3.5a) 

u = f 
l jl on an (3.50) 

In view of Proposition 1, it is enough to prove that the 
system of boun~ary ~alues {[lP1 ,61JJ 1], [tlJ2~útP2J ' .... }2t.:J 
{[ x<P I , ~x~ 1J, [x<P 2 ,6X<P 2J , • • .} spans 11P - 1Ro (aD)] • To this 
end, not1ce that 

Theref?re, .given [f ,f2J E [HO(an)]2, consider the follo~ing1
apprOX1mat~ng sequence 

(3.6)., 

N
N ' N (3.7)u &: ¿ a t1J +

Cf. Q.
a=l 

http:Lapla.ce
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Define 

N NN H N... I: b ~xQN .. 2 EP b (3.8)a (l a ~o.
0.=1 ex-l 

N
and choose b so that (as N....oo)

ex' 

, (3.9) 

This is ~osBible, beeause {Wl'~2'."} is e-complete. Relation 
(3.9), i:nplies that there eXJ.sts vEH 5 

/ 
2 (an) such that as N-+<x:l, 

p 
N -;. v . in HS/2(n) (3.10)t 

Therefore 

N 
p -+v , in a2(an)Q¡°(an) (3.11) 

N
Choose now :\ so that a. 

N 

¡: a 

N l/J -+ f - v , on aOcan) (3.12)
o: a 10:=1 

Tnis is again possible because {~1'~2""} is c~complete. 
Hence, clenrly 

(3.13) 

and the proof of Proposition 2, is complete. 

As an exa;:¡ple of the application of Propositión 2, we exhibit 
a po1yno~ial system which is e-complete for biharmonic equa­
tion in any bounded region n. 

Proposi:ion 3. Let (0:=1~2, ••• ) 

~; = Re z (a-l) /2 whe.n. a is odd (3.14a)a 

a/2 


~ = 1m z whe.n. a. i.,6 e.ve.n. (3.14b)
Ct 

[ 
N: 

u , , 

(3.15)epa. "" lPc:.+2 

Thett {~,1,y'), ... } U {xQ 1 ' xQ2' •.• } -i..6 c..-c..ompte.:te. 60IL the. b~hM­
mo;~t.c tl\lUL:::'¿on, i..n amj bowtde.d Jt:!g~Orl. n. 

Proo:. It h3S been shown [Herrera snd Sabina, 1978], that 
{~l'~?)"'} is c-coffiplete for Laplace's equation in any 
bou~ded regíon. In addition, it is easy to see that equation 
(3.1) is satisfied. 

We recall finally, that a e-complete can be used to approximate 



any other boundary value problem prescribed by means of regular 
subspace; this, by virtue of Proposition l. 

4. THE EXTERIOR DO~~lN 

Let n be the exterior of a bounded domain. A e-complete 
system for Laplace's equation, which satisfies a radiation 
condition, in n, is given [Herrera and Sabina, 1978], by 

{~1'~2""} 

~1 = Re Log z ., (4.1a) 

~a = Re z-(a-1)/2 a odd > 3 (4.1b) 

~ a = 1m -a/2z a even (4.1c) 

Applying Proposition 2, it ean be seen that system {$lt$2~"'} 
U {x~1,x~2""}' where 

$1 = Re(z log z-z) ; ~2 a 1m log z (4.2a) 

a > 3 (4.2b)~a = ~a-2 
is a e-complete system for the exterior problem. 
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