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ABSTRACT Biorthogonal Fourier series occur when applying
separation of variables to many problems. Here an approach
which possesses considerable advantages with respect to the stan-
dard one is explained.

From Eq. 2, it is seen that

<AO<Pn,<Pm} = e-(An+Am}f J:l {<Pm: ax

". ~

a~4>n

Biorthogonal Fourier series for fourth-order equations have re-
ceived much attention in recent years (1, 2). The origin of the
method can be traced to Smith (3). Recently, Joseph (2) showed
the considerable generality of the method. An independent
approach was followed by Herrera to derive orthogonality re-
lationships for Rayleigh waves (4, 5, 6).

In this article, this latter approach is generalized to give a
theoretical framework for biorthogonal Fourier series. The set-
ting for this framework is a recently developed algebraic theory
of boundary value problems (7, 8). The theory is explained in
connection with an introductory example and then it is devel-
oped systematically.

AN INTRODUCTORY EXAMPLE
To fix ideas, let us consider a simple example. Let u(x,y) and
v(x,y) be solutions of the biharmonic equation in a horizontal
strip; i.e.,

[la]A2U = A2V = 0, -1 < y < 1, -00 < x < 00

,uch that

[Ib]
au avu = v = 0; ay = ay = 0 at y = :!: 1.

Then, one can define an antisymmetric bilinear functional Ao
by using

-dcP ~
n ax

T d<f>m" ax -cPn~ }x=o dy, [5]

which holds for everyg. Hence, An + Am ~ 0 ~ (AocPn,cPm>
= O.

Let us restrict the definition [Eq. 3] by the condition ReAn
~ 0 and introduce the notation (n ~ 1)

cP~ (x,y) = fn* {y)eAnx. [6]

Then, it can be shown that

(AocPn'cP:) ~ O. [7]

The notation established by Eqs. 3 and 6 classifies separable
solutions into two disjoint groups. Define N~ as the linear man-
ifold of functions spanned by the system { cPr. q,2, ...}, and define
N~ correspondingly, by using {q,!,q,:, ...} instead. Let,..,

Np=N~+N;. [8]

The properties characterizing the subspaces N~ and N; are

u -0 as x -+00 whenever u E N; [9a]

u -0 as x --00 whenever u E N~. [9b]

The null subspace NAo of Ao will be needed. This is

NAo = {u E Npl(Aou,v) = 0 ¥ v E Np}. [10]

It can be seen that the only function belonging to this space is
the zero function; ie.,

adV

}-ax. x=~

aAu
ax

(Aou,v) = dy,

[2]

av au
-~u- + ~v- -u

ax ax NAo = {O}. [11]

[12]

where -00 < ~ < ,+00. Well-known reciprocity relationships
for the biharmonic equation imply that the expression for Ao
given by Eq. 2 is independent of ~whenever Eq. la and b is
satisfied.

Separable solutions satisfy (2)

<Pn(X'Y) = fn(y)e-AnX, [3]

where

We recall the following properties of these spaces.

(i) NJ and N; are commutative subspaces; i.e.,

(Aou,v) = 0 VuE Np and v E Np; a = 1,2.

(ii) Np:) NAo; a = 1,2.

(iii) Given u E N p,

(Aou,v) = 0, V v E Np =? u E Np; a = 1,2.

(iv) For every u E Np, there exist elements Ul E N~
and U2 E N~ such that

sin22An -4An2 = O. [4]

It can be shown that ReAn ~ 0 and that -An is a root whenever
An satisfies Eq. 4.

U=Ul+U2' [15]

(v) NAo = N~ n N~. [16]

Although property 13 is trivially satisfied in this case, it is listed
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This paper is devoted to an explanation of how this simple
scheme can be formulated to apply to a general class of partial
differential equations relevant in continuum mechanics and
other fields. In the simple introductory example given above,
the space N p is not equipped with a topological structure. How-
ever, in more general situations, topological considerations will
have to be included.

here because later it will be generalized to include cases in
which Eq. 11 does not hold and then [13] is no longer a trivial
requirement.

Commutative subspaces satisfying [13] will be said to be reg-
ular, and completely regular when, in addition, property 14 is
fulfilled (7). When two regular subspaces span the space; i.e.,
when Eq. 8 is fulfilled, one says that the pair{N~,N~}constitutes
a canonical decomposition of the space N p. It can be shown (7)
that, when {N~,N~} is a canonical decomposition, both N~ and
N~ are necessarily completely regular subspaces, which satisfy
property 16.

We recall that the families 00 = {<Pv<P2, ...} C N~ and 00*
= {<p!,<P~, ...} C N~ have the following property. Given any

u E Np, one has

=9 u E N} [17a](Aou,<f>n) = 0, n = 1,2,

and

PRELIMINARY RESULTS AND NOTATION

It is often useful to associate bilinear functionals with partial
differential equations for their study. Given a linear space D,
such bilinear functionals can also be thought as operators P:D
~ D*, where D* is the algebraic dual ofD; i.e., D* is the linear
space whose elements a E D* are linear functionals a:D ~
~. For the purpose of the discussion that follows, ~ will be the
field of either real or complex numbers.

For example, consider a region R, of the euclidean space Rn(n
2: 1), and let the linear space D = «6~(R), where «6~(R) is the
space of infinitely differentiable functions in R. Alternatively,
one could take D as the Sobolev space HS(R) of any order 8 2:
3/2. Define P:D ~ D* so that, for any u E D and v E D, one
has

::;,>uEN~.<Aou,<f>~) = 0, n = 1,2, [ITh]

Families of functions satisfying either [17a] or [ITh] are called
c-complete (9) for N~ and N~, respectively.

From Eqs. 6 and 7, it follows that

(Ao4>n,4>:'> = 0 if n ~ m [18]

and

(Pu,v) = L vV2udx [23]

Given any bilinear functional P:D -D*, its transpose will
be denoted by P*:D -D*. Therefore, A = P -p* is an anti-
symmetric bilinear f..nctional. When P is formally symmetric,
A will be a boundary operator. For example, when P is given
by Eq. 23,

(Ao<f>n,<f>:> ;of 0 if n = 1,2, [19]

Hence, multiplying each of the functions of the families of
separable solutions by suitable constants, one can assume that

(Ao<f>n,<f>:'> = b'nm' [20]

When [18] is satisfied, one says that the families {<f>v<f>2' ...}
C N~ and {<f>!,<f>~, ...} C N~ are biorthogonal. If, in addition,
[20] is fulfilled, the families are said to be biorthonormal.

Now, any function u E Np can be written as

~ ~

u = Lan<f>n + Lbn<f>:. [21]
n=l n=l

It is convenient to recall that each of the systems of constants
an, bn (n = 1,2, ...) possesses only a finite number of nonvan-

ishing elements, because N~ and N~ have been defined as the
linear manifolds spanned by separable solutions. Later we will
consider actual infinite series, but this has been avoided here
to keep this introductory example sufficiently simple. When the
systems {<f>v <f>2, ...} and {<f>i , <f>~, ...} are biorthonormal, it is
straightforward to verify that

r { au av}(Au,v) = JaR va;; -ua;; dx, [24]

which involves only boundary vafttes. We will denote by NA the
null subspace of A (i.e., NA = {u E DI(Au,v) "= 0 ¥ v ED}).
It is then easy to see that, for the example [24], NA = {u E DI
u = (au/an) = 0 on aR}.

The notions of regular and completely regular subspaces (8),
as well as canonical decompositions of D, will be required to
understand what follows.

Definition 1: A linear subspace I C D is said to be regular
for A:D ~ D* (or for P) when

(i) (Au,v) = 0 ¥ u E I and v E I [25]

(ii) I:> NA. [26]

One says that I is completely regular for A if, in addition, (iii)
for every u E D,

an = (Aou,<f>~> [22a] (Au,v) = 0 ¥ v E 1=9 u E I. [27]

This definition of completely regular subspace is equivalent
to the condition that I C D enjoys the property:

and

bn = (Aol/>n,u). [22b]

By using the notions thus far introduced, we can summarize our
results as follows:

The space of biharmonic functions N p defined in a horizontal
strip admits a canonical decomposition into two subspaces
{N~,N~} such that the families of separable solutions {l/>vI/>2'
...} C N~ and {I/>i ,1/>:, ...} C N~are c-complete for N~ and N~,
respectively. Even more, these two systems are biorthogonal
and, by a suitable choice, they can be taken to be biorthonormal.
In this case, any function of the space N p can be represented
by Eq. 21, where the coefficients an and bn (n = 1,2, ...) are

given by [22].

(Au,v) = 0 ¥ v E I<=> u E I. [28]

Definition 2: Let {IJJ be subspaces of D that are regular
for A:D ~ D*. Then, the ordered pair {IvI2} is said to be a
canonical decomposition of D, with respect to A when

D = II + 12 [29]

It has been shown (8, 9), that such canonical decompositionspossess 
the following important property.

THEOREM 1. Let {IpIJ be a pair of subspaces of D. Then
{IpI2} constitute a canonical decomposition of D with respect
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to A, if and only if 11 and 12 are completely regular and

D = 11 + 12; NA = 11 n 12,

We illustrate the material contained in this section by con-
sidering a simple example. Take, as in Preliminary Results and
Notation, D = C~(R) and let R be the unit square, 0 < x < 1,
0 < y < 1. Define

[30]

vv2 

udx + IU~ I dy -r1U~ 1 dy.Jo ax r=1 Jo ax r=O
(Pu,v) =

[42]

CANONICAL DECOMPOSITIONS OF
THE SPACE OF SOLUTIONS

When P:D ~ D* is associated with a differential equation, the
homogeneous equation is Pu = O. Thus, the space of solutions
of the homogeneous equation is the null subspace N p of P.

When A1:D ~ D* and A2:D ~ D* are antisymmetric op-
erators such that (i)

i
Then Ll{ iJu iJv

}! Y=l (Au,v) = v- -u- ax.

0 iJy iJy y=o

[43]

A = Al + A2 [31a]

and (ii) Al and A2 can be varied independently (7); i.e.,

D = NAI + NA2, [31b]

it is possible to construct canonical decompositions of the space
of solutions Np. The corresponding theory has been developed
systematically (7). Here, we recall only a few results and give
some examples.

When u E Np and v E Np, one has

(AIu,v) + (A2u,v) = (Au,v) = O. [32]

Define

-, {v~ -u~ } Iax(A1u,v} -Jo iJy iJy y=l [44a]

I I { iJu iJV } I--v- -u- dx .(A2u,v) -0 iJy iJy y=o [44b]

45a]

Then, Eq. 31a and b is satisfied because

NAI = {u E vlu = ~ = 0 at y = I,

This shows that

(A1u,v) = -(A2U,V), ¥ u E Np, v E Np. [33]

InlightofEq. 33, onecandefineanoperatorAo:Np~N:, given
by

(Aou,v) = (Avu,v) = -(A2u,v), ¥ u E Np, v E Npo [34]

Let Nt C Npand N~ C Np be two linear subspaces of solutions
such that

( ') 1 2.Np = Np + Np r351

(ii) For every UI E N~ and VI E N~, one has

(AOUI,VJ = (AIuI,VJ = O. [36]

(iii) For every U2 E N~ and V2 E N~, one has

(AOU2,V2) = -(A2u2,V2) = O. [37]

When conditions i-iii are satisfied, given any solution U E
Np,. one can write u = UI + U2, with UI E N~ and U2 E N~,
because of Eq. 35. Therefore,

(Aou,v) = (AOUI,V2) + (AOU2,VJ ¥ U E Np, V E Np, [38]

where Eqs. 36 and 37 have been used. In view of this, it is not
difficult to establish the theorem that follows.

THEOREM 2. GivenP:D~ D* and Al andA2satisfyingEq.
31a and b, let N~ C Np and N~ C Np be linear subspaces for
which conditions i-iii hold. Define

Ip = Np + NA [39]

and assume that Ip CD is completely regular for A:D ~ D*.
Then, if

(Np n NAV U (Np n N~ C NA, [40]

the pair {N~,N~}, constitutes a canonical decomposition ofNp
with respect to Ao:Np ~ N~, as given by Eq. 34. When this is
the case,

11 { }au av(.sa:(A)u,v) = v- -u- ax; 0 :5 A :5 1 [48]
0 ay ay Y=A

Then, in the example considered here, for every u E Np and
v E Np, one has

(Aou,v) = (.sa:(A)u,v), ¥ AE [0,1]. [49]

A corollary of Theorem 2 that will be used when discussing
biorthogonal functions is that, for every u E Np, one has

u E N~ <=> (Aou,v) = 0 ¥ v E N~ [50a]
NAo = Ip n NA, [41]

Proof: 

The proof is given in ref. 6. and

Notice that the space of solutions Np C D is made, in this case,
of the functions that are harmonic in the unit square and vanish
on the vertical sides of the square; i.e.,'.6

Np = {u E DIV2u = 0 on R, u = 0, at x = O,l}. [46]

The space of solutions can be decomposed into two subspaces

N~ = {u E Nplu = 0 at y = I} [47a]

N~ = {u E Nplu = 0 at y = OJ. [47b]

Then, it is straightforward to verify conditions i-iii.
The assumption [40] is similar to the condition that an over-

determined problem has only a trivial solution. It can also be
derived, in some applications, by analytic continuation argu-
ments. For the example given here, it follows from the fact that
the only harmonic function in the square, which vanishes to-
gether with its normal derivative either at the top or at the bot-
tom of the square, is the zero function (i. e., the function that
is identically zero in the square).

In applications, Ao:Np ~ N~ has many alternative expres-
sions. For example, if one defines the bilinear functional ~(A)
by
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u E N~ ~ (Aou,v) = 0 ¥ u E N~. [SOb]

In the specific example given here, relationship 50a and b im-
plies that a harmonic function u that vanishes at the sides x =0,1 

of the square vanishes at the top, if and only if, the integral
[48] vanishes for every harmonic function v that satisfies the
same conditions. Clearly, harmonic functions that vanish at the
bottom of the square have a similar property.

where a~, b~ are associated with v by equations corresponding
to [57]; in addition, the bars in Eq. 59, denote the complex con-
jugates. Let 'Jt' be the closure of~ in this inner product.

Of special interest is the case of'Jt' :J N piN AO' In this case,
one can show that the system B1 U B2 is orthonormal for the
Hilbert space 'Jt', with the inner product given by Eq. 59. This
inner product and the corresponding metric will be said to be
induced by the biorthogonal system B1, B2. Notice that

ao ao

U = LaaWa+ Lbi3w;, [60]
a=1 ao=1

while
(u,v) = (Aou,v*). [61]

Here,

FOURIER BIORTHOGONAL SYSTEMS

Some of the concepts presented in this section are applicable
to any canonical decomposition [7-8], but here we restrict at-
tention to canonical decompositions of the space of solutions N p
= N~ + N~.

Definition 3. A system {Wt.W2, ...} C N~ is said to be c-
complete for N~ when, for every u E Np, one has

(Aou,w..> = 0 ¥ a = 1,2, ...~ u EN}. [51a]

Similarly, {Wt.W2' ...} C N~isc-completefor N~when, for every

uENp,
(Aou,w:> = 0 ¥ a = 1,2, ...~ u E N~. [51b]

Definition 4. Let B1 = {Wl,W2, ...} C N~, B2 = {wT,w~,
...} C N~. Then, the systems B1 and B2are said to be biorthogo-
nal when

~ ~

v* = -~b~wa + ~a~w; [62]
a=l a=l

(Aou,v) = (~(A)u,v) [63]

for every u E Np and v E Np. Consider, as before, a canonical
decomposition {N~,N~} ofNp. Let Wn E N~ and W: E N~, n
= 1,2, ..., be two families of solutions such that

(~(A)wn,w:') = fnm(A)(~(Ao)wn'w:') [64]

in some range a < A < b. Here Ao is a fixed value belonging
to this range andfnm(A) is for every n,m = 1,2, ...a function
of A. Then, fnm(A) is a constant or

(Aown'w:') = O. [65]

This is a general form of Herrera's (5) alternative.
For example, let N p be the linear space of functions that are

harmonic everywhere in the plane except, possibly, the origin.
LetAo:Np~ Nt be

{Aown,w:'> = 0 whenever n ;6 m. [52]

A pair of biorthogonal systems is said to be c-complete when
Bl is c-complete for N~ and B2 is c-complete for N~. Systems
Bl and B2 are said to be biorthonormal when

(Aown,w:'> = 8nm' [53]

LEMMA 1. Assume thepairBl = {WvW2""} C N~andB2
= {w!, w~, ...} C N~ is a c-complete pair of biorthogonal sys-
temsforAo:Np-+ N: such that

AoWn ;6 0 V n = 1,2. [54]

Then, it can be normalized (i.e., by multiplication by a scalar
of every one of its elements, one can derive a pair that is
biorthonormal).

Proof: Clearly, the assertion of the lemma is true if
(Ao,wn,w:> ;6 0 for every n = 1,2, Assume that

(Aown,w:> = 0 [55]

for some n. Then,

(Aown,w,,;) = 0 ¥ m = 1,2, ...[56]

This implies that Wn E N~; i.e., Wn E N~ n N~ = NAo' This

contradicts [54].
Notice that, when biorthogonal systems 81 C N~ and 82 C

N~, which are c-complete, are given, with every u E Np = N~

+ N~, one can associate unique sequences [aloa2, ...], [b1,b2,
...] by means of

a" = (Aou,w:); b" = (Aow",u), a = 1,2, ...[57]

Let ~ C Np/NAo be

~ = {u E Np/NAol~lla,,12 < 00, tl1bal2 < oo}. [58]

Then, on ~, one can define the inner product
~ ~

(U,v) = LajJ~ + Lb)j~, [59]
a=1 /3=1

f { ou ov}(Aou,v) = c va;: -ua;: dx, [66]

where C is any circle having center at the origin and 0/ ar stands
for the directional derivative in the radial direction. By the pro-
cedure explained above, it can be shown that a canonical de-
composition ofNp is the pair {N),N;}, where N) is the set of
functions that are harmonic in the whole plane, including the
origin and N; is made of the functions u E N p such that u -

bJogr is square integrable in any region of the plane that ex-
cludes a neighborhood of the origin. Here,

ho = 2- f ~ doT.
21T C(A)ar

It can be seen that the only element of N AO is the zero function.
A family of bilinear functionals .sd(A), with property [63] is

f { au av}(.s4,(A)u,v) = v-:;;- -u- dx, [67]
C(A) ur ar

and convergence in Eq. 60 is with respect to the induced metric
or any equivalent metric.

For applications, it is of course important to establish criteria
under which the induced metric is equivalent to a metric that
is relevant for the problem considered. In a previous paper (9)
some aspects of this question have been discussed.

As noted in Canonical Decompositions of the Space of So-
lutions, Eq. 49, one usually has many alternative expressions
for the operator Ao:N p -N:. Let .SI!l(A) be a family of bilinear
functionals such that
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{wi,wl, 00 o} = {logr, r-l cos8,r-lsin8, 00 o} C N~o [72b]

With these definitions, Eqso 70 and 71 imply that

(A * ) 0 Of -L d { n + 1 ~ m when n is even
ow w = 1 nrman

h 0

ddn' m n-l~mwennlso 0

where C(A) is a circle of radius A and center at the origin. If Wn
E Nj and w: EN;, n '= 1,2, ..., are families of solutions of
product form; i.e., if

[68][69]

Wn = !n(r)Pn(6); w: = gn(r)qn(6),

then, Eq. 67 shows that

(.s4:(A)wn'w,,*;> = [gm(A)!~(A) -!n(A)g~(A)]A(.Sl1.(l)wn'w,,*;>.

Application of the alternative (Eq. [65]) gives

[70]i { * ~ -~ }J- = 0
Wm i) Wn i) U;I;

c r r

[73]
This would give groups of two functions that are orthogonal to
all the others. However, due to the manner in which they have
been chosen, Eq. 73 holds whenever n # m.
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