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A boundary method for solving Stokes problem is presented. This is based on the use of systems of
solutions of the homogeneous equations, which are complete. A convenient criterion, for the com-
pleteness of such systems, is the notion of c-completeness. An apparently new representation of
solutions of Stokes equations is derived and is used to develop a procedure for constructing a
c-complete system. Examples of such systems are constructed.

1. 

Introduction

The numerical solution 6f Stokes and Navier-Stokes equations, is a problem of great
practical interest at present. However, it is not our purpose to review it, since recent surveys
are available [1-2]. Instead, our purpose here is to develop a procedure for solving such
problems using a method studied recently by Herrera [3-5]. This method uses general results
on the continuous dependence of solutions on boundary data in the t~eory of partial
differential equations (for example, those given by Lions and Magenes [6], or more specifically
for Stokes' problems, by Temam [2]), with a view to approximating any solution. A criterion
for completeness [7] which is suitable for most applications is incorporated. Associated with
the method is an efficient procedure for computing boundary values, which has been
developed with complete generality using an abstract theory of boundary value problems [5,
8]. One of the important features of this boundary method, is that it can be applied to any
linear partial differential equation, irrespective of its type. Applications to an important class
of non-linear problems have previously been reported [4--5].

In addition to the general theory of partial differential equations [6], the method owes much
to the work of Trefftz [9], and of the Italian mathematicians Amerio, Fichera and Picone [10].

The main result reported in this paper is a procedure for developing c-complete systems for
Stokes equations. This is based on a representation theorem for solutions of Stokes equations,
which also seems to be new. The representation theorem is given in Section 3. Then, Sections 4
and 5 are devoted to showing how it can be used to construct c-complete systems. An
irilportant example of such systems is given in Section 6.

2. 

Notations and preliminaries

In a bounded domain .n c R2 with a regular boundary a.n of finite length (Fig. 1), we
consider the Stokes problem
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in (}; ,-du + gradp = 0 in [J , div u = 0

for a function u : n ~ R 2, and where p : n ~ R. The boundary conditions will be set up later
on. Firstly some function spaces are defined.

ofLr(n) = {(u, p): (u, p) E Hr+1/2(n) x Hr-l/\n) that satisfy (2.1)}

REMARK 2.1. If (u, p) is an element of ofL'(O,), then (u + A, P + p.) with A E ~2 and p. E ~ is
also an element of ofL'(O,).

We also define two spaces on ao',

uondx=o},
O/1i( an) =

All of these spaces become Hilbert spaces when they are endowed with the usual inner

product.
For every (u, p) E H'+1/2(n) x H'-1/2(n) we write 'YoU E H'(an) for the trace of u on an,

and 'Yl(U, p) E H'-l(an) for the trace of au/an -pn on an. Two kinds of Stokes problems will
be considered, namely those for which 'YoU or, alternatively, 'Yl(U, p) is prescribed. They will be
referred to as Stokes problem No.1 and No.2, respectively.

Here we state some existence and continuity results.

1 h .

lliEOREM 2.2. For every r ~ 2, 1. e mappIng

'Yo: ofL'(n)/{Q} x R ~ OU1(an)

is continuous, onto and one-to-one.

PROOF. The Stokes problem

bn

/

Fig. 1
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(u, p) satisfies (2.1),

U = U/3 on all,

u/3 given in au 1( all) ,

has a unique solution up to an additive constant in p; the continuity properties are presented
in [2, Prop. 2.3].

This is the well-known Stokes problem. We wish to present the same result for a different
problem.

1HEOREM 2.3. For every r ~ ~, the mapping

'Yl: ofLr(n)/R2 x {O}~ OU;(an)

is continuous, onto and one-to-one.

PROOF. 

It must be shown that the problem

(U, p) satisfies (2.1),

auf an -pn = tf> in a.a,

tf> given in OIL;( a.a) ,

has a unique solution in 0/['(,0,) up to an additive constant function in u, and that

IluIIHr+I/2(Il)/R2 + IlpIIHr-I/2(Il):S; CII<f>IIHr-I(oll)

Notice that problem (2.8) is the adjoint boundary value problem of the preceding Stokes
problem (2.6)

First, the proof is done for r =!. The space "If = {v E [H1(n)]2: V .v = O} is a Hilbert space.
Then if u is solution of (2.8), it satisfies

In (-Au + Vp). v dx:::: 0 'v'vE'V,

and by integration by parts

v dx -f p v .v dx + f
In lan pv'n=O.

Then, because of v E 'Y,

f J V Ui V Vi dx -( </J. V dx = 0

i=1 Jan
(2.10)'v'v E 'V
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Conversely, if u E "II' satisfies (2.10), we deduce

'v'v E {[D(.a)f: v .v = Q}In J1.u .v = 0

and, as for the Stokes problem [2, Prop.

1]

3p E L \[J,) such that flu = Vp

This P is not uniquely determined, but two functions satisfying (2.11) only differ by a constant
Then integrating (2.10) by parts, we find that

f Iluv dx + f ~. v -f
In Jan an Jon <fJovdx=O

and it follows, using (2.11) and V .v = 0, that

r (~-pn ) .vdx=r tfJ-vdx
Jon an Jon

Eq. 

(2.12) only means that au/an -pn -<fJ is orthogonal to the traces of elements of "If, that is

on H-1/2(an) for some A E ~au/ an -pn -<p = An

Recall that p in (2.11) was not uniquely determined, but that p + A is also a sol4tion in (2.11).We 
can thus affirm that if u satisfies (2.10), there exists a unique p such that (u, p) satisfies(2.8).

Then the sets {( u, p): (u, p) E aU 1/2( (J) and satisfying (2.8)} and {u: u E 'V and satisfying(2.10)} 
are equivalent.

The projection theorem ensures that problem (2.10) has a solution unique in 'V to within an
additive constant. Then (2.8) has a unique solution in (H1({J)f/1R2 x ~((J).

The continuity follows from several known results. In what follows Cj will be constants
which depend only of the geometry of the domain.

(1) pEL 2( (J) is decomposed in L 2( {J )/IR (:f) IR by

(2.13)with ( po dx = 0 and A = ---~ ( p dx
In meas 01& Inp=po+A

Then

(2.14)Ilplli2(n) = Ilpolli2(n) + A 2(meas lJ)

and

(2.15)
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(2) By Prop. 2.2 of [2]: if p is such that iJp/iJXi E H-1(0,), then

(2.16)Ilplli2(ll)/R ~ cJIVpll(H-l(ll)y

Combining (2.11), (2.15) and (2.16), we can write

Ilpolli2(fl) ~ cJlliuI11H-l(fl)r

and recalling that Il is a continuous embedding of H1(n) on H-1(n),

I IPol1 i2(f}) ~ czllulltHI(f})/Rt

(3) A can be estimated by (2.8) or (2.13):

in H-1/2(f1) .An = auf an -pon -cfJ

Taking norms,

+ Ilp~IH-112(lJ)llnIlL2(lJ) + IItfJIIH-l12(lJ)

All of these numbers can be computed. Recall that the function n is

n : a[J~R2 ,

from which

(ni(x) + n2(x)2)dx

Since n is unitary,

Ilnlli2(aD) (= me as an) < +00

by hypothesis, on an, and IlnIIH-l/2(aD) ~ c31InIIL2(an) by the embedding L 2(an) C H-1/2(an).
Similarly, because of the continuous embedding

h : L 2(n)-+ H-1/2(an), p~p/an,

then

IIPoIIH-1J2(iif}) ~ c41IpOIIL2(f}) ,

while the embedding
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~/an
ani2: (H1(.Q)/~)2-+H-1/2(.Q), u~-

results in

Ilau/ anIIH-l12(!) ~ csllull(Hl(!)/RY

So, using (2.17), (2.19), (2.20) and (2.21), the inequality (2.18) can be rewritten as

(2.22)IAI ~ c61Iul/(Hl(lJ)/Rf+ c711ct>IIH-II2(lJ)

Letting v = u in (2.10),

IIVulli2(fl> = (t/J, 'You) , (2.23)IIVulli2(n) ~ 11ct>IIH-l/2(an)IIUIIHI12(an)/R2

because of <tf>, A) = 0 with A E R2.
Poincare's lemma gives another result:

csll ull (Hl(m/Rt ~ IIVuIlL2(m

Eqs. (2.23), (2.24) and the lifting of 'YoU in {}, give

c~llulltHl(n)/Rr ~ 11ct>IIH-I12(an)11 ull (Hl/Rr

or

1
Ilull(Hl(J2)/R2f ~ a 11<t>IIH-1i2(an)

Eqs. (2.14), (2.17), (2.22) and (2.25) finally give the result (2.9) for some constant C which only
depends on the geometry of the domain but only for the case r = !. For regularity results with
r >!, the techniques of [6] apply. For, the problem is then the adjoint boundary value problem
of the elliptic problem of Stokes, for which regularity exists.

3. Representation of solutions

In this section we supply a useful representation of solutions.
Denote by {!p'(n), (r ~ 0), the subspace of H'+l/2(n) x w+3/2(n) whose elements {H, c/>}

satisfy

IlB = 0 in n,

1l4> + V .B = 0

(3.1a)
in !1 (3.1b)

Let
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<If'~(n) = {{H, <I>} E <If'r (n): a<l>/ an = 0 in an}

Notice that for elements of .OPo(o,) one has

H.ndx=O.
11

For every r ~ 0, define a mapping

f: .<?J>r({J)~ ofLr({J)

with the property that the correspondence {H, <I>} ~ {u, p} is given by

p = Ilcf> ,

which is clearly continuous with respect to the metrics of these spaces. Stronger properties are
enjoyed by the restriction

/0 : i?J>o(lJ)~ ofjr(lJ)

of / to PJo(f},).

THEOREM 3.1. For every r ~ 0 the mapping 10 is bijective (one-to-one and onto oft, (lJ»,
between '<?}>o{lJ) and oft'{lJ), except for an additive constant in the function <t> E H'+3/2{lJ).

PROOF. Let {u, p} E ofLr(lJ) be given. Let 4> E Hr+3/2(lJ) be such that the second part of
(3.5) and the condition a4>/ an = 0 on aR are satisfied. Then by well-known properties of
elliptic differential equations [6] such a 4> exists, is unique except for an additive constant, and
depends continuously on p. Now define

H = vu -V</> E Hr+l/2(n)

Clearly (3.1) is satisfied because (3.7) implies

IlH= vllu-Vp=O and V. H = -~<P

It can be seen that the pair {H, </>} is uniquely determined (except for an additive constant in
</» and depends continuously on the pair {u, p}.

This representation of functions of oft (n) is evidently independent of any boundary
conditions. Nevertheless, in the next section it will be shown that such a representation can be
characterized by the trace of u in an.
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4. Construction of bases

In this section a method for constructing bases for Stokes problems is developed. It permits
building them up from corresponding bases for Laplace's equation.

First, notice that the boundary values of elements {H; cf>} E ppr (,{}) are restricted by the
condition

( H.ndx= ( ~dx
laD laD an

by virtue of (3.1b). Hence we define

{5j>'(an) = {{H, cf>} E H'(an) x H'(an): (4.1) holds}

equipped with the metric of Hr(an) x Hr(an)/R.
Define the trace mapping

g : .o;'(n)~ .o;'(an)

as that which yields the correspondence

{H, </>}~{'YoH, 'Yl</>}

Here

'Y 1 <P = !!£ / a{},
an

'YoB = H/all,

LEMMA 4.1. The mapping g : .O}>'(f),)~ .O}>'({)f),) of (4.3) is a bijection and is bicontinuous.

PROOF. There exists a unique solution {H, <p} E r;pr (n) of

on anIlH=O in ll, H = 'YoB

and

d<f>=-V.H in n, on anact>an- = 'Y 1 ct>

which depends continuously on the data 'YoB and 'YlcP. The converse statement is straightfor-
ward.

LEMMA 4.2. Define the mapping

k : :!pr(j)O,)~ ofLr(O,)
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as the composition k = f 0 g-

Then k is continuous.

PROOF. k is the composition of two continuous mappings.

Consider a system

(4,8){<!Jy.., Hy..} C .o;r(fl),

where 'Y = 0, 1 while a = 1, 2, , such that for every a,

(4.9)HOa = 0 in [J

Recall 

that this implies

(4.10)in [}dcPoa = 0

= [U-ya, pya] E ofJr({J) byUsing the mapping (3.4) we can define fly..

(4.11U'Ya = f( <f>'Ya, H'Ya

Now let

.}

(4.12)1& = {Uya E oftr([J): 'Y = 0, ; a = 1,2,

Using the trace mappings 'Yo and 'Yl given in Section 2, we define

I!}J 1 = 'Yo9JJ , <:!JJz = 'Yll?JJ (4.13)

This notation is now used in formulating the following theorem

THEOREM 4.3. For r ~! let {«fJ-y.., H-y..} C <l}'(n), (y = 0,1; a = 1,2, ...), be such that (4.9)
and (4.10) are satisfied. Assume {a«fJOl/an, a«fJwfan, ...} C H'(an) to span the Hilbert subspace
ofH'(an) whose elements v E H'(an) satisfy

(4.14)

to span H'(a[),).Assume in addition the system of traces {H11, H12,
Then PJJ1 C Hr(aa) spans OUr(aa).

PROOF. We prove that .O}J1 C Hr(an) C HO(an) spans Hr(an). This clearly implies the
desired result.

We shall establish that for any u in OU~(an) and any neighborhood of u, it is possible to
construct a linear combination of elements of .O}J 1, belonging to that neighborhood.
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Given u in U1(afJ), by Theorem 2.2 it can be extended in (;r(fJ), uniquely except for an
additive constant. Let {H, <f>} be the element of PJ>o(fJ) related to u and p by (3.5), i.e.
{H, <f>} = fol({u, p}); the definition of {H, <f>} depends on the choice of the arbitrary constant in
p. In view of Lemma 4.2 it will be enough to show that given E > 0, it is possible to construct a
linear combination {G, I/I} of elements of the family {Hya, <f>ya} such that

II~II H'(an)
andIIH -GIIH'(8fl) < e

<8

Take () E Hr(all)sllch that

Given e > 0 there exists N1 > 0 such that there is a linear combination ~Z'!"l aaHla satisfying

<8

while

(4.18)

Relation (4.17) is possible since {HI..} is complete in Hr(alJ); while (4.18) follows from (3.3)
and (4.1), using the facts that

Nl

~1 a,. fan and

Once N1 has been chosen, take N2 such that there is a linear combination ~r:~l b..cPo.. satisfying

Nl a<1> * a<1>oa
II~ aa ~ -CN18 + "" ha -an- H'(an)"" an a=l

,,=1

<~e

where

This choice of N2 is possible because

(4.21)

and {acPOa/an}a=O spans the subspace of H'(an) defined by (4.14).
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So it is easy to see that

Nl N2

'" = L aacPla + L hacPoa
a=l a~l

NI

G = ~ aaHla
a=l

and

satisfy (4.15).
So the theorem is proved.

It means that the family {U-ya}-y=O,l,aEN defined by (4.11) is a complete system of solutions for
Stokes problem No.1, in the sense that any solution can be approximated by linear
combinations of this family. This is clear because of Theorem 2.2, which ensures the
bicontinuity of the trace operator 'Yo.

5. More general boundary conditions

The results of Section 4 can be used to construct complete systems of solutions for many
boundary value problems. This versatility is due to a theory recently developed by one of the
authors [3, 8].

ALet D = HO(ao') (f)HO(ao') and denote the elements u ED by u = [Ul, uz]. Define a linearmapping.P: 
H3/Z(0,)(f)Hll2(0')~D, such that for every [u, p] E H312(0,)(f)Hll2(0,),

.P[u,p] = it = [Ul, U2] = [YoU, Yl(U,P)]

where the trace operators 'Yo '1nd "11 of Sectio~ 2 have been used. "
Let the bilinear form A : D ~ D*, where D* is the algebraic dual of D, be given by

(Au, iJ) = (Ul, VZ) -(UZ' VJ

Here ( , ) stands for the inner product in HO(ao'). Notice that when

andit = ..P(u, p)

v 

= ..C£(v, p)

there follows

{u(avlan -qn)- v (aulan -pn)} dx
an

Let

jp = {..P(u, p) ED: [a, p] E of11([l)}

More generally, define j~, 0 ~ r ~ 00 and replace oftl([}) by oftr+l([}) in (5.5). Adopting the
notation Dr = Hr(a[}) (f)Hr(a[}), it is easy to see that j~ C Dr.

Theorems 2.2 and 2.3 can be used to prove the following results
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THEOREM 5.1. For every r, 0 ~ r ~ 00, one has

'v'VEj~~uEj~(Au, v) = 0

whenever it E Dr.

PROOF. The implication from right to left states the fact that i~ is a commutative subspace
for A. This follows from the fact that when [u, p] and [v, q] satisfy (2.1), one has

and simultaneously

fn{(-llv+gradq). u+pdivv}dx=O.

Subtracting (5.8) from (5.7) gives precisely the 'boundary' relation (Au, i3) = o.
To deal with the implication from left to right, let the sign 1- denote orthogonality in

HO(an). Let us first remark that

OIL! = {n}.L n H'(afl)

because the existence Theorem 2.2 proves precisely that any element of the space on the right
is the trace of a solution of the Stokes problem.

Let a = [U1, U2] E Dr and choose {j = [0, n] E j p C Dr, where n is the unit vector normal to
the boundary an; then the left-hand side of (5.6) becomes (U1, n) -(U2, 0) = o. This implies
U1 E {n}-L. Hence U1 E 0Il1.

This result, together with Theorem 2.2, implies that there is a pair r u', p'l which satisfies
(2.1), and such that .:E[u',p'] = [U1, u~] E jP. Therefore, for every {j = [V1, V2] E jp, one has
(U1, V2) -(u~, vJ = 0 and simultaneously (U1, V2) -(U2, vJ = O. Hence, U2 -u~ E {OIlJ-L = {'!}.
This means that there is a constant c, for which .:E[u', p'+ c] = [U1, U2]. Therefore [U1, U2] E [p.

A linear subspace of Dr enjoying property (5.6), is said to be completely regular with" " ""*..." "* "
respect to Ar: Dr -+ D: [3]. Here Ar: Dr -+ Dr IS the restrIctIon of A: D -+ D to Dr.

" " " "*
Therefore, Theorem 5.1 states that !) ~ C Dr is completely regular for Ar : Dr -+ Dr' whenever
0 ~ r ~ 00. Clearly

A Al A

!Jp ::J !J p ::J ...::J !J;

Let

(5.10a)

(5.10b)

JiP1 

= {U1: 3il = [U1, Uz] E jp} C H'(ao'),

Jipz = {Uz: 3il = [U1, uz] E jp} C H'(ao').
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It is easy to see that the stronger relation .9'PI C Hr+I(afl) holds; however, (5.10a) is the
property we need for the discussion that follows. In view of the above and (2.3), (2.4), it is
clear that

(5.(jS~J.1. = {n}, (.!fJP2).L = {'\}

Here we have written {n} for the one-dimensional linear subspace of functions defined on an,
generated by the function whose value is the unit normal vector n; similarly, {A} stands for the
two-dimensional subspace of functions which are constant on an.

Therefore

(5.12)

HO(all):) 

Hr(all):) (!1pJ.L + (!1P2).L

where the orthogonal complements on the right are taken in HO(an). Notice also that Hr(af})
is dense in HO(an). Due to these facts Theorem 10.1 of [5] is applicable; this implies that !lip
can be extended in a unique manner to become a linear subspace (not necessarily closed)
which is completely regular for A : D ~ D*. It can be seen that this linear manifold is !lip.

The following concept will be useful for characterizing those systems of functions in terms of
which any solution of (2.1) may be approximated in n.

A A *
Dr ~ Dr' providedDEFINITION 5.2. A set ;:jJ C j p is c-complete in j p with respect to A,

that

'v'w E r?iJ=? it E j~ (5.13)(Au, w> = 0

whenever U E Dr. :fJ is said to be a connectivity basis when, in addition, Arfj'C Dr is linearly

independent.

Given r?iJ c f> it is convenient to introduce the notation

@z = {Uz E HO(a.a): 3[Ul' Uz] E g7J}. (5.14).q}Jl = {Ul E HO(all): 3[Ul' UJ E f?1J},

A connection between c-complete systems and connectivity bases is supplied by the
following result.

THEOREM 5.3. Let r > O. Assume riJ c j~. Then the following assertions are equivalent:
A A A A*

(i) PA is c-complete for ji ~ with respect to Ar : Dr ~ Dr;
(ii) t?JJ is c-complete for jp with respect to A: D ~ D*;

(iii) span PAl = {n}.L and span '?JJ2::J {n}; (5.15)
(iv) span PA2 = {A}.L and span PAl::J {A}. (5.16)

PROOF. 

This theorem is implied by Theorem 10.2 [5]

For the application of this theorem to Stokes problems (2.6) and (2.8) of Section 2, it is
recalled that
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Jpl = OUt = {n}, JiP2 = ]P2 = OU2(an) = {A}.L

}cJp where Wa=[Wal'WaZ]' and let [w,Consider a connectivity basis ,qJj = {w, wz,
ofll/Z([l) be such that

on anon a[) , Wa2 = aWa/an -PanWal = Wa

spans OlT~(an), while {W12, W22,

We look for [u, p] E oU1/2(fl)

By virtue of Theorem 5.3 we know that {WII, W2I, ...

OU~(an).
Let UI E OU1(an) be given and consider Stokes problem No,

such that

on an'YoU = Ul

Then we get the following approximating sequence

N

[UN,pN] = L aZ;:[w",p,,]
,,=1

(5.20)

where a ~ are chosen so that

(5.21)IIYouN -uJF = (YouN -Ul, youN -UJ

is minimized. This choice is consistent with 'YOUN ~ Ul on an, because {Wll, W21, ...} spans
6iL~( an), and therefore [uN, pN] ~ [u, p], by virtue of Theorem 2.2. Notice that the latter limit
is taken in HI/2(n) (f) H-1/2(n)/~.

Similarly, when Stokes problem (2.8) is considered and U2 E 6iL~(an), the'approximating
sequence is given again by (5.20), except that now a~ is chosen so that 11'YI(UN, pN) -u21F is
minimized. Again, this choice allows that 'Y1(UN, pN)~ U2 on an, because {WI2, W22, ...} is
complete in 6iL~( an); hence [uN, pN] ~ [u, p] by virtue of Theorem 2.3. The limit is taken in
(H3/2(n)/~ 2) (f) HI/2(n) and therefore also in (HI/2(n)/~ 2) (f) H-1/2(n).

Notice that when Stokes problem (2.8) is considered, 'YouN ~ 'You in the Hl(an) norm and
hence also in the HO( an) norm. However, when problem (2.6) is considered, one cannot
expect that 'Y1(UN, p)~ 'Y1(U, p), in the HO(an) topology; indeed in general 'Y1(U, p) may not
exist in HO(an). A necessary and sufficient condition for its existence in HO(an), is that
Ul E Hl(an). If the data satisfy this condition, then a sequence approximating to 'Y1(U, p) is
given by

N

U2" = L b~ Wal
a=l

where br;: is chosen so that II'YIUN -uzlF (with norm is in HO(a.a)) is minimized. This implies
the following system of equations for br;: (a ~ 1,2, ..., N):

N

L b~(Wal
n=1

W/3J = (Uz, WaJ = (Ul, WaZ) . (5.23)
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Notice that the right-hand member of (5.23) is expressed in terms of the data of the probl~m
only.

Many other problems can be treated with the same c-complete system ;JjJ C .!JP. Indeed, let
.:£: H3/2(n)ffiH1/2(n)~D = HO(an) + HO(an) be any other linear mapping and retain the
notation introduced in (5.1) and (5.2), except that the third equality of (5.1) is here left out; i.e.
the notation to be used is defined by (5.2) and

cP[u, p]:;: U:;: rUt, Uz] (5.24)

In addition, it will be assumed that the mapping .:I: is such that (5.4) holds.
There are many mappings satisfying these conditions. If we restrict attention to those which

are point-wise, then it can be shown that the most general one is

where A and Bare 2 x 2 square matrices, such that ABt and CDt are symmetric, while the
4 x 4 matrix

[~ ~]
is non-singular: A special case of this situation is when

C=Bt , D=A1

and the rank of the rectangular matrix [A, B] is two.
Particular cases of special interest are

EXAMPLE 5.4. A and B are scalars; i.e. A = aI, B = f3I, where I is the identity matrix

EXAMPLE 5.5. There is a partition of the boundary into r 1 and r 2 such that A(x) = 0 on r 1
and B(x) = 0 on r2o

6. 

Construction of c-complete systems of solutions

Theorem 5.3 exhibits a criterion that a set r?JJ c jp is a c-complete system of solutions for
the Stokes equations (2.1); for example condition (iii) of that theorem. Assuming that r?JJ is
denumerable, write

.} ,

.} 

.

It is then required that
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span PJJ1 = {n}.L and span P.lJ2:J {n}

Noting 

that the pair [0,1] E ofLr([),), and that, in view of (5.1),

2[0,1] = [0, n] C jp

it is natural to assume that span 9JJ2:) {n}. Thus it will only be required to construct a system
:iJ, such that

span r!lJ1:J {n}.L

Theorem 4.3 yields a procedure for constructing such a system starting from a correspond-
ing set for Laplace's equation. Thus, recall that the system

{Re z", 1m z"; a = 0, 1,2,

.}

is c-complete for any bounded region [11], and define

I/IZa = Re za , 1/12a+l = 1m za , a = 1,2,..
1/11 1,

In view of the c-completeness of the system (6.5), it is clear that if we take in what follows
'Y = 1,2, ..., i = 1,2. Then the family {<Po,y; O} U {<Pl,y; By}, defined by

2

= -L!XiH".i
i=l

<l>o.'Y = 1/I'Y+l ,
<PI,y

with

p = 0, 1, 2,H'Y.i = 0 if'Y + i is odd, H2p+i,i = I/Ip+l ,

is a c-complete system by (4.11).
In applications, solutions of Stokes equations (2.1) in an unbounded region which is not

simply connected, deserve special attention, since they occur in the important problem of flow
past a body.. When the region considered is the complement of a bounded simply connected
region (Fig. 2), we may formulate the homogeneous Stokes problem, supplementing either
(2.6) or (2.8) with Sommerfeld's radiation conditions at infinity.

Q

Fig.
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A c-complete system for Laplace's equation in such region, satisfying radiation conditions,
is [11]~

(6.9){Re(log z), Re z-a, 1m z-a; a = 1,2, ...

Therefore the family {<Po.,,; O} U {<Pl.,,; B,,} defined by

2

cP1.y = -L !xiHy.i
i=1

(6.10)<POo'1 = 1/1'1'

and (6.8), is again a c-complete system for this problem if we replace the definition (6.6) of l/Ia
(a = 1,2, ...) by

(6.11)1/11 = Re(log z) , 1/12a = Re z-a 1/12«+1 = 1m z-a
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