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A boundary method for solving Stokes problem is presented. This is based on the use of systems of
solutions of the homogeneous equations, which are complete. A convenient criterion, for the com-
pleteness of such systems, is the notion of c-completeness. An apparently new representation of
solutions of Stokes equations is derived and is used to develop a procedure for constructing a
c-complete system. Examples of such systems are constructed.

1. Introduction

The numerical solution of Stokes and Navier-Stokes equations, is a problem of great
practical interest at present. However, it is not our purpose to review it, since recent surveys
are available [1-2]. Instead, our purpose here is to develop a procedure for solving such
problems using a method studied recently by Herrera [3-5]. This method uses general results
on the continuous dependence of solutions on boundary data in the theory of partial
differential equations (for example, those given by Lions and Magenes [6], or more specifically
for Stokes’ problems, by Temam [2]), with a view to approximating any solution. A criterion
for completeness [7] which is suitable for most applications is incorporated. Associated with
the method is an efficient procedure for computing boundary values, which has been
developed with complete generality using an abstract theory of boundary value problems [5,
8]. One of the important features of this boundary method, is that it can be applied to any
linear partial differential equation, irrespective of its type. Applications to an important class
of non-linear problems have previously been reported [4-5].

In addition to the general theory of partial differential equations [6], the method owes much
to the work of Trefftz [9], and of the Italian mathematicians Amerio, Fichera and Picone [10].

The main result reported in this paper is a procedure for developing c-complete systems for
Stokes equations. This is based on a representation theorem for solutions of Stokes equations,
which also seems to be new. The representation theorem is given in Section 3. Then, Sections 4
and 5 are devoted to showing how it can be used to construct c-complete systems. An
important example of such systems is given in Section 6.

2. Notations and preliminaries

In a bounded domain 2 C R? with a regular boundary a0 of finite length (Fig. 1), we
consider the Stokes problem
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226 I. Herrera, H. Gourgeon, Boundary methods
—Au+gradp=0 in 2, divu=0 in{2,

for a function u : 2 > R?, and where p : 2 - R. The boundary conditions will be set up later
on. Firstly some function spaces are defined.

@ (2)={(u, p): (u, p) € H () x HV*(2) that satisfy (2.1)}

REMARK 2.1. If (u, p) is an element of 0)2’(.(2), then (u+A,p+pu)with A ER?and u ER is
also an element of U"(02).
We also define two spaces on {2,

"Ili(aﬂ)={uEH'(Hﬂ): { u -ndx=0},

J a1

UL(002) = {Cb EH ‘(m):f

a0

& dx - 0}_

All of these spaces become Hilbert spaces when they are endowed with the usual inner
product.

For every (u, p) € H"'*(2)x H™"*(2) we write you € H'(32) for the trace of u on 42,
and v,(u, p) € H'(3) for the trace of du/dn — pn on 3. Two kinds of Stokes problems will
be considered, namely those for which y.u or, alternatively, y:(%, p) is prescribed. They will be
referred to as Stokes problem No. 1 and No. 2, respectively.

Here we state some existence and continuity results.

THEOREM 2.2. For every r =3, the mapping
o : W (£2){0} X R - U5 (842)
is continuous, onto and one-to-one.

PROOF. The Stokes problem

oQ

/

Fig. 1.
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(u, p) satisfies (2.1),
u=ug on d,

ug given in U1(602),

has a unique solution up to an additive constant in p; the continuity properties are presented
in [2, Prop. 2.3]. '

This is the well-known Stokes problem. We wish to present the same result for a different
problem.

THEOREM 2.3. For every r =3, the mapping
710 W(@)/R* % {0} > UL(302)

is continuous, onto and one-to-one.

PROOF. It must be shown that the problem

(u, p) satisfies (2.1),
ou/fon—pn=«¢ in 402,
¢ given in U5(302),

has a unique solution in %’(£2) up to an additive constant function in #, and that

llel| z2+2ym? + Pl 1200y < Cllll 10y

Notice that problem (2.8) is the adjoint boundary value problem of the preceding Stokes
problem (2.6)

First, the proof is done for r = 3. The space ¥ = {v € [H'(£2)]*: V - v = 0} is a Hilbert space.
Then if u is solution of (2.8), it satisfies

f (-Au+Vp)-vdx=0 VvEY,
n

and by integration by parts

E' Vu,Vo, dx f Ju vdx—fpV'vd‘x+f pv-n=0.
J o , an

an ON

Then, because of v € ¥,

2
3 Vu,.vv,.dx—f é-vdx=0 Voe¥ (2.10)
an

i=1
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Conversely, if u € ¥ satisfies (2.10), we deduce
f Au-v=0 Voe{[D@)J:V-o=0}
2

and, as for the Stokes problem [2, Prop. 1]
dp € L*(2) such that Au=Vp

This p is not uniquely determined, but two functions satisfying (2.11) only differ by a constant
Then integrating (2.10) by parts, we find that

IAuvdx+f ﬂ-v—f ¢ -vdx=0
o) an 0N an

and it follows, using (2.11) and V - v = 0, that

Ln<g—:—pn)-vdx=fm¢-vdx

Eq. (2.12) only means that du/dn — pn — ¢ is orthogonal to the traces of elements of ¥, that is
du/on —pn— ¢ = An  on H™'*(aQ2) for some A ER

Recall that p in (2.11) was not uniquely determined, but that p + A is also a solution in (2.11).
We can thus affirm that if u satisfies (2.10), there exists a unique p such that (u, p) satisfies
(2.8).

Then the sets {(u, p): (u, p) € U*(2) and satisfying (2.8)} and {u: u € ¥ and satisfying
(2.10)} are equivalent.

The projection theorem ensures that problem (2.10) has a solution unique in %" to within an
additive constant. Then (2.8) has a unique solution in (H'(2))’/R?x H°(£2).

The continuity follows from several known results. In what follows ¢; will be constants
which depend only of the geometry of the domain.

(1) p € L¥(2) is decomposed in L*(£2)/R DR by

1
meas {2

p=po+A with [ ppdx=0andA = [ pax 2.13)
0 o]

Then

lpllzz@ = IIpollz2e) + A*(meas £2) (2.14)

and

plizayr = minlp — plliz0) = [pdlize (2.15)
rER



I Herrera, H. Gourgeon, Boundary methods 229
(2) By Prop. 2.2 of [2]: if p is such that dp/dx; € H'(12), then
Il < cillVPllariay (2.16)
Combining (2.11), (2.15) and (2.16), we can write
IPollZ2a) < cillAullZ1an
and recalling that A is a continuous embedding of H'(2) on H™'(12),
[PdlZza) < cllullG@my
(3) A can be estimated by (2.8) or (2.13):
An = du/on—pn— ¢ in H*(N).
Taking norms,

non |l du
‘,‘\ !n H 2oy = |52
Jn

o +|pdla-2@linll 2ay + |l -2

H
All of these numbers can be computed. Recall that the function »n is

n:d->R?>, x-n(x)= (”l(“\: ') .
n-(x))

from which

n720, = j (ni(x)+ na(x)*) dx
af2

Since n is unitary,
|Irl|220) (= meas 862) < +oo

by hypothesis, on 3, and [[n]lx-+2p0) < c3lnll12ea) by the embedding L*(302)C H™*(302).
Similarly, because of the continuous embedding

i1 H Lz(ﬂ)—> H—1/2(a‘0) , PP p/an 3
then
lIpoll er-12a0y < callpoll 2@ »

while the embedding
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ir: (HQ)RY—> H (), uw j—:/an

results in

6w/ 8nll -2y < cslull arreaymy
So, using (2.17), (2.19), (2.20) and (2.21), the inequality (2.18) can be rewritten as

Al < collullera@my + clldllaa (2.22)
Letting v = u in (2.10),

IVullZza) = (&, you), IVullza) < [l a-2@arlull aye? (2.23)

because of (¢, A) =0 with A ER?.
Poincaré’s lemma gives another result:

clull e oyry =< [Vul| L2a)

Eqgs. (2.23), (2.24) and the lifting of you in £2 give

cillullZamy <l a2allull @my

or
1
llel] errcaymr < P !l 112002,

Egs. (2.14), (2.17), (2.22) and (2.25) finally give the result (2.9) for some constant C which only
depends on the geometry of the domain but only for the case r = 3. For regularity results with
r >3, the techniques of [6] apply. For, the problem is then the adjoint boundary value problem
of the elliptic problem of Stokes, for which regularity exists.

3. Representation of solutions

In this section we supply a useful representation of solutions.
Denote by #'(£2), (r =0), the subspace of H*"*(2)x H***((2) whose elements {H, ¢}
satisfy

AH=0 inQ, (3.1a)
Ap+V-H=0 in 0 (3.1b)

Let
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PL0R) = {H, $} € P"(Q): 3¢/3n =0 in o0}

Notice that for elements of P§(£2) one has
]ﬁ \'-Hd,\-:f H-ndx=0.
) afl

For every r =0, define a mapping
f: 2 (@)~ '@)
with the property that the correspondence {H, ¢}— {u, p} is given by
u:%(Vd)*H)‘ p=A¢,
which is clearly continuous with respect to the metrics of these spaces. Stronger properties are
enjoyed by the restriction
fo: PHQ)~> U (D)
of f to Pu((2).

THEOREM 3.1. For every r=0 the mapping f, is bijective (one-to-one and onto "22'(.())),
between P§(£2) and U’ (2), except for an additive constant in the function ¢ € H™***((2).

PROOF. Let {u, p} € U’ (2) be given. Let ¢ € H™*(2) be such that the second part of
(3.5) and the condition d¢/dn =0 on IR are satisfied. Then by well-known properties of

elliptic differential equations [6] such a ¢ exists, is unique except for an additive constant, and
depends continuously on p. Now define '

H=w-V¢e€ H"*¥N)
Clearly (3.1) is satisfied because (3.7) implies
AH=vAu-Vp=0 and V-H=-A¢

It can be seen that the pair {H, ¢} is uniquely determined (except for an additive constant in
¢) and depends continuously on the pair {u, p}.

This representation of functions of % (£2) is evidently independent of any boundary
conditions. Nevertheless, in the next section it will be shown that such a representation can be
characterized by the trace of u in af2.
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4. Construction of bases

In this section a method for constructing bases for Stokes problems is developed. It permits
building them up from corresponding bases for Laplace’s equation.

First, notice that the boundary values of elements {H, ¢} € P"(£2) are restricted by the
condition

I H-ndx= f 96 dx
o0 a0 On
by virtue of (3.1b). Hence we define
P (002) = {{H, ¢} € H' (32) X H'(312): (4.1) holds}

equipped with the metric of H"(3£2) X H"(32)/R.
Define the trace mapping

g: P (2)— P (d02)
as that which yields the correspondence

{H, ¢} {yoH, v:4}

Here
vol = HIOQ, b= ‘—;%/an

LEMMA 4.1. The mapping g : P'(2)— P"(342) of (4.3) is a bijection and is bicontinuous.
PROOF. There exists a unique solution {H, ¢} € #'(2) of

AH=0 in {2, H=yH on i
and

Ap=-V-H inQ, %=71¢ on 02

which depends continuously on the data yoH and y:¢. The converse statement is straightfor-
ward.

LEMMA 4.2. Define the mapping

k: P (00Q)- U (Q)
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as the composition k = fo g’
Then k is continuous.

PROOF. k is the composition of two continuous mappings.

Consider a system

{brer Hya} T P'(12), (4.8)
where y =0, 1 while a = 1,2, , such that for every a,
H,.=0 in 4.9)

Recall that this implies

Ado.=0 in N (4.10)
Using the mapping (3.4) we can define &, = [#ya, Pya] € 4 (2) by

lye = f($yar Hya 4.11
Now let

B={h.cW@):y=0, ;a=12 1} 4.12)
Using the trace mappings vy, and vy, given in Section 2, we define

Bi=v B, Ba=y% @.13)
This notation is now used in formulating the following theorem.
THEOREM 4.3. For r=3 let {¢pyo, Hy e/ C P (2), (y=0,1; a=1,2,...), be such that (4.9)

and (4.10) are satisfied. Assume {3poi/dn, dde/on, ...} C H'(842) to span the Hilbert subspace
of H’(342) whose elements v € H'(3(2) satisfy

vdx =0 (4.14)

Assume in addition the system of traces {Hy1, Hyz, to span H' (312).
Then B, C H'(002) spans U1(312).

PROOF. We prove that 3B,C H'(3Q2)C H°(312) spans H'(4f2). This clearly implies the
desired result.

We shall establish that for any u in %7(3f2) and any neighborhood of u, it is possible to
construct a linear combination of elements of %,, belonging to that neighborhood.
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Given u in Uj(3(2), by Theorem 2.2 it can be extended in U’(f2), uniquely except for an
additive constant. Let {H, ¢} be the element of P;(f2) related to u and p by (3.5), i.e.
{H, ¢} = fo'({u, p}); the definition of {H, ¢} depends on the choice of the arbitrary constant in
p. In view of Lemma 4.2 it will be enough to show that given £ >0, it is possible to construct a
linear combination {G, ¢} of elements of the family {H,., ¢,.} such that

|H - Gllareay<e and ‘ i

nil g 0)

<eg
Take 6 € H"(312) such that
| 6dr=1
J a2
Given £ >0 there exists N; >0 such that there is a linear combination =L, a,H,, satisfying

<eg

H'(af)

N1
|H- 3 a.H.,
’ a=1

while

il
O\l 1" ©00)

f S g, 2 dx' <£ (4.18)
a0 oy dn 2

Relation (4.17) is possible since {H,.} is complete in H'(32); while (4.18) follows from (3.3)
and (4.1), using the facts that

N1

Zaaf H, ”d\**ztnl‘ 'H—(féidr and J' H:-ndx=0
afn

=1 an OR

Once N; has been chosen, take N, such that there is a linear combination 232, b,¢o, satisfying

N1 N2
a " 9oa
d’l - CAs Z b fr‘: H,(am<%a
where
Ni
_ 0 (bm
CN 5_::] a, o on dx
This choice of N, is possible because
N1
: I, i
f {2 a, (d) - c'NIH} dx =0 4.21)
an (2 on

and {d¢o./dn}.-o spans the subspace of H'(d2) defined by (4.14).
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So it is easy to see that
N1 N N3
G=Y aH, and =3 @i+ D butboa
a=1 ' a=1 a=1

satisfy (4.15).

So the theorem is proved.

It means that the family {u,.},-01. «en defined by (4.11) is a complete system of solutions for
Stokes problem No. 1, in the sense that any solution can be approximated by linear

combinations of this family. This is clear because of Theorem 2.2, which ensures the
bicontinuity of the trace operator v,.

5. More general boundary conditions

The results of Section 4 can be used to construct complete systems of solutions for many
boundary value problems. This versatility is due to a theory recently developed by one of the
authors [3, 8].

Let D = H°(62)® H°(32) and denote the elements i € D by @ = [u,, u,]. Define a linear
mapping £ : H¥*(2) ® H"*(2)~ D, such that for every [u, p] € H**(2)® H'*(2),

c"Ce[u’ p] =u= [ul, u2] = [you’ Yl(u’ P)]

where the trace operators 7y, and y: of Section 2 have been used.
Let the bilinear form A : D » D*, where D* is the algebraic dual of D, be given by

(A, D) = (u1, v2) — (U, v1)
Here ( , ) stands for the inner product in H°(8£2). Notice that when
i =Z%(u,p) and o=2L(v,p)

there follows
(Ad, b)= f {u(v/dn — qn)— v(du/dn — pn)} dx
2

Let
Jp ={L(u, p)E D: [u, p] € X' (2}
More generally, define I, 0<r<w and replace % ({2) by @1(2) in (5.5). Adopting the

notation D, = H'(3Q2) @ H' (1), it is easy to see that [ C D,
Theorems 2.2 and 2.3 can be used to prove the following results
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THEOREM 5.1. For every r, 0<r=<x, one has

(A4, 0)=0 Voedroncd;
whenever G € D,.

PROOF. The implication from right to left states the fact that [ is a commutative subspace
for A. This follows from the fact that when [«, p] and [v, q] satisfy (2.1), one has

~

’7 {(—Au+gradp)-v+qdivu}dx=0
and simultaneously
f {~Av+gradq)-u+pdive}dx=0.
Ky

Subtracting (5.8) from (5.7) gives precisely the ‘boundary’ relation (Ad, 8) = 0.
To deal with the implication from left to right, let the sign L denote orthogonality in
H*°(312). Let us first remark that

Ui ={n} N H (502)

because the existence Theorem 2.2 proves precisely that any element of the space on the right
is the trace of a solution of the Stokes problem.

Let i = [u;, u,) € D, and choose 4 = [0, n] € $5» C D,, where n is the unit vector normal to
the boundary a2; then the left-hand side of (5.6) becomes (i, n)— (u, 0) = 0. This implies
u, € {n}*. Hence u, € U;.

This result, together with Theorem 2.2, , implies that there is a pa1r [u', p] Wthh satisfies
(2.1), and such that L[u’, p’] = [u,, u5] € $5. Therefore, for every ¥ = [v,, v,] € #5, one has
(u1, v2) — (43, v,)=0 and simultaneously (u,, v,)— (42, v;)=0. Hence, u,— u;s€ {U}* = {n}.
This means that there is a constant ¢, for which £[u’, p’+ c] = [u,, u,]. Therefore [u,, u,] € I'5.

A linear subspace of D, enjoying property (5 6), is said to be completely regular with
respect to A,:D,—-D¥ [3]. Here A,: D - D} is the restriction of A: D—>D* to D,
Therefore, Theorem 5.1 states that 7 C D, is completely regular for A, : D, - D*, whenever
0=<r=<oo, Clearly

$pDILD-- D83
Let

Fp1={us: it = [us, w] €3} C H'(32), (5.10a)
I ={uy: it = [uy, wy] € $3} C H'(302) . (5.10b)
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It is easy to see that the stronger relation $5, C H'(3(2) holds; however, (5.10a) is the
property we need for the discussion that follows. In view of the above and (2 3), (2.4), it is
clear that

et =1{n}, (Fr) ={A} .

Here we have written {n} for the one-dimensional linear subspace of functions defined on 4{2,
generated by the function whose value is the unit normal vector n; similarly, {A} stands for the
two-dimensional subspace of functions which are constant on 4{2.

Therefore '

H°(802) D H'(02) D ($p1)* + (Fp2)* (5.12)

where the orthogonal complements on the right are taken in H°(3(2). Notice also that H"(342)
is dense in H °(a!2) Due to these facts Theorem 10.1 of [5] is applicable; this implies that §78
can be extended in a unique manner to become a linear subspace (not necessarlly closed)
which is completely regular for A : D - D*. It can be seen that this linear manifold is $p.

The following concept will be useful for characterizing those systems of functions in terms of
which any solution of (2.1) may be approximated in {2.

DEFINITION 5.2. A set $ C $% is c-complete in $% with respect to A, D, - D}, provided
that

(AG, W)y=0 VYweRDHE S} (5.13)

whenever 4 € D,. & is said to be a connectivity basis when, in addition, ARC D, is linearly
independent.

Given % C D it is convenient to introduce the notation
B, = {u; € H°(9Q2): Nus, u,) € B}, B, = {u, € H°(02): [uy, u2) € B} . (5.14)

A connection between c-complete systems and connectivity bases is supplied by the
following result.

THEOREM 5.3. Letr> 0. Assume % C 5. Then the following assertions are equivalent:
@) QB is c-complete for $% with respect to A, : D - D};
(ii) B is c-complete for $p with respect to A : D-D*;
(iii) span B, = {n}" and span %,D {n}; (5.15)
(iv) span &, ={A}" and span B, D{A}. (5.16)

PROOF. This theorem is implied by Theorem 10.2 [5].

For the application of this theorem to Stokes problems (2.6) and (2.8) of Section 2, it is
recalled that
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jPl %1 = {n} Ipo= jpz = %‘2’(60) = {A}L

Consider a connectivity basis % = {W, w,, }C $p where Wa = [Wa1, Waz), and let [w,
%1?(0) be such that

War =W, Onafl, Waz = OW,/0n — p,n  oOn 042

By virtue of Theorem 5.3 we know that {wy;, wa, . . .. 72(892), while {wyz, w2,
US(50). )

Let u; € U(32) be given and consider Stokes problem No.  We look for [u, p] € U'*(2)
such that

Yol = u; on af2

Then we get the following approximating sequence

N

[, Y] = 3 al[Wes Pal (5.20)

a=1

where a? are chosen so that

lyou™ — wilP = (you™ — w1, you™ — uy) (6.21)

is minimized. This choice is consistent with you™ — u; on d£2, because {wy;, wyy, ...} spans

U3(002), and therefore [u”, p"]— [u, p], by virtue of Theorem 2.2. Notice that the latter limit
is taken in H"*(Q2)® H"*(2)/R. ,

Similarly, when Stokes problem (2.8) is con81dered and u, € U3(312), the approximating
sequence is given again by (5.20), except that now a is chosen so that ||ly,(u™, p¥)— u,lf is
minimized. Again, this choice allows that y,(u”™, p~)— u, on 902, because {wi, Wy, ...} is
complete in %3(312); hence [u”, pV]- [u, p] by virtue of Theorem 2.3. The limit is taken in
(H**(2)/R*) @ H'*(£2) and therefore also in (H"*(2)/R>) @ H™ ().

Notice that when Stokes problem (2.8) is considered, you™ — you in the H'(3£2) norm and
hence also in the H°(32) norm. However, when problem (2.6) is considered, one cannot
expect that y,(u™, p)— v:(u, p), in the H°(602) topology; indeed in general y;(u, p) may not
exist in H°(3{2). A necessary and sufficient condition for its existence in H°(f2), is that
u, € H'(302). If the data satisfy this condition, then a sequence approximating to v(u, p) is
given by

N
N
a Wai

where b} is chosen so that [ly;u™ — u, (with norm is in H°(8£2)) is mlmmlzed This implies
the following system of equations for b (¢ =1,2,...,N):

i by (War Wg1) = (U2, Wa1) = (U1, Waz) . (5.23)

n=1
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Notice that the right-hand member of (5.23) is expressed in terms of the data of the problem
only.

Many other problems can be treated with the same c-complete system % C Fp. Indeed, let
£ H*(2)® H"*(2)-> D = H°(602)+ H°(32) be any other linear mapping and retain the
notation introduced in (5.1) and (5.2), except that the third equality of (5.1) is here left out; i.e.
the notation to be used is defined by (5.2) and

Zlu, p] = i = [uy, us] (5.24)

In addition, it will be assumed that the mapping £ is such that (5.4) holds.
There are many mappings satisfying these conditions. If we restrict attention to those which
are point-wise, then it can be shown that the most general one is

u, = A(x)u+ B(.\')(z ou _ pn ) . u= C(x)u+ D(x)(z'(jlf pn )
/ . [ /

. On

where A and B are 2 X 2 square matrices, such that AB' and CD' are symmetric, while the
4 X 4 matrix

[c b]
C D
is non-singular. A special case of this situation is when

C=hB, D= A

and the rank of the rectangular matrix [A, B] is two.
Particular cases of special interest are

EXAMPLE 5.4. A and B are scalars; i.e. A = al, B = BI, where I is the identity matrix

EXAMPLE 5.5. There is a partition of the boundary into I'; and I'; such that A(x)=0on I';
and B(x)=0on I.

6. Construction of c-complete systems of solutions

Theorem 5.3 exhibits a criterion that a set % C $p is a c-complete system of solutions for
the Stokes equations (2.1); for example condition (jii) of that theorem. Assuming that & is
denumerable, write

R = Wi, Wa, .. )= {[Wlla wiz], [war, wal. 3

.%1 = {Wn, Woai, .. } R %3 = {W:l. Waa, . } .

It is then required that
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span B, ={n}* and span %,D {n}
Noting that the pair [0, 1] € %’ (£2), and that, in view of (5.1),
Z[0,1]1= [0, n] C $»

it is natural to assume that span %, {n}. Thus it will only be required to construct a system
9, such that

span B, D {n}*

Theorem 4.3 yields a procedure for constructing such a system starting from a correspond-
ing set for Laplace’s equation. Thus, recall that the system

{Rez*,Imz*;a=0,1,2, .}
is c-complete for any bounded region [11], and define
¢’1 1’ ¢2¢!=Reza, ¢2a+1=Imza, a=1,2,-.

In view of the c-completeness of the system (6.5), it is clear that if we take in what follows
y=1,2,...,i=1,2. Then the family {¢o,,; 0} U{1,; H,}, defined by

2
¢0,v = ‘/’7+1 ’ ¢1,7 == 2 %xiH%i
i=1

with
H,,=0 ify+iisodd, Hypiii = Ype1, p=0,1,2,

is a c-complete system by (4.11).

In applications, solutions of Stokes equations (2.1) in an unbounded region which is not
simply connected, deserve special attention, since they occur in the important problem of flow
past a body. When the region considered is the complement of a bounded simply connected
region (Fig. 2), we may formulate the homogeneous Stokes problem, supplementing either
(2.6) or (2.8) with Sommerfeld’s radiation conditions at infinity.
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A c-complete system for Laplace’s equation in such region, satisfying radiation conditions,
is [11]

{Re(log z),Re z7*,Imz™*;&=1,2,... 6.9)

Therefore the family {¢,,; 0} U {¢1,,; H,} defined by

doy =¥y, Dy =— 21 xH,,; (6.10)

and (6.8), is again a c-complete system for this problem if we replace the definition (6.6) of .
(a=1,2,...) by

1/11 = Re(log Z) , (/Jza =Rez™™* ¢2a+1 =Imz"" (6.11)
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