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An abstract theory for boundary value problems that has been recently devel-
oped by the author, is presented. It exhibits the algebraic structure possessed by
linear problems. A characterization is given for complete systems of solutions in
regions of arbitrary form. A systematic development of biorthogonal systems of
solutions is presented and it is used to obtain generalized Fourier series. General
variational principles for boundary value problems are formulated. They include
problems with prescribed jumps and subjected to continuation type restrictions.
Examples of applications are given for fluid and solid mechanics; among them,
theory of plates, Stokes flows, diffraction problems in elastic solids, etc.

I. INTRODUCTION

In a sequence of papers [1-28], the author has d~veloped an abstract
theory of boundary value problems, exhibiting an algebraic structure
which systematically occurs in boundary value problems which are linear.
This structure is in the first place, interesting in itself, because of its
simplicity and beauty. But, more important, it has relevant applications.
Thus far, these applications have been mainly along three different lines:
variational principles, numerical solution of boundary value problems and
development of biorthogonal systems of functions, to obtain generalized
Fourier series developments.

The abstract theory is formulated for general functional-valued opera-
tors defmed on arbitrary linear spaces which, generally, do not possess a
metric or an inner product. This supplies greater flexibility, for applica-
tions of the theory, than standard approaches to this kind of problems.

The notions of boundary operator, formal adjoint, and formal symme-
try are defined abstractly for these operators. This allows the introduction
of abstract Green's formulas.

Regular and completely regular subspaces play an important role in the
theory. By a canonical decomposition of the basic linear space D, it is
meant a pair of regular subspaces {It, I2} which span the total space D.
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An important result of the theory is a one-to-one correspondence between
Green's formulas and canonical decompositions; furthermore, an explicit
expression for the Green's formula associated with any canonical decom-
position is supplied. Another important property is that the regular sub.
spaces 11 and 12, occurring in any canonical decomposition, are necessari-
ly completely regular. This is relevant for the representation of solutions,
because completely regular subspaces are characterized by the fact that
they possess connectivity bases.

Problems formulated in discontinuous fields, which satisfy prescribed
jump conditions, occur frequently in applications; for example, diffrac-
tion problems in acoustics, electromagnetism (theory of antennas), and
elasticity (seismology, seismic engineering, etc.). As a very general exam-
ple of application, operators associated to such problems are developed
abstractly and Green's formulas are given for them.

A general problem with linear restrictions, associated with any func-
tional valued operator P: D -+ D*, is formulated. The general solution
of the homogeneous equation (Pu = 0) is N p; the space of functions
which take the same boundary values as elements of Np, is introduced
abstractly, and it is denoted by I p. For the representation of solutions the
notion of c-complete system (complete in connectivity), is very impor-
tant. As mentioned before, a regular subspace possesses a c-complete sys-
tem, if and only if, it is completely regular. The subspace, Ip, is always
regular and, under very general conditions, it is, in addition, completely
regular. Thus, Ip and, even more, Np, possess connectivity bases. This
supplies the basis for the representation of solutions [22, 25].

Most of the developments of the general theory of partial differential
equations have been carried out in the setting of Hilbert spaces [29, 30].
Thus, it was convenient to relate the algebraic theory with that frame-
work. This is achieved by means of a theorem that shows that a system of
solutions is c-complete, if and only if, it spans the same space as the
boundary values of solutions u EN p, of the homogeneous equation.

A first line of applications of the theory is the development of varia-
tional principles. This is a subject which attracted much attention in
recent years (see for example Refs., 31 and 32), because of its relevance
in connection with the numerical treatment of partial differential equa-
tions. This is, at the same time, the most direct kind of application,
because with every Green's formula, there is a variational principle as-
sociated. Also, a class of variational principles has been developed [19],
which can be applied even when no Green's formula is available. Besides,
if the functional is convex, the variational principle becomes a maximum
principle; when it is saddle, dual extremal principles are obtained [3, 6, 8].
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The second line of applications has been in connection with the nume-
rical solution of boundary value problems. In recent years by a boundary
method it is usually understood a numerical procedure in which a subre-
gion or the entire region is left out of the numerical treatment by use of
available analytical solutions (or, more generally, previously computed
solutions). Boundary methods reduce the dimensions involved in the pro-
blem leading to considerable economy in the numerical work and con-
stitute a very convenient manner of treating adequately unbounded re-
gions by numerical means. Generally, the dimensionality of the problem
is reduced by one, but even when part of the region is treated by finite
elements, the size of the discretized domain is reduced [33, 34].

There are two main approaches for the formulation of boundary
methods; one is based on the use of boundary integral equations, and the
other one on the use of complete systems of solutions. In numerical
applications, the first one of these methods has received most of the
attention [35]. This is in spite of the fact that the use of complete systems
of solutions presents important numerical advantages; e.g., it avoids the
introduction of singular integral equations and it does not require the
construction of a fundamental. solution. The latter is especially relevant
in connection with complicated problems, for which it may be extremely
laborious to build up a fundamental solution. This is illustrated by the
fact that there are methods for synthetizing fundamental solutions start-
ing from plane waves, which can be shown to be a complete system [28].

One may advance some possible explanations for this situation. Although
the principle of superposition is a standard procedure for building up solu-
tions of linear equations, many of its applications have been based on the
method of separation of variables; this has lead to the frequent, but false,
belief that complete systems of solutions have to be constructed specifi-
cally for a given region. Of course, this is not the case; most frequently,
systems of solutions are complete independently of the detailed shape of
the region considered. In Refs. 13, 25 and 28 we have exhibited systems
which are complete for any bounded region, and other ones possessing
the same property in the exterior of any bounded domain.

Also, in some fields of application, procedures which constitute par-
ticular cases of the approximation by complete systems of solutions have
presented severe restrictions and inconveniences. For the case of acoustics
and electromagnetic field computations, a survey of such difficulties was
carried out by Bates [36]. For this kind of studies, the so called "Ray-
leigh hypothesis" restricts drastically the applicability of the method.
However, work by Millar [37] implies that these difficulties are due,
mainly, to lack of clarity, since he avoided Rayleigh hypothesis altogether,



164 HERRERA

by adopting a different point of view. Work by other authors has similar
implications (see for example Oliveira [38]).

Motivated by this situation, the author started a systematic research
of the subject [9, 10, 12-14, 16, 17, 22]. The aim of the study was two-
fold; firstly, to clarify the theoretical foundations required for using
complete systems of solutions in a reliable manner, and secondly, to ex-
pand the versatility of such methods, making them applicable to any pro-
blem which is governed by partial differential equations that are linear.

The aims of that research were satisfactorily achieved to a large extent,
and several reports have already appeared [20,21]; in addition, two more
complete ones are now in press [23, 24]. The task was facilitated by the
progress that has been made in the understanding of partial differential
equations [29]. In addition, the methodology bears some relation with
ideas that had been advanced by Amerio, Fichera, Picone, Kupradze, and
Trefftz, [39-44J. The systematic development of the procedures in a man-
ner which is applicable to any linear problem was made possible, however,
by the algebraic theory developed by the author.

The theory encompases the following aspects:

I. Development of algorithms for computing the solution in the region
and on its boundary .

2. Conditions under which the convergence of the procedure can be
granted.

3. Development of criteria for the completeness of a given system of
solutions.

4. General methods for developing complete systems of solutions.
In addition, the variational principles mentioned before can be used to

formulate these problems. This can be especially useful when part of the
region is treated numerically [33,34].

The third line of applications has been in the development of biortho-
gonal systems of functions to obtain generalized Fourier series. Bior-
thogonal systems of functions, which occur when applying the method of
separation of variables to fourth order equations, such as the biharmonic
equation, have received much attention in recent years (see for example
Refs. 45-49).

In general, the procedure followed by those authors consists in exhi.bit-
ing a differential equation satisfied by the boundary values of any solu-
tion. Then the adjoint of this differential equation is constructed, and it
is shown that the eigenfunctions of these two systems are biorthogonal.
In this manner, a formal expansion for any solution of the original diffe-
rential equation is obtained, in which the coefficients are easily derived by
means of the biorthogonality relation. l"urther analysis is required in order
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to establish the completeness of the system of biorthogonal functions and
the convergence of the expansion. Apparently, Smith [50] was the first to
deal with these problems successfully. Joseph [47] has exhibited in some
recent work the considerable generality of the method by applying it to
a good sample of different problems.

The procedure, however, is not completely satisfactory in some res-
pects. In particular, the development of the differential equation for the
boundary values, and its adjoint, has an ad hoc character which bears
little, or no relation, with the physical situation at hand.

In geophysical studies an independent approach has been followed to
obtain also biorthogonal systems of functions. Indeed, in this field, He-
rrera's [51] orthogonality relations for Rayleigh waves have been known
since 1964 [52, 53]. The argument used by Herrera to derive such rela-
tions allows complete generality, if suitably formulated, but had remained
unnoticed until recently by researchers working in other kinds of applica-
tions.

Herrera and Spence [27] have explained how the aliebraic theory can
be used to generalize Herrera's [51 ] procedure to obtain biorthogonal sys-
tems of solutions for a wide class of equations. Essentially, the method
consists in considering the linear space of solutions Np, given a partial
differential equation which is linear and homogeneous. As it is shown in
Sec. XI of this paper, under quite general conditions, the space N p can be
decomposed into two linear subspaces N} and N~, which are commutative
for an antisymmetric bilinear form Ao. Generally, product form solutions
yield two families {WI, W2, ...} EN} and {wT, w~, ...} EN]., which are
necessarily biorthogonal with respect to the bilinear form A o. When the
systems of biorthogonal solutions are c-complete; i.e., when, for every

~ENp

1=> uENp ,(Aou, wQ) = 0 tv' a = 1,2,

arbitrary solutions can be developed in a direct manner.
The algebraic theory supplies a general framework which places Fourier

biorthogonal systems in a more clear perspective. The biorthogonal sys-
tems are associated with corresponding canonical decompositions of the
space of solutions N p. The bilinear functional Ao, which defines the bior-
thogonality relation, is clearly related to the partial differential equations
considered, and is derivable from the corresponding operator by integra-
tion by parts; no auxilliary adjoint differential system is required. The
relation between c-completeness and the notion of Hilbert-space bases is
well established; this is discussed in Sec. X of the present article. The
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generality of the procedure is wide; it is not restricted by the order of the
partial differential equations, and it is applicable to equations with variable
coefficients, as it is the case of Herrera's [51] orthogonality relations for
Rayleigh waves, which hold for waveguides with arbitrary transversal
heterogeneity. Finally, the biorthogonality property appears as a relation
that is satisfied by pairs of solutions in the whole region where they are
defined, instead of satisfying it just at the boundary. This fact is specially
useful when matching solutions in different regions or when modifying
the region of definition.

In this paper the algebraic theory is developed systematically. The
abstract framework in which the theory is developed, is presented in Sec.
II. Formal adjoints and abstract Green's formulas are introduced in Sec.
III. Section IV is devoted to regular subspaces and canonical decomposi-
tion, establishing their one-to-one correspondence with abstract Green's
formulas, leavipg for Sec. V the introduction of the general problem with
linear restrictions considered by the theory. Generalizations of these no-
tions and variational principles are discussed in sections VI and VII. The
power of the methodology is exhibited in Sec. VIII, by formulating pro-
blems in discontinuous fields, with prescribed jump conditions, in an abs-
tract manner which is applicable independently of the specific operator
considered, as long as it is linear; thus, any linear partial differential (or
system of differential equations) is included. From the point of view of
continuum mechanics, this includes solids and liquids; even more, mixed
systems in which part of the space is occupied by a liquid and another
part by a solid (the details are given in Ref. 19). Results which are relevant
for the representation of solutions are given in sections IX and X. In Secs.
XI-XV, the application of the theory to biorthogonal Fourier series is
presented.

II. PRELIMINARY NOTIONS AND NOTATIONS

Let D be a linear space over the field F of real or complex numbers.
Elements of D will be denoted by u, v, Write D* for the linear space
of linear functionals defined on D; i.e., D* is the algebraic dual of D.
Hence, any element a E D* is a function a: D ~ F which is linear.
Given v E D, the value of the function a at v will be denoted by .

a(v) = (a, v) E F

In this work, functional-valued operators

P:D-+D*
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will be considered. Given u E D, the value P(u) E D* is itself a linear
functional. According with (2.1), given any v E D, (P(u), v) E F will be
the value of this linear functional at v. When the operator P is itself linear,
(P(u), v) is linear in u when v is kept fixed. Therefore, as it is costumary ,
we write

(Pu. v) = (P(U), v} E F

for this value. In this work we shall be concerned, exclusively, with func-
tional valued operators that are linear.

On the other hand, let D2 = D ED D be the space of pairs (u, v) with
u E D and v E D. We may consider functions fJ : D2 -+ F. The values
of such functions on a pair (u, v) E D2, will be written as fJ(u, v). Such a
function is said to be a bilinear functional if it is linear in u when v E D
is kept fixed, and conversely.

Recall that given any functional valued operator P : D -+ D * which is
linear, one can define a bilinear functional fJ: D2 -+ F by means of

(3(u, v) = <Pu, v)

Conversely, given any bilinear functional {3 : D2 -+- F, we can associa-
te with it an operator P: D -+- D* which is linear. Indeed, given any
u E Diet

P{u} = a ED*

where a E D* is defined as the linear functional whose value at any
vEDis

(a, v> = t)'(u, v) (2.6)

Then P: D -+- D* is linear. This establishes a one-to-one correspondance
between bilinear functionals and operators P: D -+- D* that are linear.

Given P : D -+- D*, take {3 : D2 -+- F as the bilinear fundional (2.4).
Define the operator P* : D -+- D* as the one associated with the trans-
posed {3* of the bilinear functional {3; i.e.,

<P*u, v> = {j*(u,~) = {j(v, u) = <Pv, u>
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When p* : D -+- D* satisfies (2.7), p* will be called the adjoint of P.
Notice that given P: D -+- D*, p* always exists and it is a mapping of
D into D*.

For any operator P : D -+- D*, the null subspace of P will be denoted

by Np; i.e.,

N p = {u E D I Pu = 0

A few relations between the null subspaces of functional valued operators
will be used in the sequel.

Definition 2.1 One says that the operators P.. D -+- D* and Q.. D -+-
D * can be varied independently, when

D = Np +NQ

Lemma 2.1. Let P: D -+ D* and Q: D -+ D* be linear operators.
Then the fellowing assertions are equivalent

a) P and Q can be varied independently.
For every UED and VED

b) 3 U ED_) Pu = PU and Qu = Q v

c) 3 U ED_) Pu = PU and Qu = 0, (2.11 )

d) 3 u ED_) Pu = 0 and Qu = Q v

rIQ.Q!:: Assume (2.9) holds; given UED and VE D, write U = U1 +
U2 and V = VI + V2 where U1, VI E Np while U2, V2 E NQ. Then
u = VI + U2 satisfies (2.10). Hence (a) implies (b). It is clear that (b)

implies (c) and (d). In view of the symmetric role played by P and Q in
lemma 2.1, to finish its proof it is enough to show that (c) implies (a).
Assume (c), then given v E D, take V2 E D such that

PV2 = Pv and QU2 = 0 . (2~13)

Define VI = V -vz. Then it is see."! that v = VI + Vz, with VI ENp

while Vz EN Q .This completes the proof of lemma 2.1.
Assume P: D -+- D*, Q: D -+- D* and R : D -+- D* are such that

P=Q+R (2.14)
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Then it is straightforward to see that

Np :>NQ nNR (2.15)

A stronger result holds when Q* and R. can be varied independently.
Lemma 2.2 Assume P, Q and R are such that P = Q + R, while

Q* and R * can be varied independently. Then

Np = NQ n NR . (2.16)

~ In view of (2.15), it is only necessary to prove that when Q* and
R * can be varied independently, N p C N Q n N R .

Assume PU = 0 and QU * O. Then, 3 V qD_) (QU, v> * O. For
such V, take v ED_)Q*v = Q*V while R*v = O. Recall

0 :#: (QU, V) = (Q*V, U) = (Q*v, U) + (R*v, U)

<QU, v) + (RU, v) = <PU, v) = 0 . (2.17)
-

Hence, U EN p =>- U E N Q. A similar argument replacing Q by R, yields
UENp =>- UENR. Therefore, Np C NQ n NR and the lemma is

established.

IlL FORMAL ADJOINTS AND ABSTRACT GREEN'S FORMULAS

Definition 3.1. B : D -+ D* is a boundary operator for P: Ii -+ D*
when

<Pu, v) = a v v END => Pu = a (3.1)

Definition 3.2. Given P: D -+ D* and Q: D -+ D*. define S = P
-Q *. Then P and Q are formal adjoints if S is a boundary operator for
Q while S* is a boundary operator for P.

Notice that this is a symmetric relation between P and Q as can be
easily verified.

Definition 3.3. An operator P: D -+ D* is said to be formally sym-
metric when P is a formal adjoint of itself

Theorem 3.1. Given P: D -+ D* define A = P -P*. Then P is
formally symmetric if and only if
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v v ENA ~ Pu = 0<Pu. v) = 0

~ Let 8 = P -P* = A. Then P is formally symmetric, if and
only if 8 and 8* = -8 are boundary operators for P. Clearly this is equi-
valent to (3.2).

Theorem 3.2. Given P: D -+ D* and Q: D -+ D*, define j> : b.
-+ D* by

(Pit, v) = (PUt, V2) + (QU2, VI)

where D = D ED D. Then P and Q are formal adjoints, if and only if. 1> is

formally symmetric.
~ The following lemma can be used to prove this theorem.
Lemma 3.1. Let

A = /> -/>*

Then

NA = Ns ED Ns*

whereS = P -Q*.
~ For every u E D and v E D, one has

<Au, (j) = <SU1, V2) -<S*U2 , V 1)

Thus u EN A ~ U 1 ENS while Uz ENs ..i This completes the proof

of the lemma.
Using this lemma and (3.3) it is clear that

v Ii EfJA => Pit = 0(Pu. (j) = 0

if and only if

V V2 ENS* ~ PUt = 0(PU1, V-2) = 0



BOUNDARY VALUE PROBLEMS

.

and simultaneously

(3.9)v vIE N s ~ QU2 = 0 .(QU2. VI) = 0

Clearly, (3.8) means that S* is a boundary operator for P, while (3.9)
means that S is a boundary operator for Q. Application of definition 3.2,
yields the desired result.

Definition 3.4. When P: D -+- D* is formally symmetric, a relation

p -P* = B -B* (3.10)

where B : D -+ D* and B* are boundary operators for P. is said to lJe
a Green's formula.

Definition 3.5. An operator B : D -+ D* is said to decompose A.
when Band B * can be varied independently and simultaneously

(3.11)A = B -B*

(3.12)NA = NB nNB*

~ A straightforward application of lemma 2.2, using the facts
that A = B -B * and D = NB + NB*, yields this theorem.

Corollary 3.1. When P: D -+ D* is formally symmetric andB decom-
poses A, Band B* are boundary operators.

~ This follows from definition 3.1, because A is a boundary opera-
tor and N B :) N A as well as N B * :) N A ..

Corollary 3.2. Under the hypotheses of corollary 3.1,

A = B -B* (3.13)

is a Green' formula.
~ Because both Band B* are boundary operators.
Definition 3.6. Relation (3.10) is said to be a Green's formula in the

strict sense, when B decomposes A = P -P*.
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.

In what follows we shall be concerned only with Green's formulas in
the strict sense. Thus, frequently, we will delete the latter designation.
Also, it will be assumed that an operator P : D -+ D* is given and that,
associated with it, we have A = P -P*.

IV. REGULAR SUBSP ACES AND CANONICAL DECOMPOSITIONS

Green's formulas in the strict sense can be characterized by properties
of the null subspaces NB and NB*. The following discussion is oriented
to supply such characterization.

Definition 4.1. A linear subspace lCD, is said to be regular for P,
when .., ~ A P "J .,:

'D ; D --7 .v J = -r

a) f:)NA ,

b) <Au. v) = 0 VuE I and v E I

Definition 4.2. A linear subspace I C D is said to be cE-mllletely regu~
lar for P, when

(Au. v) = 0 VvEI~uEI (4.3)

An alternative manner of defining completely regular subspacesis as a
commutative subspace that is largest. The precise meaning of this state-
ment is given next.

Lemma 4.1. A linear subspace I, which is commutative, is completely
regular, if an only if. for every commutative subspace I', one has

I':JI~I'=I

subspaceand

VvE/=>uEI(Au, v) = 0

~ The equivalence statement (4.3) is the conjunction of (4.2) and
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(4.5); thus, any regular subspace satisfying (4.5) is completely regular. To
prove the converse, it is only necessary to show that when I C D is
completely regular, (4.1) holds. But this is immediate because, ifu ENA
and I is completely regular, then (Au, v) = 0 V v ED:) I. Hence, u E I
by virtue of (4.3).

Definition 4.3. An ordered pair {II' 12} of regular subspaces such that

D = II +12

is said to be a canonical decomposition of D, with respect to P.
Lemma 4.3. Assume B : D -+ D* decomposes A. Define

/1 = NB ; /2 = NB*

Then the pair {I I , 12} is a canonical decomposition of D.
fiQQf.. The fact that Band B* can be varied independently, implies

(4.6). Assume u Ell and v Ell, then

<Au, v) = (Bu, v)- (Bv, u> = 0 (4.8)

Also, II = NB :> NA by virtue of (3.12). This shows that II is regular.
In a similar fashion it can be shown that 12 is regular.

Theorem 4.1. A pair of subspaces {II, I2} is a canonical decomposi-
tion of D, if and only if, II and 12 are completely regular

and NA = II n/2D = /1 + /2

ftQQf: I t is clear that any pair of regular su bspaces {It, 12 } that satisfy
(4.9) is a canonical decomposition. Thus, only the converse statement
need to be proved. The following lemma will be useful for this purpose.

Lemma 4.4. Assume {It, 12} is a canonical decomposition of D.
Then,

(4.10)Ul Eli and (Aul, V2) = 0 V V" EI" ~ Ul ENA

Similarly
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U2 E /2 and (AU2"Vl) = 0 V VI Ell ~ U2 ENA (4.11)

~ To prove (4.10), assume UI Ell is such that

(AU1,V2) = 0 V V2 E /2 . (4.12)

Then, given WED, let WI Ell and W2 El2 be such that W = WI

W2. Clearly.
+

<AU1. W> = (Au1' W1> + <AU1' W2> = 0 . (4.13)

Hence u 1 E N A' That (4.11) also holds is clear, by virtue of the sy.nme-
tric roles played by 11 and 12, in lemma 4.4 and definition 4.3.

An immediate corollary of lemma 4.4., is that when {/1, 12 } is a cano-
nical decomposition

/In/2 =NA (4.14)

Hence, in order to complete the proof of theorem 4.1, it remains to prove
that II and 12 are completely regular. To this end, given u ED, write
u = UI + U2 with UI Ell and U2 E/2. Then, if for every VI Ell,

(Au. VI> = (Au2, VI> = 0 ( 4.15)

one has U2 E NA C II by (4.12). Hence, u = Ul + U2 E II' This
shows that II is completely regular and a similar argument yields the
corresponding result for 12,

Theorem 4.2. With every operator B : D -+- D* that decomposes A
associate a canonical decomposition {II, I2} by means of (4. 7). Then,
such co"espondence between operators that decompose A and canonical'
decompositions is one-to-one and covers the set of canonical decomposi-
tions of D. Under this mapping, any canonical decomposition {II: 12 }
is the image of a unique operator B : D -+- D* given by

(Bu. v) = (AU2, VI) ( 4.16)

where u., and VI are the components olu and V on 12 and II, respectively,
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fiQQf: In order to show that such correspondence covers the set of
canonical decompositions, given any canonical decomposition {II' 12},
we exhibit an operator B : D -+- D* that decomposes A and such that
satisfies (4.7). To this end define B by (4.16). Notice thatB is well defin-
ed by virtue of the second of equations (4.9). Equation (3.11) is satisfied,
because

(Au, v) = (AU2,Vt)+(Aut,V2) = (AU2,Vt)-(Av2,Ut) (4.17)

N~xt, we prove that equations (4.7) hold. It is straightforward to see that
/1 C NB; to show that /1 :) NB, assume that u ENB (i.e., Bu = 0),

then

( 4.18)(AU,VI) = (AUZ,VI) = (BU,VI) = 0 VVI Ell,

Hence, u Ell because 11 is completely regular. This completes the proof
of the flfst of equations (4.7). The proof of the second one is similar. The
fact that Band B* can be varied independently, follows now from (4.6),
in view of (4.7) and definition 2.1. After this has been shown, only the
assertion about the one-to-one character of the mapping l'emains to be
proved. The following chain of equilities

(AU2,Vl> = «(B-B*)U2,Vl> = (BU2,Vl> = (BU,Vl>

= (B*Vl' u) = (B*v, u) = (Bu, v) (4.19)

shows that B : D -+ D*, given by (4.16), is the only operator that decom-
poses A and satisfies (4.7), for a given canonical decomposition {II' I2}.
To establish (4.19) the relations B*U2 = BUI = B*V2 = 0 were used.

V. 

THE PROBLEM WITH LINEAR RESTRlCfIONS
AND THE SUBSP ACE I P

The results of the abstract theory of boundary operators can be applied
to discuss the representation of solutions of a wide class of problems with
linear restrictions which include boundary value problems for partial
differential equations. In this section the space I p which characterizes the
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boundary values of the homogeneous equation Pu = 0, is introduced and
under general conditions it is shown to be completely regular. This result
is used in further sections to develop procedures for representing solu-
tions. Later variational principles for such problems will also be developed.

Definition 5.1. Consider P: D -+ D* and a subspace I C D. Given
U E D and V E D, an element u ED is said to be a solution of the pro-
blem with linear restrictions or constraints, when

Pu = PU and u -VEl

With every linear operator P: D -+ D*, it is possible to associate a sub-
space Ip that is regular for P. It is defined by

Ip = NA +Np

whereNA and Np are the null subspaces of A and P, respectively.
Lemma 5.1. The linear space Ip defined by equation (5.2) is a regular

subspace for P.
~ Condition (4.1) is clearly. satisfied by Ip. In order to show that

(4.2) is also satisfied, given any uElp and VElp, write u = up + uA
and v = vp + vA' where up, Vp ENp while uA' vA ENA. Then

(Au, v) = (Aup, up) = <Pup, up) -<Pvp, up) = 0

Definition 5.2. The problem with linear restrictions (5.1), satisfies
a) Existence, when there is at least one solution for every U E D and

VED;
b) Uniqueness, when U = 0 and V = 0 ~ u = 0;
c) Uniqueness on the boundary, when

U 

= 0 and V = 0 ~ u E N A

By a boundary solution it is meant an element u ED such that u -U E
lp while u -VEl.

Clearly any strict solution is a bou~dary solution.
Lemma 5.2. The problem with linear restrictions satisfies existence.

uniqueness or uniqueness on the boundary. if and only if, the problem

Pu = PU and uEI
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or alternatively

Pu = 0 and u -VEl (5.5)

enjoy corresponding properties.
rIQ.Qf: Let us prove the assertion of the lemma with respect to (5.4).

This follows from the fact that if wED is defined by w = u -V,

with V E D fixed, then

Pu = PU and u- VEl ~ Pw = P(U- V) and wE!. (5.6)

A similar argument with u -U yields the other part.
Theorem 5.1. Let I C D be a regular subspace for P. If the problem

with linear restrictions satisfies existence, then the pair {I, I p} con-
stitutes a canonical decomposition of D.

~ In view of definition 4.3, it is only necessary to prove that

D = I+Ip

because both I and Ip are regular subspaces. This is immediate, because
given u ED, take Ul ED, such that

PUt =Pu ; Ul EI

and write U2 = U -Ut. Then u = Ul + U2, with Ut EI and U2 Elp.
Corollary 5.1. Under the assumptions of theorem 5.1, I and Ip are

completely regular subspaces.
Proof. In view of theorems 5.1 and 4.1.
Corollary 5.2. Under the assumptions of theorem 5.1, when the pro-

blem with linear restrictions satisfies existence, it also satisfies uniqueness
on the boundary.

Proof. Because

InIp = NA

Corollary 5.3. If th,e problem with linear restrictions satisfies existence,
there exists a Green's formula in the strict sense
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P-P* = B -B* (5.10)

such that u ED is a boundary solution of the problem with linear restric-
tions, if and only if

Bu = B V while B*u = B*U (5.11)

Proof, This result is implied by theorem 5.1 in view of theorem 4.2 and
definition 3.6.

VI. CANONICAL DECOMPOSITIONS IN SUBSPACES

Let DI C D be any subspace of D. Consider PI D1 -+ Dr, defined

by

(P 1 u, V) = (PU, V) , v u EDt and V EDt (6.1)

Definition 6.1. A subspace I C Dl C D is said to be regular or com-
pletely regular for Pin D 1. when it is completely regular for P 1.

Theorem 6.1. Let I C D be completely regular forP. LetD1 C D be
any subspace of D. Then I is completely regular for Pin D1. whenever
Dl :) I.

Proof., Because when property (4.3) is satisfied for every u ED, then
it is also satisfied for every u E Dl C iD.

The subspaces of D which contain I, constitute an algebra with respect
to the operations D1 + D2; Dl n D2. Theorem 6.1 shows that when I
is completely regular for P : D -+- D* in D, then it is also completely
regular for P in this algebra of subspaces. When on the contrary it is
known that I C D is completely regular in subspaces D1 and Di separa-
tely, it has interest to establish sufficient conditions for the complete
regularity of I in Dl n D2 and Dl + D2. The first of these questions is
easily answered.

Theorem 6.2. Let I C Dl and I C D2. Assume I is completely regu-
lar in Dl or alternatively. in D2. Then I is completely regular in D1 n D2

Proof. Notice that D1 n D2 C Dl and D1 n D2 C D2. Hence, this
theorem is a corollary of theorem 6.1.

The following theorem supplies an answer to the second question.
Theor~m 6.3, Let I be completely regular for P in subspaces Dl :) I

and D2 :) I. Then I is completely regular for P in D1 + D2 if and only
if. for every Ul E Dl and U2 E D2
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(A u 1 , V) = (A U2, v) VuEI~ ulED2

ft.QQh Assume I'C D1 + D2 is completely re~lar in D1 + D2. Then if

<A(UI -U2), v) = 0 VuE I => u 1 -U2 E I C D2 . (6.3)

Therefore Ul =(Ul -U2) + U2 ED2. Conversely, if (6.2) holds, then
given any U E D1 + D2 write U = Ul -U2 with Ul E D1 and U2 E D2.

Now

(A u, v) = 0 VuE! => Ul ED2 => uED2

Since I is completely regular in D2 and u E D2, it is clear that

(A u, v) = 0 VvEI~uEI. (6.4)

This establishes the implication (4.3) in the right-hand sense. The implica-
tion in the opposite sense is clear, because I is a commutative subspace.
This completes the proof of the theorem.

A result that is useful in many applications, is given next. Let A : D
-+ D*, A'.. D -+ D* and A" : D -+ D* be antisymmetric operators, while

I~ C D, I~ CD, I;' C D, I~ CD are linear subspaces such that

(6.S)
a) A = A' + A"
b) A' and A" can be varied independently.
c) {ft, I;} is a canonical decomposition of D with respect toA'.
d) {ft', I~} is a canonical decomposition of D with respect toA ".
e) Define

/1 = 11 n I;' ; /2 = ~ n /~ (6.6)

Theorem 6.4. When hypotheses (a) to (e) are satisfied, the pair {II. 12 }
is a canonical decomposition of D with respect to A.

Proof. This theorem can be established using the following result.
Lemma 6.1. The pair {II, 12}, satisfies

D = 11 + 12 . (6.7)
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Proof, This lemma can be shown observing that

f1' 

nNA, +f; nNA' +ftnNA' +t2nNA" =D, (6.8)

/1 = ~ n/1':)~'nNA' +/1 nNA" (6.9a)

and

/2 =/;nt;nNA,+I;nNA" (6.9b)

To prove (6.8), we show*

~' nNA' +~' nNA' :;: NA,

(6.10)

and we observe that for any v E I~' there are x EN A I and yEN A",
such that

v=x+y (6.11)

because A' and A II can be varied independently- Then y E I~', since t; :)

NA"- This shows that x Et; nNA;' Given any u'ENA', we have

u' 

= v + w (6.12)

with v E I~ and wEt; ; i.e.,

u'=x+y+r+s, (6.13)

w here x E N A ' n t;, yEN A ", r E N A' n t; and s E N A ". This shows
that (y +s)ENA' nNA" C~NA' nt;. Hence u'Et; nNA, +1; nNA'
In a similar fashion we can show that

ft nNA" +/2 nNA" = NA" (6.14)

* The proof of (6.8) here supplied is due to Prof. John Evans, from the Univ. of California at

San Diego, whose contribution is here gratefully acknowledged.
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Equations (6.10) and (6.14) together, imply (6.8), becauseNA' + NA"
= D, since A I and A II can be varied independently. The theorem follows

from the fact that /1 and /2 are regular subspa_ces for A, as it is not dif-
ficult to verify.

VII. VARIATIONAL PRINCIPLES

There is a very straightforward result that will be used when formulat-
ing variational principles. Let S: D -+ D * be symmetric and fED * ;

then

Su = f~ n'(u) = 0 ,

where

1n(u) = "2 <Su, u} -<I, u}

Here, the derivative n' of n : D -+ F is taken in the sense of additive
Gateaux variation [54], which is probably the weakest definition of deri-
vative. Relation (7.1) was given in Ref. 3, has been used in previous work
[6, 8], an a related result has been given by Oden and Reddy [31]; it fol-
lows from the fact that when S is symmetric

.{}.'(u) = Su -f

The theory developed in this paper will be used in this section to for-
mulate two types of variational principles for problems with linear restric-
tions.

The first one applies when there is available a canonical decomposition
{II, I,,} one of whose elements (the first one, to be definite) is the linear
subspace I which specifies the restriction in problem (5.1). In this case
P -B, where B : D -+ D* is the operator associated with the canonical
decomposition by means of (4.16), is symmetric; by its use one obtains
variational principles for which the variations need not be restricted.
However, it must be observed that the mere existence of such canonical
decompsoition is not sufficient to permit the formulation of these varia-
tional principles; it is required, in addition, that the actual decomposition
of every vector u ED in terms of its components u I and u" can be carri-
ed out easily, because this is necessary in order to construct B by means
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of (4.16). It will be shown that there are cases, such as when the problems
are subjected to restrictions of continuation type, to be discussed later,
which do not fulfill this requirement in spite of the fact that for them the
pair {/l' Ip}, constitutes a canonical decomposition whenever the hypo-
theses of theorem 5.1 are satisfied. In such cases in order to obtain the
components u l, U2 of any u ED, it would be required to solve the pro-
blem with linear restrictions (5.1).

When the operator B cannot be constructed, the second type of varia-
tional principle can be applied. It is associated with the operator 2P -A,
which is always symmetric and can be used if variations are restricted to
be in the regular subspace I; the results are enhanced when the subspace is
completely regular.

The following lemmas lead to the desired variational principles.
Lemma 7.1. Let I CD be a completely regular subspace for P, then

given U E P and V ~ D, an element u ED is solution of the problem
with linear constraints (5.1), if and only if

Pu = PU

and

(A(u -V), v} = 0

VuE!

When I is regular, but not completely regular, the above assertion holds
for elements u E V + I.

Proof. The mere regularity of lCD, is enough to guarantee that Eq.
(5.1) implies (7.4) and (7.5). When, in addition I C D is completely
regular, conversely, (7.5) implies that u -VEl; hence, Eq. (5.1) follows
from (7.4) and (7.5), in this case. The second part of the lemma is now
straightforward.

Lemma 7.2. Assume {I',./c} constitutes a canonical decomposition of
D with respect to P, and let B: D -+- D* be defined by (4.16), taking U2
and V1 as components of vectors on {I, Ic}. Then u ED is a solution of
the problem with linear constraints (5.1), if and only if

Pu = PU and Bu = BY: (7.6)

Proof. By theorem 4.2,B satisfies (4.7). Hence,u -VElifandonly
if B(u -V) = O.

Lemma 7.3. Assume P: D -+ D* is formally symmetric and I C D is
regular for P. Then
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a) (7.4) and (7.5) hold simultaneously if and only if

«(2P A)u, v) = (2PU A V,.v)

VuE/.

b) When B decomposes A, and 1= NB, Eq. (7.6) holds, if and only if

(P-B)u = PU-BV

~ 

Rearranging, equation (7.7) becomes

< 2p(u -U), v} = < A(u -V), v} .vuE!

Clearly, (7.4) and (7.5) imply (7.9). Conversely, (7.9) implies

(7.10)(2P(u -U), v) = 0 v v EN A CI ,

which in turn implies (7.4), by virtue of theorem 3.1, because P is formally
symmetric. Once this has been shown, (7.9) reduces to (7.5). This proves
(a).

Equation (7.8) can be obtained substracting one of equations (7.6)
from the other. Conversely, (7.8) implies

(7.11 )(P(u -U), v} = (B(u V), v) = 0 VvENA CD,

because N B .:J N A' The first of equations (7.6) follow", from (7.11),
because P is formally symmetric. Once that equation has been shown,
(7.8) reduces to the second equation in (7.6)

Theorem 7.1. Assume P: D -+ D* is formally symmetric and {I, Ic}
constitutes a canonical decomposition of D. Then u E D is a solution
of the problem with linear restrictions (5.1), if and only if

!2'(u) = 0 , (7.12)

where

B)u, u) -<PU- BV, u) . (7.13)
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Here B : D -+- D* is the operator associated with {I, Ic} by means of
(4.16).

Proof. Recall that P -p* = A ~ B -B*; hence, P -B is symmetric.
Ap;Plyl;g (7.2) to this symmetric operator, theorem 7.1 follows from
lemmas 7.2 and 7.3.

Theorem 7.2., Assume P is formally symmetric and I C D is a comple-
tely regular subspace for P. Define

X(u) = (Pu, u)- (2PU-AV, u) . (7.14)

Then u ED is' a solution of the problem with linear restrictions (5.1), if
and only if

<X'(U), v} = 0

VuE!.

(7.15)

When I is regular but not completely regular, an element u E. V + I is
a solution 01(5.1), iland only il(7.15) holds.

~ 2P -A is symmetric with quadratic form <2Pu, u) , because A is
antisymmetric. From (7.14), if follows that

X'(u) = (2P-A)u- (2PU-AV) . (7.16)

Theorem 7.2, follows from lemmas 7.4 and 7.5, by virtue of (7.16).

VIII. THE PROBLEM OF CONNECfING

An advantage of introducing abstract boundary operators is the large
class of problems that can be formulated using them; a rather general
example is the problem of connecting. This is an abstract version of pro-
blems formulated in discontinuous fields with prescribed jump condi-
tions.

Consider two neighboring regions Rand E (figure 1) with boundaries
aR and aE, respectively. For simplicity Rand E are illustrated as bo}lnd-
ed; however, the theory can be applied even if they are unbounded. By
reasons that will become apparent in some of the examples to be given,
the common boundary between Rand E will be denoted by a3~ = a3E.

The general problem to be discussed consists in finding solutions to specif-
ic partial differential equations on R Ui E subjected to a given smooth-
ness condition or more generally, to a jump condition across the connect-
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ing boundary a3R = a3E. Problems of this kind occur frequently in
applications; the smoothness criterion may be in potential theory, for
example, that u and au/an be continuous across a3R, or in elasticity, that
displacements and tractions be continuous across that part of the bound-
ary. However, more complicated criteria may be included in the theory;
this is the case for example, when R is occupied by an inviscid liquid while
in E there is an elastic solid.

In general we consider two linear spaces DR and DE which may be
associated with functions defined on R and on E, respectively. The linear
space 15 = DR EIj DE is made of elements a E 15 that can be thought as
pairs [UR' uE], where UR EDR while UE EDE. An operator P: 15 -+ 15.
possessing the additive property

<Pa,6) = <PUR' VR) + <PUE, VE) (8.

will be considered. If the operators PR : D -..D* and PE : D -..D* are
defined by

A A

(PRu.6) = (PuR' VR) ; <fEu, V) = <PUE, VE) ,

then

Operators PR : DR
are given by

-+ D~ and PE : DE -+ D:: can also be defined, they

<PRUR,VR) = <PUR,VR) ; <PEUE, VE} = <PUE' VE}

Then

<Pa, Ii} = <PRUR' VR} + <PEUE, VB}

Using these operators, the following can be defined

!A = P -P*, AR = PR -Pk ; AR = PR -P~;

A A A.
AE = PE -PE ; AE = PE -Pi:



HERRERA

They satisfy

A =AR +AE (8.7)

Uu,zj} = URUR,VR}+UEUE,VE} (8.8)

The null subspaces of A, A R' A E' A R and A E will be denoted by N, N R '
NE, NR and NE, respectively. The relation

N 

= NR ~NE (8.9)

will be used later; it is equivalent to

it = (UR' UE) EN ~ UR ENR and UE ENE (8.10)

This latter relation follows from (8.8).
A A

It will be assumed that there is a linear subspace S C D of smooth
elements a = (uR' UE)' When a = (uR' uE) E S, uR EDR and UE EDE
will be said to be smooth extensions of each other.

A A A

Definition 8.1. Let S C D = DR EBDE be a linear subspace. Then S
will be said to be a smoothness condition or relation if every UR E"DR
possesses at least one smooth extension UE E DE and conversely.

The smoothness relation S will be said to be regular and completely
regular for P, when as a subspace, it is regular and completely regular for
P, respectively.

Lemma 8.1. A smoothness condition S C i> is regular for P, if and
only if

AEuE = 0 ~ [UR,UEJESARUR = 0 anda) (8. la)

A I .~ A

Foreveryu = [UR'UE]ESandv = [vR,VE]ES

(Au,6) = (ARuR, VR) + (AEUE, VE) = 0 .

b) (8.llb)

In addition, a smoothness condition SC i> is completely regular fori', if
and only if
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<Au, Ii) = (AR UR, VR) + (AEUE' VB) = 0 v V E S '**' a E S .(8.11 c)

~ This lemma follows from defmitions 4.1 and 4.2.
As an example, assume each of the boundaries aR and aE of regions R

and E (figure 1) is divided into three parts aiR and ajE (i = 1, 2, 3),
where a3R = a3E is the common boundary between Rand E. Let n be
the unit normal vector on these boundaries, which will be taken pointing
outwards from R and from E. On the common boundary a3R = a3E,
there are defined two unit normal vectors which have opposite senses,
one associated with R and the other one with E. Some times they will be
represented by nR and nE; more often, however, the ambiguity will be
resolved by the suffix used under the integral sign. Take

()3R= ()3E "I E

-Z1>1 R

/)2 E

E

()2 R
Figure 1

DR = {UR EH'(R)} (8.12a)

DE = {UE EJJ'(R)} (8.12b)

Define PR DR -+ Dk by

(8.13)

and let PE : DE -+ Db satisfy the equation that is obtained when R is
replaced by E in (8.13). Then
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aUE ~ } dXUE anUa,6) = i,E rUE :an

aUR

J:3R {VR an
aVR

}-UR an dx ,+ (8.14)

while

IV = {u EDluR = UE = aUR/an

aUK/an = 0 , on a3R} . (8.15)

Let

s = {u EDluR = UE ; ouR/onR = OuE/OnR , on o3R} . (8.16)

Functions UR EDR C HS(R) (s ~ 3/2) are such that their boundary
values uR, auR Ian belong to ns -1/2 (a3R) and ns -3/2 (a3R), respectively

(see for example Lions and Magenes [29]). A corresponding result holds
for functions UE EDE = Hs(E). This shows that every UR EDR can be

extended smoothly into a function UE EDE, and conversely. Thus S is
a smoothness relation.

When'; = (VR,VE)ES,

(AR UR, VR) + (AEUE, VE)

aUEJ aVR }an -(UR -UE) an ax
(8.17)-

for arbitrary U = (UR' UE)ED. Using (8.17) it can be seen that condi-

tion (8.11) is satisfied by S CD; this shows that S is regular for P.
When S is regular, it is easy to construct a regular subspace which
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together with S constitutes a canonical decomposition of S, for the
operatorI'.

Definition 8.2. An element U = [UR' UE] ED is said to have zero mean
when [uR' -uE] E S. The collection of elements of D with zero mean will
be denoted by M.

Lemma 8.2. The set M of zero mean elements is regular or completely
regular, if and only if, S is regular or completely regular.

Proof. Clearly M is a regular subspace of D, if and only if, so is S. This
lemma follows from lemma 8.1, because conditions (8.11) are invariant
under the change of sign implied by the definition 8.2 of M.

Theorem 8.1. When the smoothness relation S is regular for P, the pair
{oS, M} constitutes a canonical decomposition of D.

Proof. In view of lemma 8.2, M is regular. Therefore, in order to verify
definition 4.3, it remains to prove that

A A A

V=S+M (8.18),

To show (8.18), given any a = (UR' UE) E D, choose smooth extensions

UR EDR and UE EDE of uE EDE and UR EDR, respectively. Then

-1 [ A

]a=U-2U' (8.19)

where u E Sand [a] E Mare

-I, ,U = 2(UR + UR, UE + UE (8.2Da)

(8.20b)[U] = (UR -UR,UE -UE)

The fact that the pair {S, M} constitutes a canonical decomposition of
D, implies that given any u ED, the elements u E Sand [a] E M are
defined up to elements of NA' Elements u and [a] satisfying (8.20) will
be called the average and the jump of u, respectively.

By means of (4.16), it is possible now to define an operator Ii : D -+ D
that decomposes A and satisfies (4.7) with /1 = Sand /2 = M. Such
operator will be called the jump operator and will be denoted by 1. It is
defined by

2Uu.6) = 2<Au2, VI) = -<A[u], v) (8.21)
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Notice that

A A

Ja=O~aEs , (8.22)

which motivates the tenninology.
Equation (8.21) will be used extensively when fonnulating variational

principles for problems with prescribed jumps in discontinuous fields,
and it is worthwhile to ellaborate it further. Let u = U1 + U2; v = VI +
V2, where U1 = (U1R' U1E) ES, U2 = (U2R ;U2E) E M and similarly for

v. Then

au,V) = <1U2,Vl) = (ARU2R, VlR)+UEU2E,VlE)

= 2(ARUzR' VIR) = 2<ARU2, VI) = 2(AEu2' VI) , (8.23)

where (8.8), (8.11c), and the definition 8.2 of M have been used. Hence

<fa, v> = <AR [a], v) = -UE[u],"V> (8.24)

In addition

(1 

U, 0) = (1 R [0], u) -<A R [U], v) (8.25)

because A = J -J*.
-The use of formulas (8.24) and (8.25), will be illustrated applying them

to the previous example. In view of (8.16), the smooth extensions uk E
DR and u~ EDE~ ~ and uK' respectively, satisfy

OUR/onR
= ouE/onR' on a3RUR = UE ;

(8.26)

In addition

(8.27)
{ dUR dvR 1
VR -an- -UR -an- ,dx
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Applying

(8.28)

Equations (8.20) yield

a[U]R
an

[U]R = UE -UR ; on a3R (8.29a)

(V)R = 1(VE + VR) ; on a3R (8.29b)~ =.!.(~+~ )on 2 on on

by virtue of (8.16). Equation (8.28) can be simplified if the component to
be used is indicated by the index under the integral sign; thus

aCt

an
---v

dx

-V~J}dX , (8.30)

where [ou/on]R = ouE/on -ouR/on, on o3R. The last equality in
(8.30) follows from the second equation in (8.24), but can also be seen
because there is a double change of signs on each term appearing in the
integrals; one due to the change in the sense of the unit nermal and the
other one due to the change of sign of the jump of u. Equation (8.25)
yields

- ~avJ - ~ aa ] [ A ] au jd+u--v--v- x

an an an (8.31 )

IX. BOUNDARY VALUES AND CONNECTIVITY BASES

In Sec. V, it was shown that generally (precisely, under the assumptions
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of theorem 5.1), the subspace Ip is completely regular. As it has been
illustrated by means of examples [13, 19, 22, 23] in applications to
boundary value problems the characteristic feature of elements belonging
to Ip is that they assume boundary values corresponding to solutions of
the homogeneous equation Pu = O. Taking this into account, the pro-

perty

(Au. v) = 0 -VvElp =* uElp ,

which is satisfied when Ip is completely regular, can be interpreted as a
purely algebraic characterization of the boundary values of solutions of
Pu = O. Such characterization in connection with some specific problems
apparently was originated by Trefftz [43].

Frequently" it is preferable to restrict attention to spaces of boundary
values

(9.2a)v = D/NA ,

(9.2b)1 = I/NA

(9.2c)Ip = Ip/NA

A corresponding notation will be used when a canonical decomposition
{/1' /2} is available. Given u ED there is a unique element of V associat-
ed with u; this will be represented by the same symbol, unless such am-
biguity leads to confusion. The same usage will be followed in connection

with boundary operators.
In applications it is preferable not to use the whole set /p in order to

characterize boundary solutions. This can be achieved by means of c-

complete subsets.
Definition 9.1. A subset E C / is said to be c-complete (complete in
-, -

connectivity) when

<Au, W) = 0 V-wEE => uEI

When in addition, for every finite subset {WI, W2, ..., Wn} C E, the
functionals {AWl, Aw2, ..., Awn} are linearly independent, E is said to be

a connectivity basis.
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The following lemma is straightforward, but will be useful in applica-
tions.[

Lemma 9.1. Let I C D be a commutative subspace for P. Then I is
completely regular, if and only if. it possesses a c-complete subset.

~ Because when E C I is c-complete, one has that

(Au. w) = 0 1(9.4)v w EI => (Au. w) = 0 Vw EE => u EI

Clearly (4.3) follows from (9.1) and the fact that I is commutative sub-
space for P.

x. CONNECfIVITY AND HILBERT-SPACE BASES

The concepts of c-complete subset and connectivity bases are purely
algebraic. A connection between these notions and Hilbert-space bases is
given in this section.

Given a separable Hilbert-space H, we consider the space 15 = H e H.
Elements of 15 will be written as u = [UI, U2], with UI E Hand U2 E H.

With every subset B C 15, we associate two sets

3 a = [Ut,u2]E B}CH81 = {Ul EH (ID.la)

82 = {U2 E H
A

3 U = [Ul,Uz]EB}CIH (10.1 b)

The notation A : V -+ V* will be used to represent an antisymmetric
operator given for every u E 15 and Ii E 15 by

(10.2)(All. 0) = (Ut. V2) -(U2, Vi) :

In what follows i p C 15 will be a commutative linear subspace for A;

i.e.,

¥ u E I p and Ii E Ip .<Au, rJ) = 0 (10.3)

The subsets I P1 CHand I P2 C H are defined replacing B by i p in
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(10.1). When Ip C 15 is a linear subspace, both Ipl CHand Ip2 C
H, are linear subspaces, but they are not necessarily closed.

Assume

.L 1
Ipl :) Ip2; Ip2 :) IPI (10.4)

Define

(10.5)
--

Ho = IP1 n Ip2

Clearly Ho CHis a closed Hilbert subspace and

Ii; = 1/1 + IA . (10.6)

Define

( 1 0.7)1PIO = projo 1ft ; Iho = projQ Ip2

Here projo stands for the projection on the su bspace H o.
A A

Lemma 10.1. Let Ip C V be a linear subspace for which (10.4) holds,
then

(10.8)IpIO = Ipl nHo ; Ip2o =Ip2 n Ho.

Ipl = Ho + Ip2 ;
-
Ip2 = Ho + IPI (10.9)

--
No = IPlo = Ip2o . (10.10)

~ Recall, when (10.4) holds, Ih and Ih are orthogonal sub-
spaces of H, because r Pi :) Ih. Equation (10.6) implies

H = Ho + zit + zh (10.11)

This equation exhibits H as a sum of orthogonal subspaces. Equations
(10.8) to (10.10) easily follow from equation (10.11).
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Define

..1-N1 = {[Ul,O]EVlulElpz};

.1E V IU2 E Ipl { } .N2 = {[a, Uz (10.12)

Theorem 10.1. Let fp C (j be such that:
i) There is a dense linear subspace E C H such that

1 1E:) IPI + Ip2 (IO.13a)

ii) For every it E E = E ED E, one has

v V E Ip ~ a E Ip(Au, z.i) = 0 (lO.13b)

Then, there is a unique subspace lfi C V. which is completely regular for
A : V -+ V* and such that

~ ~ c

Ip C Ip (10.14)

Even more, if B c jp is such that

A -
span 81 = Ip1 span 82 = IP2 ,

~
( 10. 15)"and

then B C j~ is c-complete for 1; with respect to A : 15 -+ 15 *.
~ Notice that in the presence of assumption (ii), (i) implies

(10.16)Ip :) N1 + N2

This in turn implies that (10.4) is satisfied. Let B = {WI, WZ, ...} c ip

be any denumerable subset which satisfies the fIrst of equations (10.15).
Such choice is clearly possible, because H is separable. Write wa =
[Wal' Waz]' a = 1, 2, There is no lack of generality by assuming
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is orthonormal.that such subset is chosen so that {Wll, W21, W31'..'
Define 1 ~1 C H by the condition

Ul E rCpl <=> Ul E Ipl and (lQl7)

where

aa = (UI, Wa2) .
( 10.18)

Let the mapping T 2 : I ~1 -+ H be given by

(10.19)

for every u 1 E 1 ~1
Write

Clearly r 2 is well defined by virtue of (10.17).

10.20)

With this definition i ~ and r ~1 satisfy a Arelation similar to (10.1 a).
Next, we proceed to prove that indeed r ~ possesses the properties

asserted in theorem 10.1. These will follow from

va E Ipa) rJE i~<Au, 6) = 0 and (10.21)

b) For every u E 15 one has

A AC

¥6E Ip ~ a E Ip .<Au, 6) = 0
( 10.22)

In order to prove (a), notice that

(WQ2,W/31) = (Wal,W/3Z) v- a = 1,2, ... and {3 = 1, 2, ... ( 10.23)



BOUNDARY VALUE PROBLEMS 197

cFor every VI E 1 Pl

( 10.24)

Whenu = [Ul.U2JEi~andv = [vl.v2JEl~,then

(Ul. V2) =
t(V1,WQZ)(U1,WQ1)
Q=1

00 00

= L L (Wal,Wfj2)(Vl,W{31)(Ul,Wal)
a= 1 {3=1

(10.25)

Equation (10.25) together with (10.23) imply (10.21).
To prove (b) recall that when the first of equations (IO.IS) holds, for

anyu = [ut,u2]EV,onehasthat

-
Ul E Ipl and (Au, W) = 0

( 10.26)

This can be seen by noticing that the premise in (10.26) implies

aa = (Ul,Wa2) = (U2, Wal)
( 10.27)

so that

.lq2 E IPlaCt W Ctl + q2 ; (10.28)

~

L
0=1

Therefore
ing

a~ <~, necessarily. Equation (10.28), permits writ-
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A ACU = [Ul,T2(Ul)]+4Elp, ( 10.29)

where it = [0, q2 ] E N2.

Therefore, in order to prove (b), it is only necessary to prove that the
premise in (10.22) implies that Ul Er;Pl' This is straightforward, because
the premise in (10.22) implies by (10.16) that

<Au, 6) = 0 (10.30)¥ V E N2 ;

i.e. that

1
¥V2 E IPI(Ul,VZ) = 0 (10.31)

Hence Ul E I Bl' .~
Once (b) has been shown, it is seen that 1 ~ :) 1 p, because any ele-

ment u E 1 p satisfies the premise in (b). Hence, 1 ~ is completely regular
by virtue of lemma 9.1, because 1 p is a c-complete system for 1 ~.

In .order t9 show that 1 ~ !s the <)nly completely regular subspafe suc!1,
that 1 ~ :) 1 p, recall that if l' :) 1 p is completely regular, then 1 ~ :) 1
by virtue of (10.22). When l' is completely regular, l' is a largest com-
mutative subspace, thus l' :) 1 c. Hence l' = 1 c.

In the previous proof, B satisfied the first of equations (10.15) but was
otherwise arbitrary. However, the fact that 1 ~ is unique implies that the
linear space 1 ~ constructed in the mann.er explained before, is the same
independently of the particular system B chosen. In particular, the same
mapping T z : 1 ~1 ~ H 0 is defined independently of thc particular B
used, as long as the first of equations (10.15) is satisfied.

In connection with the mapping Tz, there are two points which are
worth observing. In the previous construction, we could have started with
a system B which satisfied the second of equations (10.15) and such that
{WIZ, Wzz, ...} is orthonormal and we could have defined l~z C H
replacing (10.17) by the condition

~

L
Q = 1

U2 E 1~2 ~ U2 E IP2 b2 < ~
Q ( 10.32)and

where

bQ = (U2, WQ!) (10.33)
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1 

~2 -+- H byThen, define the mapping T 1

~

L
Q = 1

b Q WQ2 ( 10.34)Tt(U2) =

This leads to replace (10.20) by

AC A C A

Ip = {ti; = [Tl(U2),U2]EV IU2 E Ip2}+ Nl (10.35)

However, definitions (10.20) and (10.35) are equivalent, because one
can show that 1; as defined by (10.35) is completely regular forA: 15 -+
15* and i ~ :) i p. This shows by the way that

(10.36)Tl(I~I) = 1~1 n HoT2 (r~l) = r~2 n Ho ;

Therefore, 

one can write

1~1 -+ No ( 10.37)
r c ~ H .

P2 0'Ti T2

By virtue of (10.26), in order to prove the second part of theorem 10.1,
it is ~n1y necessary to prove that when equations (10.15) hold, for every
Ii E V, one has

10'- w E G => Ul E IPI (10.38)(4u, w) = 0

Assume B satisfies (IO,IS), then without lack of generality, we can choose
~ = {W12, W22, W32, ".} as orthonormal and spaning IP2' If a =

[u 1, U2 ] E V satisfies the premise in (10.38), then

(10.39)Va= , 2,(Ul,Wa2) = (U2. Wal

Using (10.39), a direct computation shows that

(10.40a)
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and

tt

Q=I,8=1

(U2' VI) =
(Wa2' W/31)(U2, W/32)(V2,Wa2) (lO.40b)

whenever'; = [VI, V2]Elp and VI EHo.

(10.40) together imply
Taking VI = 0, equations

= 0 V Uz E It 1 ;(UI, V2) = (U2, VI
(10.41)

i.e., u I E r PI. This shows (10.38). Hence, theorem 10.1.
There is a corollary of theorem10.1, that will be used later.

Corollary 10.1. Under the assumptions of theorem 10.1, let u =..[UI' U2] E H 0 E& H 0 and v = [VI, V2] E H 0 E& H 0' be such that u E r ~ and
.'cv E r p. Then

UI = VI ~ U2 = V2
(10.42)

~ When UI = VI, then [0, U2 -V2] E i~; U2 -V2 E Iftt. This
implies U2 -V2 = 0 because U2 -V2 E H o. A similar argument shows
the converse.

The following general result will also be used in the sequel.
Lemma 10.2. Let EI C H be a dense linear subspace oj H. Assume

H'(: H is a closed Hilbert subs pace of H. Then if the mapping p. : E I -+
H' defined for every u ICE I by

Jl(Ul) = proj (Ul )
(10.43)

is one-ta-one, one necessarily has H' = H. In equation (10.43), proj (u I)
stands for the projection OfUI on H'.

Proof. Assume H' is a proper su bspace of H. Let ~o E H, be a unit vec-
toiOrth<ogonal to H' and let H" be the orthogonal complement of .~o:
then, H" :) H'. Let 11" be the projection on H". Then 11": EI -+- H" is
also one-to-one, because of the fact that H" :) H' implies that for every
x E EI one has IIIl(X) II~ 1I1l"(x) II. Let {Xl, Xz, ...} C EI, be an ortho-
normal system that spans H. Under the assumptions of the lemma, there
exists a sequence of real numbers aj such that
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Xj = .u"(Xj) + aj~o ' t = 1,2,
(10.44)

Multiplication of (10.44) by ~o' yields

(~O' Xi) = OJ
(10.45)

because p."(Xj) E H". Hence

(10.46)

This shows that aj -+ 0 as i -+ 00; therefore, aj is bounded. A,t the same
time, by virtue of Pitagoras' theorem

0 #= 11.u"(Xj)112 = -Q.2 I (10.47)

This implies that ai * 1 for every i = 1, 2, ...and also that the mapping
.u" is bounded away from zero; i.e., the mapping is bicontinuous since Il"
is also bounded.

However, if {Yl, Y2, ...}C El is such that Yn-n::;-;;;'"~o then
1l"(Yn} -+ 0 while llYn II -+ 1. This implies that (.u"}-l is unbounded,

which in turn contradicts the fact that .u" is bicontinuous.
Theorem 10.2. Let assumptions of theorem 10.1 hold. Then, for any--

subset B C I p the following assertions are equivalent
i) For every u E E. one has

¥ \V E B ~ u E Ip(Au. w) = 0 (10.48)

V -+- V*.ii) B is c-complete in i ~ with respect to A

-
ill) span 81 = Ipl 1Ipl .and span 82 :) (10.49)

iv) span B2 = Ip2 1span 81 :) Ip2 'and (10.50)
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Proof. We prove fust that (iii) ~ (iv). To this end we show that when
(iii) holds, then

(10.51)span {projo Hz} = Ho '

whe:!e projo stands for the projection on H o. Indeed, if u E H 0 = 1 Pl

n 1 P2 is such that

(10.52)Va= ,2, ...,aa = (U,WaZ) = 0

then u E 1 ~1 and

(10.53)

i.e., [u, 0] E i~. This implies u E 1;2 n H o. Hence, u = 0 by virtue of

lemma 10.1, and (10.51) is established. Here, it was assumed that {Wll,
W21, ...} = 81 were orthonormal.

Equation (10.51) together with span ~ :) 1;1' imply span ~ =

""1 P2 = H 0 + 1 it. Hence (iii) ~ (iv). The converse can be shown in a

similar fashion.
To prove that (i) ~ (iii), we start showing the flfst of equations

(10.49). Let I.L: Ipl -+- span 81, be defined for every Ul E Ipl by

(10.54).u(Ut) =

where

CQ = (Ul,WQl) (10.55)

and {W11, WZ1, ...} are again assumed to be orthonormal. Cle~ly Il is
the projection of the line~ su bspace 1 P1 on the span 81 C 1 P1 and
recall that 1 P1 is dense in 1 Pl. Now, this mapping is one-to-one, because

if u~ E 1 P1 then
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/l(U1) = /l(U~) ~ (U1 -U~ , W a1) = 0 v ~ = 1, 2, ..., (10.56)

and therefore [0, Ul -U; ] E i p by (i). This- implies Ul -U; E 1 P2 ; i.e.,
Ul -U; E Ipl n Ip2 C Ho. Hence, Ul = u~ by corollary 10.1. Applica-

tion of lemma 10.2, yields the first of equations (10.49). In a similar
fashion one can obtain the first of equations (10.50). Form these two
equations the desired result follows.

Either (iii) or (iv) imply equations (10.15), because they are equiva-
lent. Hence, (iii) => (ii) or equivalently (iv) => (ii), by virtue of theo-

rem 10.1
To show that (~i) =>. (i), recall that i P C i~. Therefore, when (ii)

holds, for any u E E C V one has that

.'CV V E Ip 'C Ip .(All, w) = 0 V", E B ~ <Au. 6) = 0 (10.57)

This shows that the premise in (10.57) implies the premise in (10.13b);
hence, u E i p. This proves that 8 c i p satisfies (i).

XI. AN INTRODUCTORY EXAMPLE

To fix ideas let us consider a simple example. Let u(x, y) and v(x.y)
be solutions of the biharmonic equation in a horizontal strip (Fig. 2); i.e..

x

8.~ ..-'0 8"

Figure 2
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A2U = A2V = 0,

1 

< y < 1, oo<x<oo (ll.la)

such that

u=v=o;
au au"3Y = ay = 0, at>: = tl . (ll.lb)

Then, one can define an an tisymmetric bilinear functional A 0, by

a~u
IJ~

uX dy (11.2)
x=t

where .-00 < ~ < +00. Well known reciprocity relations for the bihar-

monic equation imply that the expression for Ao given by (11.2) is in-
dependent of ~ whenever equations (11.1) are satisfied.

Separable solutions satisfy [46,47]

<l>n(X,y) = fn(y)e-~nX (11.3 )

where

sin 2 2}..n -4}"~ = 0 .

It can be shown [47] that for everyone of the roots >'n of(II.4), one has
that

i) Re An :#: 0

ii) If An is a root, then -An is also a root.

Using (1 2), it is seen that

a~ct>n

ax
acl>m

-~<f>n' 

ax

dy (11.6)
x=o
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which holds for every ~. Hence

= 0 . (11.7)An + Am * 0 ~ <Ao <l>n' <l>m

Let us restrict the definition (11.3) by the condition Re An ~ 0 and in-
troduce the notation (n ~ 1)

4>: (x, Y) = I:(y)e~"x ( 11.8)

Then it can be shown that

<Ao<l>n,<I>:> #: O. (11.9)

The notation established by Eqs. (11.3) and (11.8) classifies separable
solutions into two disjoint groups. Define N} as the linear manifold of
functions spanned by the system {I/> 1 , 1/>2, ...}; while NJ, is defined cor-
respondingly, using {I/>~, 1/>;, ...}instead. Let

(11.10)Np =Np+NJ..

The properties characterizing the su bspaces Np and Nj, are

whenever u EN} , (11.lla)U -+ 0 as x -+- +00

whenever u E NJ, . (ll.llb)U -+ 0 as x -+- -~

The null subspace:NA 0 of Ao, will be needed. This is

(11.12)NA 0 = {u ENp I (Aou, V> = 0 v v ENp}

By virtue of (11.7) and (11.9), the only function belonging to this space
is the zero function, i.e.

NAO = {a} . (11.13)



206 HERRERA

We notice the following properues of these spaces:

a) NJ. and N'j, are commutative subspaces; i.e.,

VuE~ v EN; i(Aou, v) = 0 and ,2

(1

14)a=

a = 1,2 (11.15)b) ~ :J NAO ;

c) Given u ENp

VvEN; ~ uEN; -(Aou, v> = 0 , ,2

(11.16)

a=

d) For every u ENp, there exist elements Ul EN} and U2 EN}. such
that

(II.I?)

U 

= Ul + Uz .

(11.18)e) NAG = N} n Nt. .

Notice that property (11.15) is trivially satisfied in this case. However,
in further applications of the theory this will not be so.

We recall that the families

C NtPB = {</>l, </>2, .. (11.19a)

and

B* = {cf>i, cf>~, ... cN'j, (11.19b)

have the following properties given any u ENp, one has

(11.20a)(Aou, If>n) = 0 , 2, ...=> u EN}n =

and
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UoU, <f>~} = 0 ~ u EN;n = 1, 2, ... (11.20b)

From equations (11.7) to (1 9), it follows that

(Ao4>n,4>t':z>=O if n * m , (11.21)

and

<Ao<l>n, <1>:> * 0 ifn=1,2, (11.22)

Hence, multiplying each of the functions of the families of separable
solutions by suitable constants, one can assume that

<Ao<l>n, <1>:) = 6nm

(1

23)

Clearly, properties (a) and (b) show that N} and Nj. are regular subspaces
for Ao : Np -+ N;. Then, (d) imply that {N}, Nj.} is a canonical decom-
position of Np. Properties (e) and (c) follow from theorem 4.1. In view
of definition 9.1, equations (2.20) show that 8 C N} and 8*CNj. are
c-complete for N} and Nj., respectively. In addition, the 'families 8 and
8* are biorthogonal by virtue of (11.21) and by multiplying them by
suitable constants they can be transformed into biorthonormal families.

Now, any function u ENp can be written as

(11.24)

It is convenient to recall that each of the systems of constants an' bn
(n = I, 2, ...) possess only a finite number of non-vanishing elements

because Np and NJ. were defined as the linear mani-folds spanned by
separable solutions. Later actual infinite series will be considered, but
this has been here avoided to keep this introductory example sufficiently
simple. When the systems ~</>1' </>2' ...land {</>i, </>i, ...} are biorthonormal,
it is straightforward to verify that

(11.25a)an = (Aou, <I>~)
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bn = <Ao<Pn' u) . (11.25b)

Using the notions thus far introduced we can summarize our results as
follows:

"The space of biharmonic functions Np defined in a horizontal strip
admits a canonical decomposition into two-subspacesl{N}, NJ.}, sucl,1
that the families of separable solutions {<PI, <P2, .,' }CN} and {<pf, <pi, ...}
C NJ. are c-complete for N} and NJ., respectively. Even more, these two
systems are biorthogonal and by a suitable choice they can be taken to
be biorthonormal. In this case any function of the space N p can be
represented by means of (11.24), where the coefficients an and bn (n =
1,2, ...) are given by (11.25)."

This part is devoted to explain how this simple scheme can be formu-
lated in a manner that can be applied to a very general class of partial
differential equations relevant in continuum mechanics and other fields
of application. In the very simple introductory example given here, the
space Np is not equipped with a topological structure. However, in more
general situations to be treated later, topological considerations will
have to be included.

XII. CANONICAL DECOMPOSITIONS
OF THE SPACE OF SOLUTIONS

When P : D -.D* is associated with a differential equation, the homo-
geneous equation is

Pu = 0 . (12.1 )

Thus, the space of solutions of the homogeneous equation is the null sub-
spaceNp, of P.

Let A = p-p* and assume Al : D -+ D* and A2 : D -+ D* are

antisymmetric operators such that

a) A = Al .~-A2 12.2a)

b) A 1 and A2 can be varied independently; i.e.,

D = NAI +NA2 , (12.2b)
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it is possible to construct canonical decompositions of the space of solu-
tions Np. The corresponding theory has been developed systematically
in the appendix. Here, we only recall a few results and give some ex-
amples.

When u ENp and v ENp, ones has

(Atu, v)+ (A2u, v) = <Au, v) = 0 (12.3)

This shows

<A1u, v) = -<Azu, v) , Vu ENp , vENp (12.4 )

In view of (12.4), one can define an operatorAo : Np -+ Np, given by

(Aou, v) = (A1u, v) = -(A2u, v) Vu ENp , vENp. (12.5)

Let N} CNp and NJ. CNp be two commutative subspaces of solutions,
which span the space N p ; i.e.,

Np = Np +Np (12.6)i)

ii) For every UI EN} and VI EN}, one has

(AOU1,Vl) = 0 (12.7)

iii) For every U2 E NJ. and V2 E NJ., one has

(12.8)(AOU2,V2> = 0

When (i) to (iii) are satisfied, given any solution" ENp, one can write
" = "1 + "2, with "1 EN) and "2 EN}., by virtue of (12.6). Therefore,

(Aou, v) = (AOUI, V2) + (AOU2, VI) VU ENp , V ENp (12.9)

where (12.7) and (12.8) have been used. In view of the above, it is not
difficult to establish the theorem that follows.

Theorem 12.1. Given P: D -+ D*, Al and Az satisfying equations

(12.2), let N} CN p and NJ. CN p be linear subspaces for which (i) to (iii)
hold. Define
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Ip = Np +NA (12.10)

and assume I p CD is comple rely regular for A D -+- D*. Then, if

(Np nNA1) + (Np nNA2)CNA

(12.11 

)

the pair {N}, NJ.} constitutes a canonical decomposition of N p, with
respect to A 0 : N p ~ Np, as given by (12.5). When this is the case,

NAO 

= Ip nNA (12.12)

Proof. The proof is given in the appendix.
We illustrate the material contained in this section by considering a

very simple example. Take, as in Sec. XI, D = C~ (R) and let R be the
unit square 0 < x < 1,0 < y < 1 (Fig. 3). Define

Figure 3

dy -:- I I

0 I

au
Uax

(Pu, v) = ~ vV 2udx +fl

.0

au
u"fiX

dy (12.13)
x=ox=l

Then

y=l

~

(Au. v) = 11 dx (12.14)v ~-u:!!.!!. 1ay ay
y=o

Define
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au
v-ay

(A1u, v) =11 dx (12.15a)

au ju-
ay y=o

<A2u, v) = -i1 au
Vay

(12.15b)dx.

Then equations (12.2) are satisfied, because

au
ay

{u ED I u = = 0 , at y = 1 (12.16a)

at y = Q} (12.16b)

Notice that the space of solutions Np C D, is made, in this case, of the
functions which are hannonic in the unit square and vanish on the sides
of the square; i.e.,

Np = {uED \72U= 0 , on R, u = 0 at x = 0, I} ( 12.17)

The space of solutions can be decomposed into two subspaces

N} = {u ENp I u = 0 , at y = I}, (12.18a)

N} = {u ENp I u = 0 , at y = O} . (12.18b)

Then, it is straightforward to verify (i) to (iii) as well as (12.11). Hence,
{N}, NJ. }is a canonical decomposition of the space of solutions Np.

The assumption (12.11) is similar to the condition that an overdeter-
mined problem has only the trivial solution. It can also be derived, in
some applications, by means of analytic continuation arguments. For the
specific example given here, it follows from the fact that the only func-
tion which vanishes at x = 0, 1, is harmonic in the square and vanishes
together with its normal derivative, either at the top or at the bottom of
the square, is the zero function (i.e. the function which is identically
zero in the square).

In applications, Ao: Np -+ Np, has many alternative expressions.
For example, if one defines the bilinear functional A (}.,), by
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(A (A)u, v) = ~1 {V~-U~}oy oy dx; 0 ~A ~l. (12.19)
Y=h

Then, in the example here considered, for every u ENp and v ENp,
one has

<Aou, v) = < A (A)u, v) , VA E [0,1 (12.20)

A corollary of theorem 12.1, that will be used when discussing bior-
thogonal functions, is that for every u E Np, one has that N~ and NJ. are
completely regualr for A 0; i.e.,

v v E N~ (12.21a)u EN} ~ (Aou, v) = 0

and

VvEN~ (12.21b)u E N; ~ <Aou, v) = 0

In the specific example given in this section, relation (12.21 a) implies
that a harmonic function u that vanishes at the sides x = 0, 1 of the
square, vanishes at the top, if and only if, the integral (12.19) vanishes
for every harmonic function v, that satisfies the same conditions. Clearly,
harmonic functions that vanish at the bottom of the square have a similar
property due to (12.21 b).

XIII. FOURIER BIORTHOGONAL SYSTEMS

Let {N}, N'j.} be a canonical decomposition of the space of solutions
N p with respect to A 0 .

Definition 13.1. Let B1 = {W1, W2, ...}CN} and ~ = {wt, w~, ...}

C N'j. be c-complete for N} and N'j.. respectively, then B1 and ~ are
biorthogonal with respect to each other when

whenever n :#: m . (13.1)<Aown. w:Z >1= 0 ,

They are biothonormal when

<Ao wn' w~) = cSnm (13.2)
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Lemma 13.1. Assume the pair 81 = {Wl,W2,...}CN} and ~ =

{wt, w1, ...}cN'j., is a c-complete pair of biorthogonal systems for
Ao : Np -+ Np such that

Aown:#: 0 ¥ n = 1,2 , (13.3)

Then, it can be normalized (i.e., by multiplication, by a scalar of every
one of its elements, one can derive a pair which is biorthonormal).

Proof. Clearly, the assertion of the lemma is true if (A 0, w n' w:> * 0
for every n = 1,2, Assume

(Ao wn' w~) = 0 (13.4)

for some n. Then

<Aown' w~) = 0 ¥m = 1,2, (13.5)

This implies W n E N'j.; i.e. W n E N~ n N'j. = N A o. This contradicts (13.3).

Notice that when biorthogonal systems 81 C N~ and ~ c N'j., which
are c-complete, are given, with every u ENp = N~ + N'j., one can asso-

ciate unique sequences [ai, a2, ...J, [bl, b2, ...J by means of

ba = <Aowa. u) , a = 1, 2, (13.6)aa = <Aou, w:> ;

Let & CNp/NAO be

(13.7)

,tlbar<~}.

i3 =1

Then, on fa, one can define the inner product

(13.8)(u, v) =

where a~, b~ are associated with v by means of equations corresponding
to (13.6); in addition, the bars in (13.8), denote the complex conjugates.
Let H be the closure of & in this inner product.
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Of special interest is the case when H CNp/NAO. In this case one can
show that the system 81 U ~ is orthonormal for the Hilbert-space H,
with inner product given by (13.8). This inner product and the cor-
responding metric, will be said to be induced by the biorthogonal system
81, 82. Notice that

(13.9)

(U, 11) = (Aou, 11*) (13.10)

(13.11)

Convergence in (13.9) is with respect to the induced metric, or any
equivalent metric.

For applications, it is of course extremely important to establish
criteria under which the induced metric is equivalent to a metric which is
relevant for the problem considered. Some aspects of this ~uestion were
discussed in section X.

As recalled in Sec. XII, equation (12.19), one usually has many alter-
native expressions for the operator Ao : Np -+ Np. Let A(X) be a family
of bilinear functionals, susch that

(Aou, v) = (A(X)u, v) (13.12)

for every u ENp and v ENp. Consider, as before, a canonical decomposi-
tion {N}, N}.} of Npo Let Wn EN} and W: EN}., n = 1,2, ..., be two
families of solutions such that

(A(X)wn' w;') = fnm (A)(A(Ao)wn' w:;') (13.13)

in some range a < A < b. Here AO is a fixed value belonging to this
range and f nm (A) is for every n, m = I, 2, ...a function of A. Then
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"Either fnm (X) is a constant or

<A w W * > = 0 "

0 n' m (13.14)

This is a general form of the alternative previously formulated by the
author [51].

As an example, let N p be the linear space of functions which are
harmonic everywhere in the plane, except, possibly, at the origin. Let
A 0 : N p -.Np be

auI-ua;:- dx , (13.15)

where C is any circle with center at the origin and a/a, stands for the
directional derivative in the radial direction. By the procedure explained
in Sec. XII, it can be shown that a canonical decomposition of Np is the
pair {N}, Nj.1 where NJ, is the set of functions which are harmonic
in the whole plane, including the origin, while Nj. is made of the function
u ENp, such that u -bo log' is square integrable in any region of the
plane that excludes a neighborhood of the origin. Here

I ib --
0 -21T C(A)

It can be shown that the only element of N A 0 is the zero function.
A family of bilinear functionals A (X), with property (13.12), is

i t av av i<A(A)u,V) = Iva;--ua;-dx

C(')
(13.16)

where C(A) is a circle of radius A and center at the origin. If Wn EN}
and W: EN]., n = 1,2, ...are families of solutions of product form;

ie., if

w: 

= gn(r)qn(O) ; (13.17)Wn = fn(r)Pn(8) ;

then, using (13.16) it is seen that

(A(A)Wn'W;:'> = [gm(A)fn(A)-fn(A)g~(A)]A(A(l)wn'w:> . (13.18)

au
ardx
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Application of the alternative (13.14), yields

dx = 03w;'
wnar (13.19)

unless

{gn(A)f~(A) -fn(A)g~(A)}A = canst. o<x<oo (13.20)

Solutions of product form are

{WI, W2, ...} = {I, r cos (), . 8 1sm , ...}CNp (13.21a)

and

{wf, w~, ...} = {log r, r-l cos 8, r-l sin 8} C N;
(I3.2Ib)

With these definitions, equations (13.19) and (13.20) imply that

<Aown, w:'> = 0, if n * m and
(13.22)

This would give groups of two functions which are orthogonal to all
the others. However, due to the manner in which they have been chosen,
equation (13.22) holds whenever n * m.

XIV. BIORTHOGONAL FUNCTIONS FOR
STRIPS AND WAVE GUmES

The procedure explained in Sec. XII, for deriving biorthogonal systems,
is applicable to arbitrary formally sYr:-lmetric systems of equations. When
the equation is not formally symmetric the procedure of Sec. III, theorem
3.2, can be used to transform it into a formally symmetric one.

There are many problems of mathematical physics which can be for-
mulated using auxiliary potential functions. An example is linear elasticity
which can be formulated in terms of potentials from which the displace-
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ment fields are derived. When a potential is used for elastostatic problems
in a strip, the potential is biharmonic.

This leads to two alternative procedures, when dealing with systems
which admit a potential function representation; one is to obtain directly
displacement fields of product form to which the alternative (13.14)
applies directly, and the other one is to obtain product form potentials
which satisfy the biharmonic or any other corresponding equations, to
which the alternative (13.14) is applied.

The first approach was first used by Herrera [51] to obtain orthogonality
relations for Rayleigh waves. It yields product form displacement fields
which are biorthogonal with respect to the bilinear form Ao, which
involve the displacement and the associated tractions and is given by
equation (14.10).

The second approach, on the other hand, yields product form proten-
tials which satisfy biorthogonal relations with respect to a bilinear form
which does not involve the displacement fields directly. For example,
when the potentials satisfy the biharmonic equation, the bilinear form
is [25, 26]:

<Ao</l, iii} = f {iii ~
R an

x

av2 "'
}f/Jan

The fact that in the bilinear fonn (14.1), the quantities involved in the
boundary value problems relevant in elasticity do not occur, is a short-
coming of this approach that may lead to complications [46].

Application of the first approach, on the other hand, does not preclude
the use of potentials; indeed, the use of them may be very valuable to
construct the displacement fields of product form which satisfy the
equations of elasticity. as will be seen in some of the examples given here.

For the development of biorthogonal systems of functions, it is con-
venient to consider a cylindrical regionR = Rxe(-oo, 00), (Fig. 4), where
Rx is a region of the n-dimensional Euclidean space «' (here, only n =
I, 2, will be considered). The points of such region will be denoted by
(x, y); where x E Rx, while -00 <y < 00. It will be assumed that the elas-
tic tensor Cjjpq satisfying the usual symmetry conditions [54]

Cijpq = Cpqij = qipq

is defined in R. When considering blorthogonal systems of functions it
is convenient to let C;jpq be a function of x E Rx but to be independent
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Figure 4

of y. For simplicity, let Cjjpq be C~

strongly elliptic; i.e.,

in R x. In addition, Ci/pq will be

Cijpq ~il1j~p l1q > 0 whenever ~i~i :#: 0 ; 11i11i :#: 0 (14.3 )

The reduced equations of elastodynamics are

(14.4)~(u) + pW2Uj = 0 .
ax,

Suitable boundary conditions on the lateral boundary of the cylinder are

XEO1Rx . ( 14.5a)u = 0 ;

(14r5b)x E a"Rx .T(u) = 0 ;

Here, as it is usual

(14.6a)
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and

(14.6b)T(u) = T ij(U)nj

It is also assumed that the boundary oRx of Rx, is decomposed into
two parts olRx and o2Rx. This induces a decomposition of the lateral
boundary of the cylinder into olR = oIRx$(-~, ~) and o2R = o2Rx$
(-~, +~). The linear space Np of functions to be considered will satisfy
(14.4) and (14.5) in a distributional sense [55] in every subregion n of the
cylinder R~ x(-~, ~); for every such subregion the displacement field is
assumed to be such that u EH3/2(n). Observe that equation (14.4)
becomes the equation of elastostatics when UJ = o.

Clearly

UjTj(v)dx -i I
a2n

[1jTj(u)dx = 0 (14.7)

for every u E Np and v ENp. Here

( 14.8)a 1 n = an n a 1 R ; a" n =an n a"R

For any real number }.., Rx(}..) = RxED}.. denotes the cross-section of the
cylinder at y = }... Then, equation (14.7) implies that the bilinear func-

tional

' ) U) = f(A(I\ u. JRX(X} {VtTt(u) -UtTt(v)]dx (14.9)

defined for every u EN p an v EN p is independent of X, when -~ < X <~.

In order to have A (X) uniquely defined, it is assumed that the unit normal
vector used in the computation of the tractions T, points upwards in the

direction of increasing y.

Hence, one can define A 0 : N p -+- Np by

('Aou, v) = (A(X)u, v) . (14.10)

It can be shown that the only elements belonging to me null subspace
N A 0 is the identically zero displacement field.
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We decompose the cylinder R, into two subregions R+ and R_; a
point (x, y) ER+ when y > O. R- is defined correspondingly. The linear
space Np is decomposed into two subspaces N~ CNp and NJ. CNp,
defined as follows: An element uENp belongs toN~: if and only if, u
is bounded in R+ while Tjfu) is square integrable in R+ ; NJ. is defined
replacing R+ by R_. Under suitable assumptions of regularity for the
region Rx, it can be showI1 that with these definitions assumptions (12.6)
to (12.8) are satisfied. Thus, the pair {N~, NJ.} constitutes a canonical
decomposition ofNp withrespecttoAo :Np -+ Np, as given by (14.10).

Let wn EN]. and w; EN}, be given by

w:(x, y) = eknY<t>:(x) , (14.11 )

where Re(kn) -> O. Application of the alternative (13.14), using equa-
tions (14.9) and (14.10), yields .

J Rx(h){w~ T(wn) -wn .T(w:')}dx = 0 ; if kn =#= km (14.12)

These are Herrera's [51] orthogonality relations. The generality of equa-
tion (14.12) must not be overlooked; it holds for any elastic fields of the
form (14.11), in a cylinder or wave guide, for general inhomogeneous and
anisotropic materials. We recall also that the range of the indexes in the
elastic tensor Cjjpq may also be varied; we will be mainly interested in
cases for which they can take the values 1 to 3 or, alternatively, only
1 and 2. Of course, the relevance of relations (14.12) depends on the
existence of product form solutions; this has been discussed for a few
special cases but a systematic discussion of the subject is lacking.

For applications to plane strain, one must take

Ciipq = A<5fXj<5ii + .u«5ip~q + <5iq<5jp) (14.13)

and when considering generalized plane stress}.. must be replaced by
2}..Jl/(}.. + 2Jl). In such applications, the range of Latin indexes is 1 and 2.
Then, relation (14.12) is available and all what is required is to construct
displacement fields of product form which satisfy (14.4) and (14.5).
Notice that when R is a strip, Rx is a segment which will be taken to be
(-1,1). The boundary aRx is made of two points, -1 and 1. It will be



BOUNDARY VALUE PROBLEMS 221

assumed that o2Rx = oR; i.e., only the case when the lateral boundary of
the strip is stress-free will be considered.

For static problems, biharmonic potentials of product foIm have been
given by Joseph [47]. Let

Un (X, y) = e-knY I/In(X) (14.14a)

and

u:(x, y) = eknYl/ln(X) (14.14b)

be such potentials. When they are taken as the Airy functions and the
boundary condition

TXX = Txy = 0 ; at x = 0, 1 (14.15)

is imposed, one gets

kn sin kn cos knx -knx cos kn sin knx (14.16a)

for even eigenfunctions. The odd eigenfunctions are

kn cas kn sin knx k"x sin k" COS k"x . (14.16b)

The eigenvalues corresponding to even and odd eigenfucntions, satisfy

2kn + sin 2kn = 0 . 2kn -sin 2kn = 0

(14.17)

respectively.
The displacement fields associated with the potentials (14.14), can be

derived from [46]:

a"un
ax"

aWn1 ~2,u- = (I-v)
ax ay2 (14.18a)1)

aWnl
211 --a-y-

(}2Un

a.xay--(1 -v)Qn (14.18b)=
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a2un
aray ,

a2un

ay2

2,uwnr = 2/lWny = 2(1 v)v2 Un - (14.24)

Thus

21lWnr = An \lI~e-~nY , II 1/1~2,uw"y = [2(1-v)(1/In +r)

-2V)A~ I/In ]e-~nY+ (: (14.25)

Therefore, the orthogonality relations derived from (14.12) are

i1 {W:'rTry(Wn) + W:'yTyy(Wn) -WnrTry(W:')

-WnyTyy(W~ )}rdr = 0 ; kn * km (14.26)

where

V.I,2 .1,' ] -? Y'i'n'i'n e nTry(Wn) = [(1 -V)(1/I~ + 1/I~/r -1/I~/r2) (14.27a)

T yy (Wn) = -An [(2 -v)( I/I~ + I/I~ Ir) + (1 -v)A~ I/In ]e-~nY (14.27b)

The expressions for the displacements w:(x, y) and the tractions asso-
ciated with them can be obtained by changing An by -An everywhere in
equations (14.25) and (14.27).

XV. SOLUTION OF BOUNDARY VALUE PROBLEMS
USING BIORTHOGONAL FUNCfIONS

Boundary value problems can be formulated as problems with linear
restrictions of section V. Let D = Np be, as before, the linear space of
solutions of a homogeneous equation and An : Np -+ NP the corres-
ponding bilinear form, which IS assumed to be antIsymmetric. 'fake an
operator B : N p -+ N; that decomposes A o. When N} C N p is a linear
subspace and the linear functional Bu EN; (generally, defined by some
boundary values) is given, the problem with linear restrictions consists
in~ finding u EN}. By virtue of theorem 5.1, when this problem with
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linear restrictions satisfies existence {N}, N B } is a canonical decomposi-
tion of D = N p with respect to A o.

Assume there are availabe c-complete biorthogonal systems B1 =
{W1, W2, ...}CN} and BB = {wT, wi, ...}CNB' then

(IS.la)

while

(15.1b)

bQ = (AwQ' U) (15.1c)aa = (AU, w:> ;

while vA and v5 belong to the null subspace of Ao.
Frenquently, a c-complete biorthogonal system is available for a canon-

ical decomposition {N}, NJ.1 but one is interested in a problem with
linear restrictions in which, as before, a different canonical decomposition
{N}, NB 1 is involved. In such cases the following construction is useful.

Therem 15.1. Assume {WI. W2, ...}CN} and {wi, wj, ...}CNj, are
biorthonormal. Define w~ EN B, n = 1, 2, ...by

W * - W, ENl .
n n P, w~ ENB (15.2)

Then {w;, w;, ...}CNB is c-complete and biorthonormal with {WI,

W2, ...}CN}.
R!:QQf: Under the assumptions, the construction of {w;, "12', ...}CNB

is always possible, because {N}, N B } is a canonical decomposition of N p.
Now, due to (15.2) it is possible to write

(15.3)
* -I +Wn -wn en'

where e = w* -w' EN! Hence
n n n p.



225BOUNDARY VALUE PROBLEMS

(Awn' w';' ) = (Awn' w:n ) + (Awn' Em)

(15.4)= (Awn. w~> = cSn m

Any u ENp, can be written as u = Ul + un with Ul EN~ and un ENn,

Therefore

(Au, w~) = (Aul' w~) = (Aul' w~) (15.5)

This shows that

(Au, w~) = 0 V n = 1, 2, ~ (Au w*) = 01, n

V n = 1, 2, ... => UI Ell n 12 = NAO ( 15.6)

Hence

=> U = Ul +UB ENB (15.7)(Au, w~) = 0 , 2, ..

Vn=

Examples of the applications of these results to boundary value problems
in elasticity were given in [27].

APPENDIX

CANONICAL DECOMPOSITION OF I P

Let B: D -+ D* decompose A and N B = I. In addition, assume
A1 : D -+ D* and A2 : D -+ D* be antisymmetric operators that satisfy

(12.2). Then by lemma 2.2.

(A.I)N A = N Al n N A 2 .

Given any u ED write u = uy + u~ where u~ EN A 2 and u~ EN Al

Then
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(Au, v) = (A1uY,vY)+(A2u~, v~) (A.2)

Notice that

(A2u, v) = (Au~, vy)(Atu, v> = (Au?, v?> ; (A.3)

Clearly, we can define operators B1 : D -+ D* and B2 : D -+ D* such

that B 1 decomposes AI, while B2 decomposes A 2. They are given by

{B1u, v> = {Bu~, v~> ; <B2u.v) = (Bu~,v~). (A.4)

Define

D2 = NBl :>I:>NA . (A.5)

D1 

= NB2 :)[:)NA ;

Then

I=D1nD2. (A.6)D = D1 +D2 ;

When u = Ul + U2, with Ul E D1, U2 E D2 and similarly for v, ont: ilas

(AIUZ' 

UZ) = (AZUl' UI) = 0 (A.7a)

Because

(Au, v> = (A, U1, V1 > = (A1u1, V2> + (A1u2, V2>

+ (A2u2, V2) + (A2uI, V2) + (A2u2, VI) . (A.7b)

Hence

(AU1, VI) = (A1ul, VI) (A.8a)
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(Au", v,,) = (A"u". v,,) . (A.8b)

Write

Ipl = Ip n D1 ; IP1, = Ip'nD2 . (A.9)

Define for Q = 1,2, the operator A~ : Ip -+- I; by

(A;'u, v) = (AQu, v) , v u Elp & v Elp (A. 10)

Lemma A.I. When {I, I p} is a canonical decomposition of D, with
respect to A : D -+- D*, one has

Ip = lPi + IP2 (A. I I )

f!QQf. Notice that IP1 CD1 while Ip2 CD2. In general any u Elp
can be written as

Ul Elpl & U2 EIP2 ' (A. 12)U=Ul+U2,

because u = u~ + u;, with u~ E Dl and u; E D2, by virtue of (A.6).
Write u; = Ul + w with Ul E Ip and w E I; this is possible because {I, Ip}

is a canonical decomposition of D. The fact that U; E Dl while wE I CD
(Eq. A.6), implies that Ul E Dl; hence, Ul E/p n Dl = Ipl. Writing

I ..U2 = U2 -w,ltlseasytoseethatu = Ul +U2 and U2 EIp2.

Theorem.&l.. Assume lp n(NAl EDNA2}CNA' Then when {l,lp}is
a canonical decomposition of D with respect to A, {Ipl' IP2 } is a canon-
ical decomposition of Ip. with respect to A: : lp -+ I' (a = I or 2).

f!Q.Qf. In view of lemma' A.I, it is only necessary to prove that I p 1
and I p" are regular su bspaces. D~note by ~ a the null subspace of
A:. Take a = I and assume U ENAl CIp, then

(Aiu, v) = (Au~, v~) = (Au~, v) , v v Elp (A.I3)

This shows that u~ Elp; hence u~ Elp nNAI CNA. A similar argu-
ment for a = 2, shows that NA Clpa (a = 1,2). To show that IPI
and Ip2 are commutative subspaces, notice that u Elp and v Elp implies
<Au, v) = O. Hence, the desired result follows from (A.7a) and (A.8).
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RESUMEN

Se presenta una teoria abstracta de problemas de frontera desarrollada recientemente par el
autor. Ella exhibe la estructura aigebraica asociada a problemas lineales. Se da una caracterizaci6n
de sistemas completos de soluciones para regiones de forma arbitraria. Tambien se sistematiza la
utilizaci6n de sistemas de funciones biortogonales que contribuyen a ampliar la teoria de series de;
Fouries generalizadas. Se desarrollan principios variacionales generales para problemas de condicio-
nes de frontera, con saltos prescritos y sujetos a condiciones de tipo de continuaci6n. Se exhiben
aplicaciones a mecanica de tluidos y de solidos; entre ellas, teoria de placas, tlujos de Stokes,
problemas de difraccion elastica, etcetera.


