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ABSTRACT 

A boundary method developed by Herrera is briefly explained in connection 
with wave scattering. The method is based on the use of complete systems of 
soluUons 01 the homogeneous equations. A convenient criterion of completeness 
is the noUon 01 c-completeness. The general method grants convergence of the 
"approximating sequence when a least-squares fitting 01 the boundary conditions 
is used. As an iHustration, the scattering and díffractíon 01 SH waves by surface 
irregularities is treated here. It is shown that plane waves are e-complete in a 
bounded region 01 arbitrary shape. Scattering is formulated as a problem of 
connecting solutions in such a region with solutions in an unbounded one where 
Hankel functions are used. Numerical results for specific cases ar~ reported. 

INTRODUCTION 

Diffraction of elastic waves has interest in seismology and earthquake engineering 
in several instances. The study of the influence of various kinds of irregularities on 
the characteristics of ground motion is a subject of great importance. Boundary 
methods are suitable to de al with sueh problems because they avoid the introduction 
of ficticious boundaries and reduce the size of the discretized regions. These facts 
yield numerical advantages. 

There are two main approaches for the formulation of boundary methods: one is 
based on the use of boundary integral equations (Brebbia, 1978), and the other one, 
on the use of complete systems of solutions (Herrera, 1981a). The latter approach 
avoids the introduction of singular int.egral equations and fundamental solutions 
which are more difficult to construct than complete systems of solutions. This point 
is illustrated well in this papel' through the use of an extremely simple system of 
solutions; namely, plane waves. 

In sorne fields of application, procedures which can be identified as particular 
cases of the approximation by complete systems of solutions have been used. For 
sueh studies, the so-called "Rayleigh hypothesis" limits drastically the applicability 
ofthe method (Bates, 1975). That such restrictions are due mainly to lack of clarity, 
can be seen in view of sorne results due to Millar (1973). In considering diffraction 
of elast~c waves by periodic surfaces and bounded objects, Millar employed a method 
of series expansion for the scattered wave field in terms of a set of plane waves. The 
completeness of the set was established which guaranteed that there is "a linear 
(~ombination of N elements of the set that converges on the boundary to t-he 
prescribed values, in the mean-square sense, as N -+ oo." Furthermore, it was 
\'stablished that "al the points not on the periodic surfaces, the expansion converges 
uniformly to the sought solution whether or not the Rayleigh hypot.hesis is satistled." 

Motivateo by this situation, Herrera (1977a, 1979) initiated a systematic research 
of the subject. The aims of his study have been satisfactorily achieved, to a large 
extent, ano at'e just being reported (Herrera, 1980a, 1981a). The outcome has been 
a systematic and rigol'ous methoo which expands the versatility of boundary 
procedures, making t.hem applicable to any problem which is governed by linear 
partial differential equations. 
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Thc met.hod makcs cxtcnl"ive llRC of result... t,hat hnvc ueen dcrivecl in lhe theory 
of parlial dillcrcnt.íaJ cquat.ions (Liolls nnd Magcncs, 1B72). In purticular, results on 
the exislence and cont.inuity of solutions of elliptic equutions, lhat will he needed in 
this art.icle are special cases of very general results given in volume 1 (pp. 188-189) ~ 
of the books by Lions and Magenes. 

The methodology also owes much t.o conl.ribut.ions by n group of Halian mathe­
maticians (Miranda, 1970) and Kupraclze (1967). The systemntic oevelopment uf 
these procedures, in a manner which is applicable to any linear problem, wns madl' 
possible, however, by an algebraic theory which has been developecl by¡. 'Herrera 
( 1981b). 

There are two additional aspects in which this algebraic theOl'y ls relevant; the 
formulation of variational principIes (Herrera, 1977b, 1980h) ul!d the development 
of biorthogonal functions, which are obtained by separatiun of val'iables procedures. 

In geophysical research, Herrera's (1964a) orthogonality relation fur Rayleigh 
waves has been known for some time and has been applíed by AIsop (1968) and 
Malischewsky (1976) to problems of elastic wave dÍffraction. Using a different 
procedure, similar relations have been obtained for the biharmonic equation (Joseph, 
1979). Such developments were lackíng, until recentIy, a general amI systematic 
theoretical framework. It has just been shown (Herrera and Spence, 1981) that the 
algebraic theory is quite suitable for this purpose. 

The introduction of the concept of e-completeness allows constructing systems of 
solutions which al'e complete, not only with respect to general boundary values, but 
independently of the specific region considered (Herrera and Sabina, 1978; Herrera, 
1980c). In addition, it permits keeping all computations in r:~ spaces. A procedure 
has also been developed for computing boundal'Y information which is complemen· 
tary to boundary data, e.g., tractions when displacements are prescribed. Applica· 
tions of the method include problems formulated in discontinuous fieIds with 
prescribed jump conditions. . 

Complete systems of solutions have been used mainly in applications of the 
method of separation of variables. This has led to the frequent, but false, belief that 
such systems have to be constructed specifically for a given region. There are 
available quite general procedures for deriving e-complete systems (Herrera and 
Sabina, 1978). In addition, sepal'ation of val'iables can be used to construct e­
complete systems which, generally, are biorthogonal, as is the case of Rayleigh 
waves (Herrera, 1964a>: Ad-hoe procedures can also be applied; an example i8 the 
system of plane waves developed in this article and another one is a general class of 
e-complete systems recently developed for Stokes problems (Herrera and Gourgeon, 
1981) and the biharmonic equation. 

As an illustration of the method, which i8 relevant for estimating the influence of 
local topography and geology, we treat the scattering and diffraction of harmonic 
SH waves by irregularitiesol" the surface of an elastic half-space (Figure 1). This ¡lo! 
decomposed into two subregions (Figure 2); a bounded regíon R and an unboundcd 
region E. Plane waves are used on R and Hankel functions on E. Numerical results 
are presented for two types of surface irregularities. 

Problems similar to the example given here, have been extensively studied using. 
e.g" perturbations (Herrera, 1964b; Sabína and Willis, 1977), finite difference:1 
(Boore, 1972), and boundary methods (8ills, 1978); among the latter, procedun'¡'¡ 
which are similar (Bouchon and Aki, 1977; Bard and Bouchon, 1980) 01' that can Iw 
identified as particular cases of the approximation by complete systems of solutiolll4 
(Sánchez-Sesma and Esquivel, 1979, 1980; Sánchez-Sesma and Rusenblueth, 1H7!I; 
England el al., 1980). 
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FOUNDA'l'IONS OIi- THE ME'I'HOD 

'rhe houndary method CHerrera, 1 nH1a) wiH he presented here with sorne det.ail, 
IInly in conneclÍon with flil'frudion prohlems of SEl waves. The method ¡s. however, 
¡{('Ileral and can be applierl lo diffraction of other kinds of elastic waves. 

'rhe diffraction problem t.o be considered consists in finding the total field W 

prncluced by a~ incident waves w(i) on a half-space with arbitrary surface irregular­
it il'H (Figure 1). It i8 assumed that these waves are periodic with circular fl'equency 
a w. In such a case, the displacement w in the z direction satisfies the reduced wave 
(!quation 

(1) 

in which k:= w/fJ = wavenumber, with fJ = Jp./p = shear-wave velocity, p. = shear 
modulus, and p = mass density of the medium. 

y 

... 

x 

FIG. 1. Surface irregularity. 

E 
FIG. 2. Interior and exterior regions. 

This problem can be formulated as a problem with preseribed jump8, whieh i8 a 
special case of the probl~m of eonnecting diseussed in detall previously (Herrera, 
1977b, 1980b, e). Let w( (l be the free fieId; i.c., w( f) i8 the solution when the problem 
is formulated in a half-spaee with aplane boundary and no irregularity i8 presento 
The total dornain can be divided in two regions R and E (Figure 2). For functions 
w whose domaill of definition includes the region E, the notation WE will be used for 
its restrietion to E; a corresponding convention is adopted for functions whose 
dornain of definition inc1udes R. Define 

(2) 

It is convenient to observe at this point that a function WR «() will not be defined 
hccause the domain of definition of W ({), in general, may not include the regio n R. 
On lhe other hand, we define 

Un = Wn. (3) 

Then, it is easy to see that Uu and Ue, satisfy equation (1) on R and E, respectively. 



476 SÁNCIU:Z-SESMA, HElmEHA, AND AVILÉS 

Also 

aUf¿ = O. on alE (4) ~ on ' 
auu = O. 
iJn ' 

while the continuity of W implies the following jumps across o2R = ¡hE .. ' 

(Ga) 

«(lb) 

Here, al E is the intersection of aE with the plane boundary of the half-space (Figun' 
2), while in (6b), to be definite, the unit normal vector 11. has been taken poinlin¡: 
outward from R. Recall that the pair of functions II = {UR, ud satisfies in adrlilioll 
equation (1) on E and R separately; this condition together with equations (4) tu 
(6) define the desired problem with prescribed jump dh¡continuities. 

FIG. 3. Region R and its boundary aR. 

The method to be explained, can be better understood by considering two simplt·r 
problems first; these are Dirichlet and Neumann problems for the reduced WIl\'t· 

equation (1) in a bounded regíon R with boundary aR (Figure 3). 
For definiteness, assume u E H,+1/2(R), where the standard notation for Sobolev 

spaces is being used (Lions and Magenes, 1972). 
Let us denote by NS+ 1

/ 
2(R) e H"+1/2(R) the subspace of functions that salisfy 

equation (1) in R. If ~ = {WI, W2, ••• } e N'+1/2(R) is a system of such solutiolllol 
which spans Ns+ 1

/ 
2(R), then there is a sequence of approximations 

(7) 


such that 

(Bl 

In order for the representation in equation (7) to be useful, it will be required tu 
have a procedure for deriving the coefficients an 

N from boundary dala only. Thíli ¡M, 
indeed, possible. 

It ls known (Lions and Magenes, 1972) that when u E HH+l/2(R), then II E H'(alli 
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whilc iJujiJn E Ir- l(cJ}l). If the cocfficients (lIlN are chosen so that 

(9) 

11H'1l lhe continuit.y propcrties imply (8). [It is assumed that. -/¿'!. is not an eigenvalue, 
t,jl.he!' ror Dirichlct or fol' Neurnann problems. Otherwise, the argument given here 
haH lo he modified (Herrera, 1981 a). Fol' simplicity, the corresponding discussion" is 
Ilot included.] Similarly, 

iJu 
--~- in (10)on iJn 

1Ilso imply (8). Therefore, if the boundal'Y values 

{W., Wz, ••. } span HS(aR), (11a) 

Ihe coefficients can be chosen so that (9) is satisfied. On the other hand, if 

fiJW1 OW2} HS-1( R)---- ... span . o (llb)
l an ' an ' 

the coefficients can be chosen so that (10) is satisfied. In the first case, the system 
:11 e N·~+1/2(R) can be used to solve a Dirichlet problem, while it allows solving a 
Ncumann problem in the second one. 

Assume fJd = {w¡, W2, ••• } spans Ns+1/2(R), then continuity properties of solutions 
uf elliptic equations grant that both statements (11) hold. Hence, such a system can 
be used to solve both Dirichlet and Neumann problems. Clearly, (9) holds if UN is 
taken as the projection of the boundary values U E H"(aR) on the subspace spanned 
hy {w¡, ••• , WN}. On the other hand, (10) holds if auNjan is the projection of the 
houndary values aU/iJn E H"(aR) on the subspace spanned by {aw¡fan, ... , aWNj 
(ln ). Therefore, in both cases, the coefficients can be computed by the standard' 
pl'Ocedure for projecting on a subspace. 

Notice that in the first case, the projections are taken in the sense of the inner 
product associated with H'~(aR), and in ,the second one, it is associated with 
lr-1(éJR). Numerically, it is simpler to use f.2(aR) = HO(aR) inner products, only. 

This can be done, if it is granted that 

(12a) 

IInd simultaneously 

aWl aWl. ••• } spans H()(iJR). (12b)
{ an ' an t 

This will happen, if and only if, 

(13) 

As n matter of fact, conditions (12) are granted whenever:7$ spans Ndl/:!(R) with s 
;.;: 1, but the choice (13) is optimal in the sense that it corresponds to the least. s that 
"aH he taken, granting (12). 
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There is an altemative manner of imposing condition (13). Let DH e H 1!2(R) be 
the línear subspace (the linear subspace Du, so defined, is not doscd) with the ID 

property that ror every u E Du. the boundary values satisfy 11 E H(l(oR), while ou¡ 
iJn E HII(iJR). Define fol' evel'y u E Du and v E Du , the hilineru' functional (Herrern, 
1980b, 1981a, b) 

f { iJU au}(Aull, u) = v- - u- n. (14) 
aR iJn iJn-

Let /1' e Du be the linear subspace of DR with the property that v E /1', if and only 
if, there is a soIution w E Dtt of equation (1) such that 

v = w; on aR (15a) 

and 

iJv aw 
-=-; or aRo (15b)
iJn iJn 

The subspace /1' can be concisely defined as the quotient space N 3/ 
2(R)/NA R. 

It has been shown (Herrera, 1980c, 1981b) that conditions (12) hold, if and only if,•fOf every u E DR , one has 

{ARU, W" > = O V a = 1, 2, .•• => u E/p. (16) 

When (16) is satisfied, the system {WI, W2, ••• } e N 3/ 2(R) is said to be e-complete. 

Thus. the system fJ9 is e-complete, if and only if, (12a) and (12b) hold simultaneously. 

But, since (12) and (13) are equivalent, we can summarize our results as follows; 

given a system of functions fJ1J = {Wl. Wz, ••• } e N 3

/ 
2(R), satisfying equation (1), the 


following statements are equivalent 


fJ1J is e-complete 

fJ9 spans N 3
/ 

2(R) e H 3
/ 

2(R). 

The boundary values, {WI, W2, ••• } span HO(iJR) and simultaneously 

iJWl , iJW2 , ••• } span HO(iJR).

{
 éJn éJn 

Notice, finally, that fM spans N I 
/ 
2(R) whenever fJ9 spans NJ/2(R), as it is not difficult 

to verify. 
These results show that a e-complete system can be used to solve both a Neumann 

and Dirichlet prohlems. Actually, such a system can be used to solve any boundary 
value problem associated with what in Herrera's (1980c, 1981b) theory is known ¡t1l 

a canonical decomposition. 
Going back to the Dirichlet problem, the least-squares or projection condition in 

HO(iJR) leads to the system of equations 

N 

L M",nan N == Cm ( 17) 
11-1 
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where 

M,IIII = 1WnWm* d~ 	 (lSa) 
aR 

and 

Cm = 	 ( taR wm'" d~ (lBb) 
JaR 

where the asterisk reCers to the complex conjugate. Here !aR are the prescribed 
boundary vaIuas ror this problem. With this choice, UN ~ U in ¡'¡1/2(R) (Lions and 
Magenes, 1972). Similarly, ror the Neumann pl'oblem, the system of equations (17) 
also holds, except that equations (lB) have to be replaced by 

M 	 = 1éJwn awm * dx 
nm !\:l ~ 	

(19a) 
aR un un 

and 

1 
éJWm* 

Cm = gaR--d~ (19b) 


aR an 

where gaR are the prescribed normal derivatives on aR. In this case, UN ~ u in 
H:J/2(R) (Lions and Magenes, 1972); therefore, also UN -+ u in H 1/ 2(R). 

Computation of complementary boundary vaIues, when they are required, may 
need a speciaI device. In general, ifthe normaIderivative iJuNjiJn -+ gaR in HO(aR), 
then UN -+ U in R 3/2(R); hence, on the boundary UN ~ U in H1(iJR), which implies 
UN -+ U in RU(iJR). Thus, in the case of the Neumann problem, the unknown 
boundary vaIues can be derived from the approximating sequence directly and the 
procedure that is given next is not required; however; such procedure can be used to 
accelerate the convergence of UN -+ U in H()(éJR). 

For the Dirichlet problem, the un.known normal derivatives cannot be derived 
from 	the approximating sequence UN, because from UN -+ ti/R on HO(éJR), one can 
only 	grant that iJuNjiJn -+ iJujiJn in H-1(iJR) (Lions and Magenes, 1972). lf the 
boundary data is sufficiently smooth; Le., if tilR E H1(éJR), it is known that iJujiJn 
E H)(iJR) (Lions and Magenes, 1972) and the following approximating sequence can 
be used 

(20) 

The coefficients can be obtained from 

N 
NL Knmbn = d".. 	 (21) 

11-1 

This procedure is an extension of a relation derived by the Italian mathematicians 
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in the 1940's (Miranda, 1970). Here 

(22n) 

while 

.. 
aWmf all f f aw",dm = -{(1m d~ = u--d~ = ~R--d.'S. (22h) 

MI éin aR éin (IR Un 

Notice that d", is given in terms of boundary data only. 

A e-COMPLETE SYSTEM OF PLANE WAVES 

The system of functions (given in polar coordinates) 

M' = {Jn(kr)cos nO; J II (hr)sin nO In = 0,1,2, ••. } e N 3
/ 
2(R) (23) 

is e-complete (Herrera and Sabina, 1978) in any bounded regíon R (Figure 3). This 
fact can be used to prove that the system of plane waves 

f18 = (exp[iltr costO - ,P¡)], exp[ikr cos(O - "'2)], exp[ikr cos(O - ~3)], .•• } (24. 

where the sequence "'1, "'2, ... , is any dense set of real numbers in the interval [O, 
2'lT], and is also e-complete in any such region. 

It is known that (Whittaker and Watson, 1958) 

J (kr )e infJ = (_i)n f'lr e in t + ikr cos(fJ-O d~. (25)n 
2'lT 

-'Ir 

This formula exhibits Bessel functions (more precisely, the members of the family 
f18') as a superposition of plane waves. It is easy to see that 

(ARu, w) = O V w E f18~ (ARu, w) = O V w E f18'. (2G, 

Indeed, the implication (26) follows from the fact that the set "'1, '-P2, ••• is dense in 
[O, 2'lT] and the continuity of the integrand in equation (25), when use is made of 
definition (14) of A R • In view of definition (16) of e-completeness, (26) shows that 
the system of plane waves ,<J!j is e-complete because &.J' is also e-complete. 

Another result that has been obtained previously (Herrera and Sabina, 1978) Ü 

the fact that, in polar coordinates, the system 

(271 

where H n (21 is the Hankel functíon of the secondkind and order n and is c-compld( 
for the space of solutions of equation (1) in the exterior E of a bounded region sud 
as R in Figure 1, which satisfy Sommerfeld radiation conditions. 

Another possibility is to take E as a subregion ol' a half-space, which is exterior tI 
a hounded regio n like R, in Figure 2 and take the space of solutions of equation (1 
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in E to be rest.ricted in additioll by Sommerfeld radiation conditions, and the 
hOllndary condit.ion (4) on iJl E (Figure 2). In this case, the syst.em 

{H,,l'.!l(hr)cos nO I n = 0, 1, 2, ••. } (28) 

is e-complete in any such E. 

EXTENSIQN 1'0 DIFFRACTION PROBLEMS " 
In this section, we extend the results presented prcviously to problems with 

lIrescribed jumps, in terl1'~ of which, the original diffraction problem was formulated 
in "Foundations of the Methods." Consider the regions R and E illustrated in Figure 
2. Let D R e Hl/2(R) be the linear space of functions introduced in "Foundations of 
the Methods," while N(R) e D R will be the linear subspace of DIl whose elements 
Ratisfy equation (1) in R; then, N(R) = N a/2 (R). The definition of the linear 
subspace DE becomes more involved because E is unbounded. Such technical 
difficulties can be avoided altogether if attention is restricted to boundary values on 
iJ~E. Thus, DE will be taken as the linear space whose elements are pairs [UE, iJue! 
(In] of functions defined on iJ2 E, such that UE E H()(iJ2 E) and iJuEliJn E HO(iJ',lE). In 
m.ldition, the linear subspace N(E) e DE will be defined by the condition that an 
clement [UE, iJuEliJn] E N(E), if and only if, there is a solution v of the reduced 
wave equation (1) in E, satisfying the boundary'condition (4) on iJtE, together with 
Sommerfeld radiation condition at infinity and such that 

(29a) 

(29b) 

Conditions (29) are equivalent to require that 

1{ iJUE iJW}w--- - UE- d~ = O (30) 
alR iJn iJn 

ror every element. of W of the system (28) because the latter is c·complete. In order 
lo keep the notation simple, elements of DE will be denoted by UE; recall that with 
every llE E DE. there is a paiI' [U¡.;, iJudiJn] where U¡.; E H Ü (iJ2E) and iJu¡.;jiJn E 
HII(iJ',!E). It will be seen, howevel', that this ambiguity does not lead to confusion. 

We will be interested in pairs of elements {Uu, UF.}, such that UN E DI{ while Llf: 

E D¡.:~ the space of such pairs will be denoted by ñ = Du E9 DR. The space Ñ e D 
will be made by pairs {UR, Ur;} such that Uu E N(R), while U¡.; E N(E). In a fashion 
similar to that in which 11, was introduced in the previous section, the space jp will 
be defined. An element u= {uu, UE} E ñ belongs to 11" if and only if, there exists 
('R E N(R) such that 

Un = VR, on iJR (31a) 

iJUR iJvn 
-=-, on iJR (31b)
iJn un 

while U¡.; E N(E). The simplicity of this last requirement is due to t,he fad t.hat we 
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are restricting at.tention to the boundary values and normal derivatives on éJ,zE == 
ihR, of fundions deflned in the exterior region E. 'i!,íi 

The problem of diffractíon introduced in "Foundations of the MethodU can now 
be formulated as a problem of connecting (Herrera, 1980b, 1981a, b). This consists 
of finclín,; ú = {Uu, ll¡.;} E IV which satisfies (5) ancl (6). Here, UN ami u¡.: are related 
to the total tield W by equations (3) ancl (2), respectively. 

In addition to the bilinear form AR given by equation (14), we introduce AE by.. 

(32) 

The minus sign in this definition i8 motivated by the faet that, in order to be 
definite, the unit normal vector 13: will be taken point.ing outward from R. Define 

(33) 

In this case (Herrera, 1980b), 

AA A A( U, u) = J:" A( U, u) ... A A I.- (Ju, U) + 
Rih 

{OURUR- ­on 
OVR} dUR~ * 
011, 

(34) 

where the jump operator J is given by 

AA Á(Ju, u) 1{A OV [oil]} dx= [u]--iJ - _. 
<i2R 011, 011, 

(35) 

Here, the jumps [ 	 ] are given as in equations (6), while 

fj = {VR + vE)/2; 	 oU = (OVR + OVE)/2. (36) 
¡¡n 011, 011, 

A system ¡j = {lOI, lO2 • ••• } e Ñ is said to be e-complete for the problem of 
connecting (the diffraction problem) when for every il E D, one has 

(37) 

It has been shown (Herrera, I980c) that, ir the system {WRl. Wu:., ••• } e N(R) 
and simultaneously the system {WEh WE2, ••• } e N(E) are e-complete on R and E, 
respectively, then the system 

(38) 

is e-complete for the problem of connecting. The notation used in (38) is as follows: 
given WR .. E N(R) and WEtr E N(E), we define Ú)R<r = {Wnu, O} E Ñ and similarly. 
lOE« = {O, WEa}. Then 

,.. A A } Ó 
flBR = {WRI, WR2, ••• e JV 	 (39a) 
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(39b) 

This shows, for example, that the system (28) defined on E, together with the 
system (24) of plane waves defined on R, are e-complete for the probl.em of 
diffraction considered in this paper on region R U E. By using it, it is possible to 
approximate as closely as desired, in the least-square sense, any prescribed boundary 
condition on i)¡R and jumps on the funetion and normal derivatives prescribed on 
~R. ~ 

This latter statement, however, requires clarification. Notice that with every pair 
a = {Un, UE} E D, there is associated a unique system of three L:'lctions: [a] E 
HO(éhR), [da/dn] E HO (d2 R), and dUR/dn E HO(éJ1R). Therefore, the triplet {[ú], 
[dú/on], oUR/iJn} E HO(~R) El) HO(iJ2R) El) HO(OlR). In addition, there is a second 
element of this Hilbert space of triplets associated with ú E D, namely, {ü, éJu /éJn, 
un} E HO(dzR) El) HO(iJ'lR) El) HO(éJ1R). These two systems of triplets constitute what 
in Herrera's general theory i8 called a canonical decomposition; however, for the 
sake of brevity, we will not dwell on that. For our purpose, what matters ls that 
previous results (Herrera, 1980e, 1981b) imply that a system {WI, W2, •.• } E Ñ is c­
complete for the problem of connecting, if and only if, each one of the systems of 
triplets 

{[A] [éJWo] dURa} 
WOI a. == 1,2, ... (40a) 

' dn ' éJn ' 

and 

{_ OWa }w ... éJn ,Una , a. == 1, 2, ••. (40b) 

span HO(éJ2 R) ffi HO(d2 R) ffi HO(OlR). To avoid any possible confusion. we remind 
that given any two elements {PI, P2, P3} and {ql, q2, q3} E HO(i12R) El) HO(éJ2R) El) 

HO(OlR), the ¡nner produet in this Hilbert space, to be denoted by (" .), is given as 

(41) 

where the asterisk refers to the complex conjugate. This defines the least squares or 
projection procedure to be used and the method to be applied for the solution of the 
diffraction problem. 

In a manner similar to what was explained at the end of "Foundation of the 
Method," we notice that ir the complementary boundary values (ü. dü/éJn, u} E 
H(I(iJ2 R) €e HU(iJ.!R) El) H()(iJ. R) are required, these can be compllted using a 
generalization (Herrera, 1981b) of the procedure given there. Given any ú E D, 
define 

u. = {[ÚJ, [::]. ai1~l} (42a) 

U2 == {::' -ü, UIl}. (42b) 

http:probl.em
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It can be seen that. equation (34) can be written as 

(43) ~ 

As we want to compute the houndary vaIues having prescribed the jumps on d~R 
and the normal derivative on al R, lel \lS write 

N 


L C,N W!l -')o ll2 (44a) 

11-1 

or 

AN * iJwlI * dWR.,' uU_LN Cn { [Wn ] , [A--] } {;--, -u, Un } (44b),-- -')o 

11-1 iJn dn dn 

where the coefficients can be obtained using least-squares approximations from the 
system of equations 

N 

L KllmCn N = dm m = 1,2, •.• , N (45) 
11=1 

where 

(46a) 

and 

(46b) 

From equations (37) and (43), it is clear that 

(47) 

As in equation (22b), dm is given in terms of boundary data onIy. 
It is interesting to note that the average values of the normal derivate and the 

function on o2R are given in terms of the complex conjugate jumps of the approxi­
mating sequence and of the normal derivatives, respectively. At the same time, the 
values of Un on al R can be derived from the complex conjugate of the normal 
derivatives of the approximating sequence. 

A SPECIFIC PnoBLEM 

Assume, for the sake ofillustration, that aplane wave ofunit amplit~cle propaga tes 
toward the surface of the half-space with an incidence angle tf;, as shown in the 
Figure 4. This incident wave is given by 

W(i) = exp{-ik[x cos tf; + y sin tf;]). (48) 

The time factor exp(iwt) is omitted here and thereafter. In absence of irregularítiefl, 
the reflected wave is 

W(r) = exp(-ik[x cos "" - y sin tf;]), (49) 
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thus the free field w l n = w h ) + w(rl is given by 

w( () = 2 cos(ky sin l/I )exp(-ikx cos l/I). (50) 

It can be seell that the displacement amplitude of the surface in the free field is two. 
Using the notation of "Foundatiom; of the Method," the scattered field U¡e; in the 

exterior regíon E (Figure 2) can be expanded in terms of the e-complete system 
given by (28) to obtain 

N 

UE = L AnHn(21(kr)cos nO (51) 
n=O 

y 

... 

x 

Fm. 4. Incident and reflected SH plane waves. 

y 

FIG. 5. The m-esim SH plane wave. 

where AlI = complex coefficient, and N = order oí multi-pole expansiono On the 
other hand, the displacements Wu = UR in the interior regíon R, which ineludes the 
irregularity, can be expanded in terms of the e-complete system [equation (24)] 01' 
pIune waves to obtain 

M 
\...... B (52)Wlt =,c.. m</>m

m=l 

in which </>m = exp{ -i}~1' cos(O - l/Im)} = plane wave of unitary amplitude and 
incidence angle lh. (Figure 5) = BIII = complex coefficient. It is eonvenient to cho{)se 
1/;", = '1T(2m - U/M. whcre M = order of plane-wave expansiono 

The coefticicnls of the expansions will be obt:ain~d by taking the mínimum of the 
tnean-square error which is defined as 

:.! 2 
., iJw¡.: cJWu iJWIt 

E = f {CI 11(',.: - WIl 1- + <:21---1 }ds + r C:I 1-1 ds 
".!R c)n iJn J.•.u c1n 
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in which Ch C2, c;\ = normalization fndors. As E = dAn, Al, ••• , AN. B 1 , ••• , B M ), ! . 

the minimum of € can be found under the coriditions 

iJe 
-=0 i = O, 1, ••• ,N, and (54n)~
aA¡ , 

iJE = O j = 1, 2, ••• , M. (54b)oB} , 

Equations (54) are a system of N + M + 1 equations for the N + M + 1 finknown 
complex coefficients and can be arranged in matrix form as 

[L]{X} = {F}, (55) 

in which [L] is an Hermitian positive-definite matrix. Here 
. 

{X}T = (Ao, Al, ••• I A N • B l , B 2 , ••• ,BI1I ). 

Explicit expressions for the coefficients of matrix [L] and vector {F} have becn 
obtained by taking the curve éh R as a semi-circle; they are too long to be presented 
here. Numerical integration must be used when integrals over o:!R are calculated. 
However, a direct approach .working directly with boundary conditions in a collo­
cation-least-squares procedures has proved to be useful (Sánchez-Sesma and Rosen­
blueth, 1979; Sánchez-Sesma and Esquivel, 1979, 1980) and leads to a system of 
equations similar to that of equation (55). 

Once the complex coefficients are known, equations (2), (51), and (52) allow us to 
compute the field at any point of the studied domain. In "Extension to Diffraction 
Problems," it is explained that the approximating sequences necessarily converge at 
any interior point and the boundary olE, but the convergence at the boundary aR 
is not granted. However, the procedure explained in those sections can be used to 
compute the boundary values. 

NUMERICAL EXAMPLES 

The method as described aboye was used to compute displacement amplitudes on 

the surface of a ridge given by the curve 


in Ixl ::: b, with y = O in Ixl > b. Here h = height of the symmetrical ridge, and 2b 
= width of the base. NumerÍcal results are given for a normalized frequency 'YJ = kb/ 
1T = 2bl'A, where 'A = incident wavelength. Three incidence angles = 0°, 45°, 90° and 
three aspect ratíos hlb = 0.25, 0.50, 0.75 were considered. The scattered field was 
constructed usíng N = lO, and the order of the plane-wave expansion was M = 20. 
Figure ti shows such results. Agreement with Sills' results (Sills, 1978) is fair. She 
had obtained the displacement amplitudes at sorne points on the same sUl'face for 
a range of frequencies. Here, we fixed the normalized frequency and got results on 
the interval Ixlb I <:: 2.5. The common points have the same amplitude; at least al 

the scaIe of the drawings there are not appreciable differences. Results show a very 
strong dependence on the incidence angle and the aspect ratio. Important reductions 
and amplifications were found at the edge and at the top of the ridge, respective]y. 



-2.0· -1.0 o 

Spectacular reductions and amplifications were obtained in a very short horizontal 
distance on the "incidence side" of the ridge. This fact becomes elear from the 
graphs a and b in Figure 6. 

A mixed topography was a1so analyzed. It is given, in the int.erval Ixl ~ b, by the 
curve 

• 'lTX 'lTX 
y= -hcsm-cos­

b 2b 

where e = 1.29904, h = height and depth of the mixed topography. Displacement 
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amplitudes are presentcd in Figure 7 fol' a norrnnlized frequency "1 = 0.5. aspect ratio 
/tI b = 0.25, and five incidence nngles ~ = 0°, 450 

, 900 
• 1350 1800 

• 'rhe fieIds wel'e• 

constructed using N = 15 and M = 30 for the rnulti-pole and the plane-wnve~ 
expan~i()ns, re~peclively. Typically, the relative errors in rnnlching boundnry Con· 
ditions are small, lhe larger ones are 1.17 and 1.25 per cent of the displacements ano 
the derivatives, respectively. Such errors are defined as 

Ew(%) = [r I W¡.; - WU l:! dS]![ f I w(f) 12 dS] X 100 
J¡¡'!!f JUlR ... 

for displacements, and 

OW¡.; OWH ow(f) 2 ]
ds X 100 

iJn éJn iJn 

Iwl 

:2 

1 
-2.5 -2.0 -1.5 o 0.5 2.5 

x/b 
FIG. 7. Displacement amplitudes on the surface oC the mixed topography with h¡b = 0.25 for the ¡¡ye 

incidence angles and normalized freqllency 11 = 0.5. . 

for the derivatives. With larger values of N and M, the relative errors decrease 
slowly, and the calculated fieUs practically do not have appreciable changes. In this 
exarnple, large spatial variations of displacernents were found on the incidence side 
for grazing and inclinéd inciden ces. In this case, reductions and amplifications of 
about 30 per cent were found. 

These exarnples show the significant influence of topographic irregularities in 
grounu motíon. Despite their two-dimensional nature and the particularly of the 
excitation, they throw sorne light on the basic aspects of the phenomenon. For 
instal1ce, it could be expecled. even with mode conversion, that results for incidencc 

of P 01' SV waves will follow the general trends observed here. 
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