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A BOUNDARY METHOD FOR ELASTIC WAVE DIFFRACTION:
APPLICATION TO SCATTERING OF SH WAVES BY SURFACE
' IRREGULARITIES

By FrRANCISO J. SANCHEZ-SESMA, ISMAEL HERRERA, AND JAVIER AVILES

ABSTRACT

A boundary method developed by Herrera is briefly explained in connection
with wave scattering, The method is based on the use of complete systems of
solutions of the homogeneous equations. A convenient criterion of completeness
is the notion of c-completeness. The general method grants convergence of the
‘approximating sequence when a least-squares fitting of the boundary conditions
is used. As an illustration, the scattering and diffraction of SH waves by surface
irregularities is treated here. It is shown that plane waves are c-complete in a
bounded region of arbitrary shape. Scattering is formulated as a problem of
connecting solutions in such a region with solutions in an unbounded one where
Hankel functions are used. Numerical results for specific cases are reported.

InTRODUCTION

Diffraction of elastic waves has interest in seismology and earthquake engineering
in several instances. The study of the influence of various kinds of irregularities on
the characteristics of ground motion is a subject of great importance. Boundary
methods are suitable to deal with such problems because they avoid the introduction
of ficticious boundaries and reduce the size of the discretized regions. These facts
yield numerical advantages.

There are two main approaches for the formulation of boundary methods: one is
based on the use of boundary integral equations (Brebbia, 1978), and the other one,
on the use of complete systems of solutions (Herrera, 1981a). The latter approach
avoids the introduction of singular integral equations and fundamental solutions
which are more difficult to construct than complete systems of solutions. This point
is illustrated well in this paper through the use of an extremely simple system of
solutions; namely, plane waves.

In some fields of application, procedures which can be identified as particular
cases of the approximation by complete systems of solutions have been used. For
such studies, the so-called “Rayleigh hypothesis” limits drastically the applicability
of the method (Bates, 1975). That such restrictions are due mainly to lack of clarity,
can be seen in view of some results due to Millar (1973). In considering diffraction
of elastic waves by periodic surfaces and bounded objects, Millar employed a method
of series expansion for the scattered wave field in terms of a set of plane waves. The
completeness of the set was established which guaranteed that there is “a linear
combination of N elements of the set that converges on the boundary to the
prescribed values, in the mean-square sense, as N — «.” Furthermore, it was
established that “at the points not on the periodic surfaces, the expansion converges
uniformly to the sought solution whether or not the Rayleigh hypothesis is satisfied.”

Motivated by this situation, Herrera (1977a, 1979) initiated a systematic research
of the subject. The aims of his study have been satisfactorily achieved, to a large
extent, and are just being reported (Herrera, 1980a, 1981a). The outcome has been
a systematic and rigorous method which expands the versatility of boundary
procedures, making them applicable to any problem which is governed by linear
partial differential equations.
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The method makes extensive use of results that have been derived in the theory
of partial dilferential equations (Lions and Magenes, 1972). In particular, results on
the existence and continuity of solutions of elliptic equations, that will be needed in
this article are special cases of very general results given in volume I (pp. 188-189) °
of the books by Lions and Magenes.

The methodology also owes much to contributions by a group of Italian mathe-
maticians {Miranda, 1970) and Kupradze (1967). The systematic development of
these procedures, in a manner which is applicable to any linear problem, was made
possible, however, by an algebraic theory which has been developed by Herrera
(1981b).

There are two additional aspects in which this algebraic theory is relevant; the
formulation of variational principles (Herrera, 1977b, 1980b) and the development
of biorthogonal functions, which are obtained by separation of variables procedures.

In geophysical research, Herrera’s (1964a) orthogonality relation for Rayleigh
waves has been known for some time and has been applied by Alsop (1968) and
Malischewsky (1976) to problems of elastic wave diffraction. Using a different
procedure, similar relations have been obtained for the biharmonic equation (Joseph,
1979). Such developments were lacking, until recently, a general and systematic
theoretical framework. It has just been shown (Herrera and Spence, 1981) that the
algebraic theory is quite suitable for this purpose. _

The introduction of the concept of c-completeness allows constructing systems of
solutions which are complete, not only with respect to general boundary values, but
independently of the specific region considered (Herrera and Sabina, 1978; Herrera,
1980c). In addition, it permits keeping all computations in £* spaces. A procedure -
has also been developed for computing boundary information which is complemen-
tary to boundary data, e.g., tractions when displacements are prescribed. Applica-
tions of the method include problems formulated in discontinuous fields with
prescribed jump conditions. '

Complete systems of solutions have been used mainly in applications of the
method of separation of variables. This has led to the frequent, but false, belief that
such systems have to be constructed specifically for a given region. There are
available quite general procedures for deriving c-complete systems (Herrera and
Sabina, 1978). In addition, separation of variables can be used to construct c-
complete systems which, generally, are biorthogonal, as is the case of Rayleigh
waves (Herrera, 1964a). Ad-hoc procedures can also be applied; an example is the
system of plane waves developed in this article and another one is a general class of
c-complete systems recently developed for Stokes problems (Herrera and Gourgeon,
1981) and the biharmonic equation.

As an illustration of the method, which is relevant for estimating the influence of
local topography and geology, we treat the scattering and diffraction of harmonic
SH waves by irregularities or the surface of an elastic half-space (Figure 1). This is
decomposed into two subregions (Figure 2); a bounded region R and an unbounded
region E. Plane waves are used on R and Hankel functions on E. Numerical results
are presented for two types of surface irregularities.

Problems similar to the example given here, have been extensively studied using,
e.g., perturbations (Herrera, 1964b; Sabina and Willis, 1977), finite differences
(Boore, 1972), and boundary methods (Sills, 1978); among the latter, procedures
which are similar (Bouchon and Aki, 1977; Bard and Bouchon, 1980) or that can be
identified as particular cases of the approximation by complete systems of solutions
(Sanchez-Sesma and Esquivel, 1979, 1980; Sianchez-Sesma and Rosenblueth, 1979,
England et al., 1980).
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FOUNDATIONS OF THE METHOD

The boundary method (Herrera, 19812) will be presented here with some detail,
only in connection with diffraction problems of SH waves. The method is, however,
general and can be applied to diffraction of other kinds of elastic waves.

I'he diffraction problem to be considered consists in finding the total field w
produced by an incident waves w'” on a half-space with arbitrary surface irregular-
ities (Figure 1). It is assumed that these waves are periodic with circular frequency
= w, In such a case, the displacement w in the z direction satisfies the reduced wave
equation

Aw+ Rw=0 (1)

in which & = w/f# = wavenumber, with 8 = Vp/p = shear-wave velocity, p = shear
modulus, and p = mass density of the medium.

Fi1G. 1. Surface irregularity.

Fi1c. 2. Interior and exterior regions.

This problem can be formulated as a problem with prescribed jumps, which is a
special case of the problem of connecting discussed in detail previously (Herrera,
1977b, 1980b, ¢). Let w'”’ be the free field; i.e., w'”’ is the solution when the problem
is formulated in a half-space with a plane boundary and no irregularity is present.
The total domain can be divided in two regions R and E (Figure 2). For functions
w whose domain of definition includes the region E, the notation wg will be used for
its restriction to E; a corresponding convention is adopted for functions whose
domain of definition includes R. Define

Wg = wg‘f’ + UE. (2)
It is convenient to observe at this point that a function wg‘”’ will not be defined

hecause the domain of definition of w'/, in general, may not include the region R.
On the other hand, we define

Ur = Wx. (3)

Then, it is easy to see that uy, and ug, satisfy equation (1) on R and E, respectively.
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while the continuity of w implies the following jumps across :B;R = &E

(2] = ug — un = —wp' " on &R (6a)
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an an an an

Here, 0, £ is the intersection of 8 F with the plane bound;ary of the half-space (Figure
2), while in (6b), to be definite, the unit normal vector n, has been taken pointing
outward from R. Recall that the pair of functions & = {ug, ug} satisfies in addition
equation (1) on £ and R separately; this condition together with equations (4) to
(6) define the desired problem with prescribed jump discontinuities.

aR

FiG. 3. Region R and its boundary  R.

The method to be explained, can be better understood by considering two simpler
problems first; these are Dirichlet and Neumann problems for the reduced wave
equation (1) in a bounded region R with boundary dR (Figure 3).

For definiteness, assume u € H**V?(R), where the standard notation for Sobulev
spaces is being used (Lions and Magenes, 1972).

Let us denote by N**'*(R) € H**"*(R) the subspace of functions that satisfy
equation (1) in R. If # = (w), w,, ---} C N**VY*(R) is a system of such solutions
which spans N**"*(R), then there is a sequence of approximations

N
uV =Y a.Mwn n
n=1\
such that
uV—>u in H**Y¥R). (8)

In order for the representation in equation (7) to be useful, it will be requireff te
have a procedure for deriving the coefficients «," from boundary data only. This 18
indeed, possible.

It is known (Lions and Magenes, 1972) that when 1 € H**'/2(R), then u € H* (31t}
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while du/an € H* "(9R). If the cocefficients @, are chosen so that

uV - u in H'QR), 9)

then the continuily properties imply (8). [It is assumed that —&* is not an eigenvalue,
either for Dirichlet or for Neumann problems. Otherwise, the argument given here
has Lo be modified (Herrera, 1981a). For simplicity, the corresponding discussion is
not included.] Similarly, :

ou™  du .
"““aun -—-);3—)% in H*"'(3R) (10)

also imply (8). Therefore, if the boundary values
{w, w2, +--} span H'@GR), (11a)

the coefficients can be chosen so that (9) is satisfied. On the other hand, if

aw; 6w2 s—1 :
{an R } span H°7'(éR) (11b)
the coefficients can be chosen so that (10) is satisfied. In the first case, the system
4 C N**'*(R) can be used to solve a Dirichlet problem, while it allows solving a
Neumann problem in the second one.

Assume # = {w,, w2, - - -} spans N**"?(R), then continuity properties of solutions
of elliptic equations grant that both statements (11) hold. Hence, such a system can
be used to solve both Dirichlet and Neumann problems. Clearly, (9) holds if #" is
taken as the projection of the boundary values u € H*(8 R) on the subspace spanned
by {w1, --+, w~}. On the other hand, (10) holds if du’/3n is the projection of the
boundary values du/on € H*(dR) on the subspace spanned by {dw/dn, «- -, dwn/
#n}. Therefore, in both cases, the coefficients can be computed by the standard
procedure for projecting on a subspace.

Notice that in the first case, the projections are taken in the sense of the inner
product associated with H*(8R), and in the second one, it is associated with
H*~'(dR). Numerically, it is simpler to use £2(3R) = H°(8R) inner products, only.

This can be done, if it is granted that

{w, we, +-+} spans H"(@R) (12a)
and simultaneously
{6n vt } spans H'(0R). (12b)

' This will happen, if and only if,
B = {w, wy, -++} C NY*R), spans N*R). (13)
As a matter of fact, conditions (12) are granted whenever 4 spans N***(R) with s

= 1, but the choice (13) is optimal in the sense that it corresponds Lo the least s that
“an be taken, granting (12).
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There is an alternative manner of imposing condition (13). Let Dx C H'*(R) be
the linear subspace (the linear subspace Dy, so defined, is not closed) with the
property that for every u € Dy, the boundary values satisty u € H (3R ), while du/
an € H'@R). Define for every u € Dy and v € Dy, the bilinear functional (Herrera,
1980b, 19814, b)

(Apu, v) = J {v?—fl— - vi‘i} n. . (14)
aR

Let Ip C Dy be the linear subspace of Dg with the property that v € Ip, if and only
if, there is a solution w € Dy of equation (1) such that

v=w, on R (15a)
and

a3 aJ

—?-zia—; or 9R. -+ (15b)

an  dn

The subspace Ip can be concisely defined as the quotient space N**(R)/Naxz.
It has been shown (Herrer‘a, 1980¢, 1981b) that conditions {12) hold, if and only if|
for every u € Dg, one has

{(Aru, w,) =0 V¥ a=1,2 ...=>u€ Ip. (16)

When (16) is satisfied, the system {(wy, we, +--} C N¥%(R) is said to be c-complete.
Thus, the system &% is c-complete, if and only if, (12a) and (12b) hold simultaneously.
But, since (12) and (13) are equivalent, we can summarize our results as follows;
given a system of functions 8 = {w,, wz, - - +} C N¥*(R), satisfying equation (1), the
following statements are equivalent

£ is c-complete
2 spans N**(R) ¢ H**R).

The boundary values, {w:, w,, +--} span H°(8R) and simultaneously

3 8
{——-—wi , ko y o } span H(3R).
on -~ an

Notice, finally, that # spans N'/*(R) whenever 4% spans N*%(R), as it is not difficult
to verify.

These results show that a c-complete system can be used to solve both a Neumann
and Dirichlet problems. Actually, such a system can be used to solve any boundary
value problem associated with what in Herrera’s (1980c¢, 1981b) theory is known a8
a canonical decomposition.

Going back to the Dirichlet problem, the least-squares or projection condition in
H®(3R) leads to the system of equations

N
X MnmanN = Cm un

na]
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where

an = f Wy [{’m* d.g (188.)
ar .
and

Cp = J fa[{ d}m* d‘E (18b)
aR

where the asterisk refers to the complex conjugate. Here f,x are the prescribed

~ boundary values for this problem. With this choice, u” - u in H'*(R) (Lions and

Magenes, 1972). Similarly, for the Neumann problem, the system of equations (17)
also holds, except that equations (18) have to be replaced by

dw, dw*
Mum = j Lo CWm_ (19a)
oR an dn
and
W™
Cm=J— Bar i d% (lgb)
o an

where g;r are the prescribed normal derivatives on dR. In this case, u” — u in
H*?*(R) (Lions and Magenes, 1972); therefore, also u” — u in H'*(R).

Computation of complementary boundary values, when they are required, may
need a special device. In general, if the normal derivative du”/dn — g;x in H°(6R),
then u” — u in H**(R); hence, on the boundary " — u in H'(3R), which implies
u” — u in H°(@R). Thus, in the case of the Neumann problem, the unknown
boundary values can be derived from the approximating sequence directly and the
procedure that is given next is not required; however, such procedure can be used to
accelerate the convergence of #™ — u in H*8R).

For the Dirichlet problem, the unknown normal derivatives cannot be derived
from the approximating sequence u”, because from u® — f,z on H*(@R), one can
only grant that du”/én — du/dn in H '(3R) (Lions and Magenes, 1972). If the
boundary data is sufficiently smooth; i.e., if f;r € H'(3R), it is known that du/dn

€ H°(3R) (Lions and Magenes, 1972) and the following approximating sequence can
be used
E ou
Z bnNWn* > 5"‘: 3 in Ho(aR ) . (20)
ne=} .

-3

The coefficients can be obtained from

N
z Knm bnN = dm- (21)

nw=ji

This procedure is an extension of a relation derived by the Italian mathematicians



480 SANCHEZ-SESMA, HERRERA, AND AVILES

in the 1940’s (Miranda, 1970). Here
Kom = f Wy W dy (22a)
aR

while

A au aw, aui’m .
dy = f — Wy dx == J "—"‘—E d f ﬁi{\’ X. (22h)
an on ar

Notice that d,, is given in terms of boundary data only.

A C-COoMPLETE SYSTEM OF PLANE WAVES

The system of functions (given in polar coordinates)
= {Jn(kr)cos n8; J.(kr)sinn@|n=0,1,2, ...} C N**R) (23)

is c-complete (Herrera and Sabina, 1978) in any bounded region R (Flgure 3). This
fact can be used to prove that the system of plane waves

B = {explikr cos(6 — )], exp[thkr cos(8 — y»)], exp[ikr cos(d — ¥s)], -+ -} (24)

where the sequence y, Y, - .., is any dense set of real numbers in the interval [0,
27], and is also c-complete in any such region.
It is known that (Whittaker and Watson, 1958)

A (kr)eine - (‘;5) j eint + ikrcos(é=¢) dt. (25)
7! —~ar

This formula exhibits Bessel functions (more precisely, the members of the family
A') as a superposition of plane waves. It is easy to see that

(Aru, W) =0 YVweE A= (Aru,w) =0 YwWeE R (26)

Indeed, the implication (26) follows from the fact that the set {1, ¥, - - is dense in
[0, 27] and the continuity of the integrand in equation (25), when use is made of
definition (14) of Ax. In view of definition (16) of c-completeness, (26) shows that
the system of plane waves % is ¢-complete because %’ is also c-complete.

Another result that has been obtained previously (Herrera and Sabina, 1978) it
the fact that, in polar coordinates, the system

{H,"”(kr)cos n8, H,"”(kr)sinnf|n=20,1,2, --.} (27

where H,'® is the Hankel function of the second kind and order n and is c-complett
for the space of solutions of equation (1) in the exterior E of a bounded region sucl
as R in Figure 1, which satisfy Sommerfeld radiation conditions.

Another possibility is to take K as a subregion of a half-space, which is exterior t«
a bounded region like R, in Figure 2 and take the space of solutions of equation (1
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in £ to be restricted in addition by Sommerfeld radiation conditions, and the
houndary condition (4) on 8, F (Figure 2). In this case, the system

{H,®'(kr)cos nf|n=0,1,2, ...} (28)

is c-complete in any such E.

ExXTENSION TO DIFFRACTION PROBLEMS

In this section, we extend the results presented previously to problems with
prescribed jumps, in terms of which, the original diffraction problem was formulated
in “Foundations of the Methods.” Consider the regions R and E illustrated in Figure
2. Let Dr C H'*(R) be the linear space of functions introduced in “Foundations of
the Methods,” while N(R) C Dg will be the linear subspace of Dx whose elements
satisfy equation (1) in R; then, N(R) = N*%(R). The definition of the linear
subspace Dx becomes more involved because E is unbounded. Such technical
difficulties can be avoided altogether if attention is restricted to boundary values on
3. E. Thus, Dg will be taken as the linear space whose elements are pairs [ug, dug/
an] of functions defined on 3, E, such that ug € H*(8,E) and dug/dn € H"(3:E). In
addition, the linear subspace N(E) C Dg will be defined by the condition that an
element [ug, dug/on] € N(E), if and only if, there is a solution v of the reduced
wave equation (1) in E, satisfying the boundary condition (4) on & E, together with
Sommerfeld radiation condition at infinity and such that

Ug = 0, on azE ' (an)
We_ % onaE. (29b)

on on

Conditions (29) are equivalent to require that

our d
f {w__“” - ug_“i} dx=0 (30)
- an on

for every element of w of the system (28) because the latter is c-complete. In order
to keep the notation simple, elements of Dg will be denoted by ug; recall that with
every up € Dg, there is a pair [ug, dur/on] where ugy € H"(3:E) and dup/on €
H"(3,E). It will be seen, however, that this ambiguity does not lead to confusion.
We will be interested in pairs of elements {ur, ur}, such that ux € Dy while ux
€ Dy; the space of such pairs will be denoted by D = Dy, @ Dy. The space N C D
will be made by pairs {ug, ur) such that u, € N(R), while ux, € N(E). In a fashion
similar to that in which I» was introduced in the previous section, the space I will

be defined. An element i = {ug, ux) € D belongs to I, if and only if, there exists
g € N(R) such that

Ur = Vg, onaRk (31a)
Fi; 9 ,
Sk wl-)-ff, on oR (31b)
an on .

while g € N(E). The simplicity of this last requirement is due to the fact that we



482 SANCHEZ-SESMA, HERRERA, AND AVILES

are restricting attention to the boundary values and normal derivatives on &K =
&, R, of functions defined in the exterior region E. 5
The problem of diffraction introduced in “Foundations of the Method” can now
be formulated as a problem of connecting (Herrera, 1980b, 19814, b). This consists
of finding 2 = {ug, ur} € N which satisfies (5) and (6). Here, ux and uy are related
to the total field w by equations (3) and (2), respectively.
In addition to the bilinear form Ag given by equation (14), we introducg Ag by

{v,,auE - u,,avs} dx. (32)

on on

(Agug, vg) = "'f

R

The minus sign in this definition is motivated by the fact that, in order to be
definite, the unit normal vector p” will be taken pointing outward from R. Define

(Ad, 0) = (Arus, vr) + (Agus, vg). (33)

In this case (Herrera, 1980b),
dx (34)

where the jump operator J ;s given by

44 Ay ov _[ai
(Ju,v)»LR {[u]é—’—i v[g]}dg | (35)

Here, the jumps [ ] are given as in equations (6), while

av ovg dUg
= + 2: == 2/, 36
0= (vr + vg)/ an (an an )/ (36)

A syétem # = (i, s, +--} C N is said to be c-complete for the problem of
connecting (the diffraction problem) when for every & € D, one has

(AG, ) =0 V weP=icln 37
It has been shown (Herrera, 1980c) that, if the system {wg1, Wi, +-+} C N(R)

and simultaneously the system {ws, w2, ++-} C N(E) are c-complete on R and £,
respectively, then the system

B=%UdBcCN (38)
is ¢c-complete for the problem of connecting. The notation used in (3A8) is as follows:
given wg, € N(R) and wg, € N(E), we define tir, = {Wra, 0} € N and similarly,

LAUEU e {0, wg‘,}. Then

Br = (g, g2, ++-) CN (39a)
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B = (g1, Wi, --+} C N. (39b)

This shows, for example, that the system (28) defined on E, together with the
system (24) of plane waves defined on R, are c-complete for the problem of
diffraction considered in this paper on region R U E. By using it, it is possible to
approximate as closely as desired, in the least-square sense, any prescribed bounddry
condition on 3R and jumps on the function and normal derivatives prescribed on
0 R.

This latter statement, however, requires clarification. Notice that with every pair
i = {ur, ur} € D, there is associated a unique system of three functions: [i£] €
H%8:R), [3ii/an] € H® (8:R), and dur/dn € H°(8 R). Therefore, the triplet {[i],
[8i/dn], dur/dn} € H(3:R) ® H°8:R) ® H°(3,R). In addxtxon, there is a second
element of this Hilbert space of tripléts associated with # € D, namely, (Z, du/on,
ur} € H(3,R)® H°(3:R) ® H°(3, R). These two systems of triplets constitute what
in Herrera’s general theory is called a canonical decomposition; however, for the
sake of brevity, we will not dwell on that. For our purpose, what matters is that
previous results (Herrera, 1980c, 1981b) imply that a system {0, W2, ---} € Nise-
complete for the problem of connecting, if and only if, each one of the systems of

triplets
- awa auna
{[wﬂ]! [ﬁ]’ an }) o = 1) 2’ ree (403)
and
dw,
{i{',ﬂ!&) uRu}’ & = 1, 2, i (40b)
on

span H°(8;R) ® H%3:R) ® H%& R). To avoid any possible confusion, we remind
that given any two elements {pi, ps, ps} and {q1, @2, g2} € H*(3:R) ® H(3.R) ®
H®(8,R), the inner product in this Hilbert space, to be denoted by (-, -), is given as

(p.q) = f g dx + f p2q2* dx + J P3qs* dx (41)
- aR azR

o R

where the asterisk refers to the complex conjugate. This defines the least squares or
projection procedure to be used and the method to be applied for the solution of the
diffraction problem.

In a manner similar to what was explained at the end of “Foundation of the
Method,” we notice that if the complementary boundary values (i, di/dn, u} €
H°(&8,R) ® H"@:R) ® H"(@,R) are required, these can be computed using a
generalization (Herrera, 1981b) of the procedure given there. Given any & € D,

define
{[u], [au] a““} (42a)
on

-
Uz = {-—"- -g, u,,} (42b)
an

o s N A 44+ AT A


http:probl.em

484 SANCHEZ-SESMA, HERRERA, AND AVILES

It can be seen that equation (34) can be written as

(Ad, D) = (tn, u*) - (01, w*). (43) »

As we want to compute the boundary values having prescribed the jumps on a: R
and the normal derivative on 3, R, let us write

[

N
Y ClNwh > o, . (44a)
el .
or
§ C.™3 (11" i |, 3y, ou Z, u " (44b)
‘n nl » y T o, U, U
el “ n on an R

where the coefficients can be obtained using least-squares approximations from the
system of equations

N
Y KmCo¥=dn m=12+.+,N _ (45)
n=1
where
N Knm = (wm,, wn,) (46‘3)
and -
din = (Wn,, uz"). (46b)

From equations (37) and (43), it is clear that
(W, U2*) = (w1, w,) = dm. 47

As in equation (22b), d, is given in terms of boundary data only.

It is interesting to note that the average values of the normal derivate and the
function on ;R are given in terms of the complex conjugate jumps of the approxi-
mating sequence and of the normal derivatives, respectively. At the same time, the
values of ur on R can be derived from the complex conjugate of the normal
derivatives of the approximating sequence, :

A SPECIFIc PROBLEM

Assume, for the sake of illustration, that a plane wave of unit amplitude propagates
toward the surface of the half-space with an incidence angle i, as shown in the
Figure 4. This incident wave is given by

w') = exp(—ik[x cos ¥ + y sin ¢']). (48)

The time factor exp(iw¢) is omitted here and thereafter. In absence of irregularities,
the reflected wave is

w" = exp(~ik[x cos ¢ — y sin ¢, . (49)
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thus the free field w'/’ = w" + w"’ is given by
w'” = 2 cos(ky sin y)exp(—ikx cos ¢). (50)

It can be seen that the displacement amplitude of the surface in the free field is two.

Using the notation of “Foundations of the Method,” the scattered field us in the
exterior region E (Figure 2) can be expanded in terms of the c-complete system
given by (28) to obtain '

y /
ug= 3 A.H,®(kr)cos nf , (51)

n =0

Fi1c. 4. Incident and reflected SH plane waves.

i

x!

TG, 5. The m-esim SH plane wave.

where A, = complex coefficient, and N = order of multi-pole expansion. On the
other hand, the displacements wx = ug in the interior region R, which includes the
irregularity, can be expanded in terms of the c-complete system [equation (24)] of
plane waves to obtain

M
Wwp = 2 Bm¢’m (52)

m=1

in which ¢, = exp{—ikr cos(f — y.)} = plane wave of unitary amplitude and
incidence angle v, (Figure 5) = B,, = complex coefficient. It is convenient to choose
¥m = w(2m ~ 1)/M, where M = order of plane-wave expansion.
The coefficients of the expansions will be obtained by taking the minimum of the
mean-square error which is defined as
2
}clx + ] o
aski

€ = [ {C; I Wr — Wy I." 4+ 2
ol

2
3twn
an

. dton

an an

ds  (B3)
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in which ¢;, ¢z, ¢y = normalization factors. As € = €(Aqn, Ay, =+, AN, By, +++, By),
the minimum of € can be found under the conditions

a

.é_;-‘_ao, i=0,1,---,N, and (54a)
% _0, j=1,2 M — (54b)
aB;, IE0S T ;

Equations (54) are a system of N + M + 1 equations for the N + M + 1 ainknown
complex coefficients and can be arranged in matrix form as

-

[LUX) = (F}, : (55)
in which [L] is an Hermitian positive-definite matrix. Here
(X)" = (Ao, Ar, -++, A, By, Bz, -++ , Bu).

Explicit expressions for the coefficients of matrix [L] and vector {¥'} have been
obtained by taking the curve a; R as a semi-circle; they are too long to be presented
here. Numerical integration must be used when integrals over d.R are calculated.
However, a direct approach working directly with boundary conditions in a collo-
cation-least-squares procedures has proved to be useful (Sanchez-Sesma and Rosen-
blueth, 1979; Sanchez-Sesma and Esquivel, 1979, 1980) and leads to a system of
equations similar to that of equation (55).

Once the complex coefficients are known, equations (2), (51), and (52) allow us to
compute the field at any point of the studied domain. In “Extension to Diffraction
Problems,” it is explained that the approximating sequences necessarily converge at
any interior point and the boundary é, E, but the convergence at the boundary 4R

is not granted. However, the procedure explained in those sections can be used to
compute the boundary values.

NuUMERICAL EXAMPLES

The method as described above was used to compute displacement amplitudes on
the surface of a ridge given by the curve

y=h(1— (x/b)*)e-3t/t"

in|x| = b, withy = 0in|x| > b. Here h = height of the symmetrical ridge, and 2b
= width of the base. Numerical results are given for a normalized frequency n = kb/
7 = 2b/A, where A = incident wavelength. Three incidence angles = 0°, 45°, 90° and
three aspect ratios A/b = 0.25, .50, 0.75 were considered. The scattered field was
constructed using N = 10, and the order of the plane-wave expansion was M = 20.
Figure 6 shows such results. Agreement with Sills’ results (Sills, 1978) is fair. She
had obtained the displacement amplitudes at some points on the same surface for
a range of frequencies. Here, we fixed the normalized frequency and got results on
the interval | x/b| = 2.5. The common points have the same amplitude; at least at
the scale of the drawings there are not appreciable differences. Results show a very
strong dependence on the incidence angle and the aspect ratio. Important reductions
and amplifications were found at the edge and at the top of the ridge, respectively.

&
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a)

lwl __Al__
w — X
—~ :

b)

. Frc. 6. Displacement amplitudes on the surface of ridges with different aspect ratios and three
mcidence angles. Normalized frequency n = 0.5.

Spectacular reductions and amplifications were obtained in a very short horizontal
distance on the “incidence side” of the ridge. This fact becomes clear from the
graphs a and b in Figure 6.

A mixed topography was also analyzed. It is given, in the interval | x| = b, by the
curve

= —he sin T cos X
Y b “° %%

where ¢ = 1.29904, h = height and depth of the mixed topography. Displacement
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amplitudes are presented in Figure 7 for a normalized frequency 7y = 0.5, aspect ratio
h/b = 0.25, and five incidence angles § = 0°, 45°, 90°, 135°, 180°. The fields were
constructed using N = 15 and M = 30 for the multi-pole and the plane-wave,
expansions, respectively. Typically, the relative errors in matching boundary con-
ditions are small, the larger ones are 1.17 and 1.25 per cent of the displacements and
the derivatives, respectively. Such errors are defined as X

€0 (%) = [j | wr — we | ds]/[J | ' )? ds] X100
nR nR *

for displacements, and ‘ - -

Gaw(%) = [J
e it

N

Jwy  dwr Jw

an an

ds] X 100

i
b b
iwl | . Y l

LY Y

~ é‘l‘/ 05
3 b n

2.5
x/b

FiG. 7. Displacement amphtudea on the surface of the mixed topography with i/b = 0.25 for the five
incidence angles and normalized frequency 5 = 0.5.

for the derivatives. With larger values of N and M, the relative errors decrease
slowly, and the calculated fields practically do not have appreciable changes. In this
example, large spatial variations of displacements were found on the incidence side
for grazing and inclined incidences. In this case, reductions and amplifications of
about 30 per cent were found.

These examples show the significant influence of topographic irregularities in
ground motion. Despite their two-dimensional nature and the particularly of the
excitation, they throw some light on the basic aspects of the phenomenon. For
instance, it could be expected, even with mode conversion, that results for incidence
of P or SV waves will follow the general trends observed here.




A BOUNDARY METHOD: APPLICATION 10 SH WAVE SCATTERING 489

REFERENCES

Alsop, L. E. (1968), An orthonormality relation for elastic body waves, Bull. Seism. Soe. Am. 58, 1949-
1954,

Rared, P. Y. and M. Bouchon (1980). The scismic response of sediment-fitled valleys. Part 1. The case of
incident SH waves, Bull, Seism. Sae. Am. 70, 12613-1286.

fates, 1. M. L. {1975). Analytic constraints on electromagnetic field computations. IKEEE Trans. on
Micrinvave Theory and Technique 23, 605-623.

Boore, 12. M. (1972). A note on the effect of simple topography on scismic SIH waves, Bull. Seism. Soc.
Am. 62, 275-284.

Bouchon, M. and K. Aki (1977). Discrete wave number representation of seismic source wave fields, Bull,
Seism. Soc. Am. 67, 2569-277. .

Brebbia, C. A. (1978). The Boundary Element Method for Engincers, Pentech Press, London.

England, R, F. J. Sabina, and §. Herrera (1980). Scattering of SH waves by surface cavities of arbitrary
shape using boundary methods, Phys. Earth Planet. Interiors 21, 148-1567.

Herrera, 1. (1964a). On a method to obtain a Green's function for a multilayered half-space, Bull. Seism.
Soc. Am. 54, 1087-1096.

Herrers, 1. (1864b). A perturbation for elastic wave propagation: I, Non-parallel boundries, J. Geophys.
Res. 69, 3845-3851.

Herrera, I (1977a). Theory of connectivity for formally symmetric operators, Proc. Natl. Acad. Sci.
US.A. 74, 4722-4725. ‘

flerrera, L (1977b). General variational principles applicable to the hybrid element method, Proc. Nail.
Acad. Sci. US.A. 74, 2585-2597,

Herrera, 1. (1979). Theory of connectivity: a systematic formulation of boundary element methods, Appl.
Muath. Modelling 3, 151-156.

Herrera, 1. (1980a). Boundary methods in water resources, in Finite Elements in Water Resources, 8. Y.
Wang et al., Editors, The University of Mississippi, 58-71 {invited general lecture}.

Herrera, 1. (1980b). Variational principles for problem$ with linear constraints, Prescribed jumps and
continuation type restriction, J. Inst. Math. Applic. 25, 67-96.

Herrera, 1. (1980c). Boundary methods. A criterion for completeness, Proc. Natl Acad. Sci. US.A. 71,
4385-4398. , :

Herrera, 1. (1981a). Boundary methods for fluids, in Finite Elements in Fluids IV, R. H. Gallagher,
Editor, John Wiley & Sons, New York.

terrera, 1. (1981b). An algebraic theory of boundary value problems, KINAM 3, 161-230.

Herrera, 1. and F. J. Sabina {1978). Connectivity as an alternative to boundary integral equations.
Construction of bases, Proc. Natl. Acad. Sci. J.S.A. 75, 2059-2063.

Herrera, 1. and H. Gourgeon (1981). Boundary methods. C-complete system for Stokes problems.
Computer Methods in Appl. Mech. Eng. (in press).

Herrera, 1. and D. A. Spence (1981). Theoretical framework for biorthogonal Fourier Series, Proc. Natl.
Acad. Sci. U.S.A. 78 (in press).

Joseph, D. D. (1979). A new separation of variables theory for problems of Stokes flow and elasticity, in
Trends in Applications of Pure Mathematics to Mechanics, vol. 11, Pitman, London, 129-162.

Kupradze, V. D. (1967). On the approximate solution of problems in mathematical physics, Russian
Math. Surveys 22, 58-108.

Lions, J. L. and E. Magenes (1972). Non-homogeneous Boundary Value Problems and Applications, 3
vols., Springer-Verlag, New York.

Mulischewsky, P. (1976). Surface waves in media having lateral inhomogeneities, Pure Appl. Geophys.
114, 833-843.

Millar, R. F. (1973). The Rayleigh hypothesis and a related least-square solution of scattering problems
for periodie surfaces and other scatterers, Radio Science 8, 785-796.

Miranda, C. (1970). Partial Differential Equations of Elliptic Type, 2nd ed., Springer-Verlag, New York
{translation of Equazioni alle Derivate Parziali di Tipo Eilitico, 1955).

Subina, F. J. and J. R. Willis (1977). Scattering of Rayleigh waves by a ridge, J. Geophys. 43, 401-419,

Ninchez-Sesma, F. 4. and J. A. Esquivel (1979). Ground motion on alluvial valleys under incident plane
SH waves, Buil. Seism. Suc. Am. €9, 1107-1120.

Sanchez-Sesma, F. J. and E. Rosenblueth (1979). Ground motion at canyons of arbitrary shape under
incident SH waves, Intern. J. Earthquake Eng. Struct. Dyn. 7, 441-450.

Sinchez-Sesma, F. J. and J. A. Esquivel (1980). Ground motion on ridges under incident SH waves, Proc.
World Conf. Earthquake Eng., 7th Instanbul 1, 33-40. )

e 4



490 SANCHEZ-SESMA, HERRERA, AND AVILES

Sills, L. B. (1978). Scattering of horizontally polarized shear waves by surface irregularities, Geuphys.
54, 319-348.

" Whittaker, E. T. and G. N. Watson (1958). A Course of Modern Analysis, Cambridge University Pre
Cambridge, p. 362.

Wong, H. L. (1979). Diffraction of P, SV, and Rayleigh waves by surface topographies, University
Southern California, Report No. CE79-05.

"

-

&

INSTITUTO DE INGENIERA INSTITUTO DE INVESTIGACIONES EN MATHEMATIC
UNIVERSIDA NACIONAL AUTONOMA APLICADAS Y EN SISTEMAS .

DE MEXIiCO UNIVERSIDAD NACIONAL AUTONOMA DE MEXIco
Mexico 20 DF Mexico (F.J.S-S,, J.A)) Mexico 20 DF Mgxico (I.H.)

Manuscript received 27 July 1981



