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1.~ 'INTRODUCTION.

There are two main approaches for the formulation of boundary methods;
one is based on boundary integral equations and the other one, on the use
of complete systems of solutions. The author has given previously exten- s
sive descriptions of the latter method [1-3}. 1Its theoretical foundations
and development embrace the following aspects: a) Approximating procedures
and conditions for their convergence; b) Formulation of variational prin-
ciples; and . c) Development of complete systems of solutions. The first
two of these subjects have been studied and discussed in previous publica~
tions | 1-8] . However, a systematic discussion of the last one is wanting.

There are a number of scattered publications related with this matter
[6, 9-11]. 1t has been shown that a suitable criterion for completeness is -
c-completeness [ 1-3, 8. A method of considerable generality, for gener~-
ating ‘such systems is described in [ 8] and [9}. A general version of sepa-
ration of variables procedures yields biorthogonal systems which are
c-complete {12-13]. Convenient features of c-complete systems are their
simplicity, as in the case of plane waves. [&é], and the fact that the sam%a\_%.
system can be applied to large classes of regions and boundary conditions.
In this paper we present a brief but systematic exposition of the methods
avallable for the construction of c—complete systems.

2.- C~-COMPLETE SYSTEMS AND HILBERT-SPACES.

In general a linear subspace N_CD of a linear space D is considered.
Here, N_ stands for the null subspace of an operator P:D»D*, TFor example,
if Laplace equation in a bounded region R (Flg 1), is considered, a
convenient definition of P is .

<Pu,v> = [ vAu dx (z.1)
. R -
In this case the linear space D may be taken as H®(R), s>3/2. The elements
of the null subspace are the harmonic functions on R, The antisymmetric’
operator A=p-P¥ plays an important role. In the example, above, it is

<Au,v> = [ {v-§~ - u ——}dx ‘ (2.2)
IR n ~on” ~

For formally symmetric operators, the null subspace N

.. used to introduce a classification of boundary value | 1-3,
- given by (2.1), for example,

2 of A=P-P*, is
7]. When P is

N, = {uEplu = gu 0 on 3R} (z.3)
and the relevant boundary values can be taken to be u and 3u/3n on 3R. 1In

general such classification yields the space of boundary values D, defined

,/’f/ by [1-2]:
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D= D/NA : (2.4)

Using the concept of canonical decomposition, it is always possible to take

as a product space. DMore precisely, the relevant boundary values can be
expressed in terms of two groups of functions. For Laplace equation ele-
ments GED ave dharacterized by a pair of functions {u,du/3n} which are
defined only on the bouncary. Note the difference between such elements
and those -of D, which are defined in the whole region R, .

There are, howvever, many alternative ways-of decomposing the boundary
values into two groups; each associated with a canonical decompositidon., 1If
ay, az, by and b, are constants such that

o

) ay bz - by az = 1 (2.5)
angther possibi%ity in the example here discussed, is to take {aju +
g.‘i u aeh : :
ary™, biu + b2'§§ . In general, when UGSV we write -
4= {ux, ug} . (2.6)

f

The elements of the space I_=N_+N¥ , on the other hand, are character-
ized by the fact they attain the -same boundary values as some solution of
the homogeneous equation (a harmonic function, in our example). The range
of boundary values reached by sclutions of the homogencous equation, iIs the
quotient space

ﬁp = NP/NA ' T2

Under quite general conditions [1-3], IP is a completely regular'subspacew

By this we mean . ;
<Au,v> = 0 ¥ veIP <« uGIP , (2.8)

Fas .
The same is true of N_. A subset BC:IP is said to be c-complete for IP’
when for every u€D, one has . -~
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<Au,w> = 0 ¥ w€3=~'u€1P (2.9)

A c-complete subset is said to be a connectivity basis, when in addition it
is linecarly independent. Completely regular subspaces always possess
c-complete systems [ 2]. One of the main advantages of c-completeness is
that this criterion is purely algebraic; this allows greater generality and
flexibility for some of the results of the theory.

As an illustration, we give the following example. For Laplace equa—
tion it has been shown [ 6] that the system of harmonic polynomials, whose
expression in polar coordinates is

B = {1, t"cos nf, rsin n8[n=1,2,...3CNy (2.10)

. i
is c-complete in any bounded region of the plane, which is simply connected
(Fig. 1).

Under very general, conditions {2-3] there is a Hilbert-space H such
that the product space D of boundary values satisfies

DCHeH (2.11)
Even more _ _
i <AG,9> = (uz, Vi) - (va, u1) (2.12)

Here ( , ) is the inner product in H and the bar above stands for the
complex conjugate (antilinear mapping). If the coefficients in the
Hilbert-space are real, the bar must be deleted.

Let N and N__ be the range spanned by the first and second component,
respectlveﬁy, of egemencs u = {u;, uz}E leen a subset BCN_C1
there is associated to it a BCN_ whose eﬁements 4 = {uy, uz} are the

traces of elements of B. Tt has been shown that the following statements

are equivalent
i)~ BCZNP is c-complete for I.; (2.13)
ii).,~ span B; = N?l while span B = NP2 (2.14)
A proof, as well as, more precise and ellaborated forms of this result are
given in References [2-3].
3.~ CHANGE OF BOUNDARY CONDITIONS.

Let H = H°(3R) = L£2(3R) where BR is the boundary of the simply connect
ed region R, illustrated in Figure 1. The inner product of two functions
u&H° (BR), vEH"(2R) is given by

(u,v) = [ uv dx (3.1)

R
In view of (2.2), it is clear that equations (2.11) and (2.12) are satis-
fied if u; = u and uz = 9u/dn on 9R.

As it is well-known [ 15]
T, =worn 5 N = {13 (3.2)
1 S| P2

where {1} stands for the orthogonal complement of the constant function 1
on 9R. Corresponding to the c-complete system (2.10), we have the boundary
values on JR:

s B, = {1, r"cos nf, r"sin nb} (3.33a)
an
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B, = {0, ar"cos nd/3n, 3r"sin n8/3n) (3;33;//’”'"‘"“
According to egquations (2.14), By spans H®°(BR) while B, spans {l}l. Th

direct verification of this statement is straight~forward if the region R
is taken as a circle with center at the origin.

From the above discussion it is clear that the c~complete system B as
given by (2.10), can be used to approximate any Dirichlet and Neuman bound-
ary data. Even more, the same system B can be used to solve any linear.
boundary condition. Let such condition be given by the specification of
the linear combination aju + az3u/9n. Choose b; and bz so that €2.3) is
fulfilled. Define

up = biw +b29ufdn 3 wuz = aju + asdu/dn {3.4)

Then, it is easy to verify that relations (2.11) and (2.12) are satisfied
when A is given by (2.2). 1In this case

i = o i e o

NP1 H®(3R) , NPZ H® (3R) (3.5)
unless bz or a» are zero. For the sake of brevity this latter case is
left out of the discussion. Equations {(2.14) show that .

span By = span Bz = H°(OR) (3.6)

This shows that the system B given by (2.10) can be used to solve a problem
where either aju + azdu/dn or alternatively bju + b,3u/dn is specified, if
the boundary values of the functions belonging to B are organized in the
manner implied by equations (3.4). :

4.- CHANGE OF REGION,

In a previous publication {2], the author expressed the belief that a
system that is c-complete in a region R also has this property in any sub~
region of R. (Prof. S. Antman had the suspicion that such result had actu~
ally been shown. Unfortunately a partial survey of the literature seems to
indicate that such results, if available, are not sufficiently general for
applications of boundary methods. Thus, the matter had to be tackled
ab-initio). Recently, this has been shown and also, that convérsely, if a
system is c-complete in a region, then it is also c-complete in any region
that contains it. The precise conditions under which this is true, as well
as more general questions about modifications of a region that do not alter
the c-completeness property are given in [3].

An example is the system of functions (2.10) which has been shown to
be c-complete for Laplace equation, in any bounded and simply connected
region [ 6] . For an exterior region such as E in Figure 1, on the other
hand, N, is the linear space of harmonlc functions such that uw -~ d Lnr is
square~integrable on E. Here

1 ou :
d = §%~é Sa dx ) : (4.1)
where C is any closed curve which encloses the only hole of E.. It has
been shown [ 6], that the system

= {Lnr, r “cos nf, r "sin nf|n=1,2,...} (4.2
is c-comglete for N,. In this case an interesting phenomenon occurs. In
general N . = H° (BEE and N, 2 = H°(3E). However [16], there are anomalous
regions for which N = {1?- An example is a unit circle; evaluating
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(4.2) at r=1, it is seen that A
‘ B, = {0, cos nB, sin®} ; B, = {1, -n cos nB, -n sin nl0} (4.3)
Clearly, equations (2.14) are satisfied. Thus, the same c-complete

svstem (4.2) can-be used, even if the region is anomalous.

¢

5.- THE SOURCE METHOD.

By this it is usually meant a procedure in which a system of sources
is used to represent any field [17]. Consider a simply connected bounded
region R (Fig. 1), whose exterior is E. Let

1
6(x,y) = 57 Ln|x-y| (5.1)
¥aor every yE€E, define
- wy(x) = G(x,y) , xER ’ (5.2)

and . ’ Y
B, = {wy()-f) ly €E}.

Then wyGENP and it is well-known that

W(y) = <Au,w > = [ {Gﬂ—uﬁ}dx= 0 ¥ y€E =u€I1 - (5.3)
% Y IR an on’ ~ % P

This shows that B_ is c-complete. Given a curve C, enclosing R, take a
depse subset {y1, ¥2,...1CC of C. Define

» w,(x) = wza(’f) (5.4)
° . BC = {wy(§)|z€C} : . (5.5)

For any hdrmonic function in R, on; has
<Au,l1> = [ %E dx = 0 ’(5.6)

aR .
Using results derived by Christiansen { 16] it can be seen that in the pres-
ence of restriction (5.6), if W(y) vanishes identically on C, then it
vanishes identically on E. This shows that the system {I}LJBC is
c-complete. Therefore, the system

B = {1, wi, waye.nl (5.7
ia c-complete, because the condition :
<Au,w> =0 ¥ w€RB
is tantamount to require condition (5.6) and that the function W(y) van-
.~ishes in a dense subset of C. This implies that the premise in (5.3) is
satisfied. '

A procedure similar to the one explained here, based on Green's third
identity [18], can be used to establish the foundations of the source
method in many other problems (Stokes, biharmonic equation, etc.),

6.- SEPARATION OF VARIABLES. *

‘A procedure which is more general than the standard separation of
variables is presented in this Section. Herrera's orthogonality relations
for Rayleigh waves [19], which have been used in the geophysical litera-

ture [ 20-21] to treat diffraction problems, are an example of its applica-
tion.
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A pair of completely regular subspaces {N!, N2} of N_, is said to be a
canonical decomposition when they span N_. Under ghe general assumptions
of the theory {2, 13}, the results can be summarized as follows:

"There are two families of separable solutions B = {¢;,$2,...1CN. and

= {¢%¥,4%,...1 CN? which are orthonormal for the anti-symmetric bilinear
functlonal A, and c-complete for the subspaces of a canonical decomp051t10n
{N1 Nz} of the space Ny "

An example is the biharmonic equation in a horizontal strip (-~1<y<1},
subjected to the boundary condition u = Bu/3y = 0 at y = x1. In this case
the subspaces of the canonical decomposition are characterized by u+0 as
x++4% when u€N., vhile u>0 as x+-® when uEN? .

P’ P
Taking Re An> 0, separable solutions satisfy [12]
-\ % A x
0.Goy) = £ (e T 5 0XGy) = £AGy)e ® (6.1)

where sin ZA Akz 0. The corresponding famllles of separables sclutions
are blorthogonal Mwith respect to

<hu,v> = f v ﬁéi‘- -Au %3 + Av. %—’;’; - 3’3"}dx (6.2)

where C is any curve that goes across the strip (Fig. 2). It'is easy to
see that this definition of A is independent of the specifie choice of C.

Y
S A
_0u.
fu— Y 0]
- X
X, 0u_
us an—O
Figure 2
T
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gimilarly, the systems (2.10) and (4.4) are biorthogonal, when A is
sven by (2.2) and R is any bounded and simply connected region that con-
;,!nq the orlgln in its interior.

+...  AD-HOC PROCEDURES.

1t is frequently possible to construct c-complete systems for compli-
cated differential equations starting from simpler ones. We illustrate
¢nis by building up such systems for the biharmonic equation and Stokes
s¢oblem, starting from c-complete systems for Laplace equation.

'y .

Consider again the biharmonic equation, but this time in a region R.

Thus
<Au,v> = [ {v by _ Au — v + Av du _ u aAv}dx (7.1)
SR an n Bon
tet {¥1,V¥2,...} be harmonic functions and let {w;, w2,...} be such that
Aw. = . 7= 1,2,... (7.2
v lPJ i )

#v. an extension of the arguments used in Ref. [10], it can be shown that
the system
= {l!)], l!)z, . ]' U {Wl, W2, ...} (7.3)
Ls c-complete in R, for the- blharmonlc equation whenever the system
{o1y Y2y o ..} is c-complete for Laplace equation.

An easy manner of satisfying (7.2) is choosing
b .
w, = x0, H where ——+ = . 7.4
5 = 0, a2 (7.4)
ad ¢: harmonic. When this procedure is applied to the system (2.10) cne
pets ahe system

{1, " cos nb, " sin n8}Hr? cos?8, rn+2 cos(n+1)8 cos 6,

r“Tz sin(n+l)0 cos 0} . (7.5)
as a c-complete system for the biharmonic equation in any bounded and
simply connected region.

The same result holds in an exterior domain. Applying a similar pro-
cedure to system (4.3), one gets the system

flog r, £ ™ cos nB, r " sin 0}YU{¢, r log r cos O, r log r sin O,
-t

T cos nf cos 0, ™1 Sin 08 cos 8} (7.6)
where ¢ = r*[Log-r - 1].

As a last example let us consider Stokes problem in a region R (Fig.
1), In this case the differential equations are

VAiu - Vp = 0 (7.7a)
Veu=0 (7.7b)

In connection with system (7.7), one is led to consider the space of func-
tions Du whose elements are pairs i [u,p] where y 1s a vector while p is
a4 scalar. A suitable formally symmetrlc operator P:D»D* is

<Pu,0> =f {vw « Au-v « Vp + qV*+ uldx (7.8)
R 272 vraeg .
Here 9 =_[y, ql. This yields
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w
<A, = S {yr (v _2}_ -~ pn) —u=~(V —n_ - qn)}dx (7.9
9R
It can be shown [ 1I] that equations (7.7) are sarisfied, if and only if,
there exist functions ¢ and H in R such that

Ag =0 {7.10a)
Ap + VR = @ (7.10b)
with the property L = ‘
u=H(Vo +W) ; p=W (7.11)

Conversely, equations (7.10) are satisfied, if aud only if, there are func~
tions p and u fulfilling (7.7) and such that

&p = p (7.12a)
B = va 7§ (F12>
These two representations which will be used in connection wiin otokes
problem, leads to consider r.wo linear spaces D and ﬁH of functions.
Elements i = Du will be pairs, it} = [u, pl where u is a vector while p i3 a
scalar. Similarly, elements IrIEDH will be pairs H = [H, ¢].
Let N be the dimension of the space (2 or 3). Assume
BL = {wl,\’- Wis Ocdt«} (?-.138)

30 = {b105 P20, +out

are c—complete systems for Laplace equation (the pogsibility B = B is not
excluded). Take ¢ (=1, ..., N}, so that

and

[

i == )
A(hia + axa a0 , i=1l, 2, «.. '(7.14)
Define ' ,

Here, for simplicity, N=2 was assumed; the modification required for the
case N=3 is straight-forward. For every i=1l, 2, ..., let be

H = t¢ia, gigl sy o= 0,1,...,N 9(7'.16)
where in = (. Define
- Ba = {Hm, Hyos eesd 0 = 0,1,...,N (7‘;.17)
%H - U @ (7.18)
a=0

With every HEBH, associate an element G.= 'L‘(H)ED where T is the trans-
formation (7.11). Let

B={aeh | a=1(d, HGBH} (7.19)
It has been shown [ 11] that the system B is c-complete for Stokes
é problem.
‘ & specific application of this result, is a c¢c-complete system for
4 Stokes problems in a bounded region R, which is derived from the c-complete
i system B for Laplace equation, given in equat:.on (2.10). This is cons-
tructed taking ’
BO = B‘L = B (7.20)
1 In addition E)wi
¢ia = -2 K (7.21)
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The same applies to an exterior region (Fig. 1) if B, in the above construc
tion, is replaced by the system given in equation (4.3)

REFERENCES

L

1. 1. Herrcra: '"Boundary Methods for ¥Fluids," in Finite Elements in
Fluids Vol. IV, R.H. Gallagher, et. al., eds., John Wiley & Sons, 1982.
?Tm_ffuﬂerrera: "An Algebraic Theory of Boundary Value Problems,' KINAM,
vol. 3, No. 2, 1981, pp 161 - 230. :

3, 1. Herrera: “Theoretical Foundations for Numerical Applications of
complete System of Solutions,” Comunicaciones Técnicas, IIMAS-UNAM, 1982

{In press).

4. 1. Herrera: '"General Variational Principles Applicable to the Hybrid

4.

flement Method,' Proc. Nat'l Acad. Sc. USA, Vol. 74, No. 7, 1977, pp 2595 -
25397.
5, 1. Herréra: "Theory of Connectivity for Formally Symmetric Operators,"
Proc. Nat'l Acad. Sc. USA, Vol. 74, No. 11, 1977, pp 4722 - 4725.

6. 1. Herrera and F.J. Sabina: "Connectivity as an Alternative to Bound-
ary Integral Equations. Construction of Bases," Proc. Nat'l Acad. Sc. USA,
vol. 75, No. 5, 1978, pp 2059 — 2063,

7. 1. Herrera: ‘Variational Principles for Problems with Linear Con-
straints. Prescribed Jumps and Continuation Type Restrictions,' Jour. Inst.
Maths. & its Applics., Vol. 25, 1980, pp 67 - 96.

§.° I. Herrera: ''Boundary Methods. A Criterion for Completeness,'" Proc.
Nat'l Acad. Sc. USA, Vol. 77, Wo. 8, 1980, pp 4395 - 4398.

g9, V.D. Kupradze: '"On the Approximate Solution of Problems in Mathemati-
cal Physics," Russian Math. Surveys, Veol. 22, No. 2, 1967, pp 58 - 108.

10. H. Gourgeon and I. Herrera: '"Boundary Methods. C-complete Systems for
the Biharmonic Equation," in Boundary Element Methods, C.A. Brebbia, ed.,
Springer-Verlag, Berlin, 1981, pp 431 - 441,

11. I. Berrera and H. Gourgeon: "Boundary Methods. C-complete Systems -for
Stokes Problems,” Computer Methods in Applied Mechanics & Engineering,
1982, (In press).

12. D.D. Joseph: "A New Separation of Variables Theory for Problems of
Stokes Flow and Elasticity,” in Trends in Applications of Pure Mathematics
to Mechanics, Vol. II, H, Zorsky, ed., Pitman, London, 1979 pp 129 - 162,
13. 1. Herrera and D.A. Spence: "Theoretical Framework for Biorthogonal
Fourier Series,” Proc. Nat'l Acad. Sc. USA, Vol. 78, No. 12, 1981, pp

1240 ~ 7244,

l4. F.J. Sanchez—Sesma, I. Herrera and J. Avilés: "A Boundary Method for
- Elastic Wave Diffraction. Application to Scattering of SH Waves by Surface
Irregularities,” Bull. Seism. Soc. A&m., Vol. 72, No. 2, 1982,

15. J.L. Lions and ‘E. Magenes: 'Non-homopeneous Boundary Value Problems
and Applications,” Springer-Verlag, New York, 1972,

16. S. Christiansen: "On Kupradze's Functional Equations for Plane Harmon-

ic Problems," in Fundamental Theoretical Metbods in Differential Equations,

R.P. Gilbert & R.J. Weinacht, eds., Pitman, London, 1976, pp 206 - 243,

17. M. Dravisnki: 'Scattering of Elastic Waves by an Alluvial Valley of
Arbitrary Shape," Univ. of Southern California Report No. CE 80-06,
September, 1980.

18. R. Courant and D. Hilbert: 'Methods of Mathematical Physies," Vol. II,
{Partial Differential Equations), Wiley, New York, 1962, pp 256 ~ 257.

19. I. Herrera: "On a Method to Obtain a Green's Function for a Multi-
layered Half-sgpace,™ Bull. Seism. Soc. Am., Vol. 54, No. 4, 1964, pp 1087

- 1096,
20. L.E. Alsop: "An Orthonormality Relation for Elastic Body Waves,"

3 s e S kA T B Aok g e o ok

#

ot S o AL o A

Susged .

oL e 88 it 5, i

ki TSN

i O i e 9 50 48, AR 0

et e e

" S
S et kv el

NN v

o

L S

i v ot
’

T



oS

[PNRY SN

(ORI

© e e

906 I HERRERA

Bull. Seism. Soc. Am., Vol. 58, No. 6, 1968, pp 1949 - 1954,
21, P, Malichewsky: "Surface Waves in Media Having Lateral Inhomogenei~
ties," Pure and Applied Geophysics, Vol. 114, No. 5, 1976, pp 833 ~ 843.

e A




