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1.- 'INTRODUCTION. 
, 

There are two main approaches for the formulation of boundary methods; 
. , 

one is based on boundary integral equations and the other one, on the use 
of complete systems of solutions. The author has given previously exten­
siye descriptions of the latter method [ 1-3J. Its theoretical foundations 
and development embrace the following aspects: a) Approximating procedures 
and conditions for their convergence; b) Formulation of variational prin­
ciples; and. e) Development of complete systems of solutions. The first 
two oE these subjects have becn studied and discllssed in previous public:a­
tiofiS [ 1-81. However, a systematie discussion of the last one is wDnting. 

There are a number of seattered publications related with this m~tter 
16, 9-111. It has been shown that a suitable criterion for completeness is 
c-completelless [1-3, 8J. A method of consi.derable generality, for gener­
ating 'such systems i.s des.cribed in [61 and [9}. A general version of sepa­
ration of vari.ables procedures yields biorthogonal systems which are 
e-complete [ 12-131. Conyenient f'eatures of e-complete systems are their 
simplicity, as in the case of plane waves. [:Ud, and the fact that the sa!!l~'3",k" 
system can be applied to large elasses of regions and boundary conditioni. . 
In this paper we present a brief but systematic exposition of the methods 
avail.able for the construction of c-complete systems. 

2.- C-CO}WLETE SYSTEMS ANO RILBERT-SPACES. 

In general a linear subspace N p e D of a linear space O is considered. 
Rere, Np sta'nds for the null subspace of au operator P:D+O*. For e~ample. 
if Laplace equation in a bounded region R (Fig. 1), is considered, a 
convenient definition of P is 

<Pu,v> f vt.u,'dx (2.1) 
R 

In this case the linear space D may be taken as HS(R), s>3/2. The elements 
of the null subspaee are the harmonic functions on R. The antisymmetric' 
~perator A~P-P* plays an important role. In the example, ab9ve, it is 

au av}<Au.v> .. f {v -;:;-- - u -;:;-- dx (2.2)
aR en . en -

For formally symmetric operators, the nu1l subspaee NA of A=P-P*, is 
used to introduce a c1assification of boundary value [1-3, 7]. When P is 
given by (2.1), for example, . a 

NA = {uEDlu 1" a~ =' o on aR} (2.3) 

/ 
and the relevant beundary values can be taken te be u and aulan 9.u aRo In 
general such classification yields the spaee o"f boundary values V, defined 
by [1-21: 
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Using the eoneept' of eanonieal deeomposition, it is ah~ays possible to take 
f) as a produet spaee. Nore preeisely, the relevant boundary values e¡¡n be 
expressed in tcrms of two groups of funetions. For Laplaee equation ele­
r:1ents nEf) are ~haraeterized by a pair of funetions {u,Clu/Cln} whieh are 

. áefined only on the bounca.ry. Note the differenee bet¡oH!.en sueh elements 
Bnd thos~'of D, whieh are detined in the whole region R. 

There are, however, many alternative Vlays'of decomposing the boundary 
values into two groups; caeh associated with a eanonieal decompositión. If 
al, a2., bl and b2,are eonstants sueh that 

1 	 (2. S) 

anQl=oher possibility in the example here diseussed, is to take {alu + 
~ au} 	 ",".a'2." , blU + b2. -;:;-. In general, when uEV \Ve wr~te 
vn oH 

'u 	= {Ul, U2} (2.6) 

The eleÍllents of the spaee Ip=Np+N\, on the other hand, are eharaeter­
ized by the [¡¡et they attain the ~ame Boundary values as some solution of 
the homogeneolls equation (a barmonic function, in om: example). The ranse 
of boundary values reached by, solutions of tbe homogeneous equation, is the 
quotient spaee 

Ñ = Np/N	 (2.7)
p A 

Dnder quite general couditions [ 1-3]. Ip is a completely regular' subspaee. 
By this we mean 

<Au,v> O V vEIp ~ uEIp 	 (2'.8) 

The same is true of N ' A subset BCI i5 said' to be e-complete for Ir' 

I~hen for evel'y u E D. 

p 
one has 

p 
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<Au, w> = O V wE B - ~ E Ip (2. 9) 

A e-complete subset is said to be a conneetivity basis, when in addition it 
is linearl}' independent. Completely regular subspaces always possess 
e-complete systems [2]. One of the ma~n advantages of c-completeness is 
that this criterion is purely algebraic; this allows greater genera lity and 
flexibility for sorne of the results of the theory. 

As an illustration, ~.;re give the following example. For Laplace equa­
tion it has been shown [61 that the system of harmonic polynomials, whose 
expression in polar coordinates is 

B {l, rncos n8, rnsin nS!n=1,2, ... }CN (2.10)p
I 

is c-complete in any bounded region of the plane, which is simply connected 
(Fig. 1). 

Dnder very generalAconditions [2-3] there is a Hilbert-space H such 
that the product space V of boundary values satisfíes 

(2.11) 
Even more 

(2.12) 

Here ( , ) is the inner product in H and the bar above stands for the 
complex conjugate (antilinear mapping). If the coefficients in the 
Hilbert-space are real, the bar mU5t be deleted. 

Let Np1 aud Np2 be the range spanned by the first and second component, 
respectively. of elements ti {Ul, uz}Et:)p' Given a subset BCNpCl •p
there ís associated to it a BcíJp whose elements ti {U¡, U2} are the 
traces of elements of B. It has been shown that the following statements 

~ r' ~ 

are equivalent 

i).- BCN is c-complete for Ip; (2.13)p 
ii).- span Bl = Np1 while span B2 = Np2 (2.14) 

A proof, as well as, more precise and ellaborated forms of this result are 
given in References [2-3]. 

3.- CHANGE OF BOUNDARY CONDITIONS. 

Let H = HO(óR) !2(óR) where aR i5 the boundary of the simply connec~ 
ed region R, illustrated in Figure l. The inner product of two functions 
uE RO (aR), vE HO (óR) is gíven by 

(u, v) J u-; dx (3.1) 
R 

In view of (2.2), it is clear that equations (2.11) and (2.12) are satis­
fied if Ul u and U2 = duldn on aRo 

As it is well-known [ 151 

N = HO(dR) (3.2)p11
where {1} stands for the orthogonal complement of the constant function 1 
on dR. Corresponding to the c-complete system (2.10), we have the boundary 
values on dR: 

(3.3a)
and 
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82 .. {O, (¡rncos n&/dn, arnsin nS/an} (3.3bY-­f 1 
t , According to equations (2.14), 81 spans HO(aR) while 82 spans {1}1. Th~t 

t 
direct verification of this statement is straight-forward if the region R 
is taken as a circ le with center at the origino 

•Ii 
~. From the aboye discussion it is clear that the e-complete system B as 

given by (2.10), can be used to approximate any Dirichlet and Neuman bound­
1 ary data. Even more, the same system 8 can be used to solve any linear ~•., , 	 boundary condition. Let such condition be given by the specification of 

q 
t, 	 the linear combination atU + a 2au/an. Choose bl and bz so 

fulfilled. Define¡ 
Ul '" blU + b2..au/ an Uz ... alu + azou/é)n 

A 
Then, i.t is easy to verify that relations (2.11) and (2.12) 

iI 

i• when A is given by (2.2.). In this case

I 
! 	 un1ess bz
•, 	 1eft out ,J 

that (2.5) is 

(3.4) 

are satisfied 

Ñ = R"(3R) Ñ .. U"(3R)
Pl 	 P2 

or a2 are zero. For the sake of brevity this latter case 
of the discussion. Equations (2.14) show that 

span B1 = span B2 = He (dR) 

(3.5) 

is 

(3.6) 

problem 
r 1 where either alU + azdu/dn or alternatively blU + b2du/dn is specified, if 
¡ the boundary va1ues of the functions be10nging to B are organized in the 

t ¡ 
a 	 manner imp1ied by equations (3.4).

1 	 4.- CHANGE OF REGION. 

r I 
~e 

1 -¡" In a previous publicatifon {2], the author expressed the beÜef that a ~ 
¡ ~ system that is e-complete in a region R a1so has this property in any sub­
¡ region of R. (Prof. S. Antman had the suspicion that such result had actu­
~ a11y been shown. Unfortunate1y a partia1 survey of the 1iterature seems to 
~ indicate that such resu1ts, if avai1ab1e, are not sufficient1y general for 
f applications of boundary methods. Thus, the matter had to be tack1ed 

t 
~ 

i 
ab-initio). Recent1y, tllis has been shown and a1so, that converse1y, if a 
system is e-complete in a region, then it is also e-complete in any region 
that eontains it. The precise eonditions under whieh this is true, as we11r i 
as more general questions about modifications of a region that,do not alter 

~ the c-comp1eteness property are given in [3]. ' 

i 
; 
! An examp1e is the system of functions (2.10) which has been shown to 
;1 be c-comp1ete for Lap1ace equation, in any bounded and simply connected , 
1 region [6]. For an exterior region such as E in Figure 1, on the other 

¡, hand, Np is the linear space of harmonic functions such that u'- d Lnr is 
square-1ntegrable on E. Rere ' t i 1 f 3u

d = -::-r'"2 -3 dx 	 (4.1) 
1f C n ­¡ 	 e 

where C is any elosed curve which encloses the on1y hole of E., lt has~ been shown [6], 	that the systemt~ 

is c-comE1ete for N	 ' In_this case an interesting phenomenon occurs. Inpt l, 	
general Np1 = ~e(dli) and N~2 HO(aE). However [16] ~ there are anomalous 
regions for Wh1Ch Np1 = {l~. An example is a unit circle; eva1uating 

~ , Ce 

f 
~ 
; 
t 

1 	 This shows that the system B given by (2.10) can be used to solve a 
7 

(4.2) 
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<'.2) at r=l, it is seen that 


BI = {O, cos ne, sine} n2 = {l, -n cos ne, -n sin nO} (4.3) 


Clcarly, equations (2.14) are satisfied. 1'hus, the same c-complete 
system (4.2) can· be used, even if the region is anomalous. 

5.- THE SOURCE ME1'HOD. 

By this it is usually meant a procedure in which a system of sources 
is used to represent any field [171. Consider a simply connected bounded 
region R (Fig. 1), whose exterior is E. Let 

(5.1) 

For every yEE, define 
w (x) = G(x,y) (5.2) 
~ ~ - ~ 

Hnd 
BE = {wy (:) I~EEJ. 

Tilen \V~ E Np and it is well-known~that 

w(y) = <Au,w > f {G ~ -u dG}dx = O (5.3)
dR dn dn ~ ~ 

This shows that BE is c-complete. Given a curve e, enclosing R, take a 
depse subset {YI, Y'2, ••• }CC of e. Define 

w (x) = w (x) (5.4)
Ct ~ ~Ct ~ and 

{w (x)lyEC) (5.5) 
~ ~ ~ 

For any hármonic function in R, one has 

<Au,l> = f ~ dx = O (5.6) 
dR dn 

Using res~lts derived by ehristiansen [161 it can be seen that in the pres­
cllce of restriction (5.6), if W(y) vanishes identically on e, then it 
vanishes identically on E. 1'his~shows that the system {l}UB is 
e-complete. 1'herefore, the system e 

B"; {l, W¡, W2,.••• } (5.7) 
is c-tomplete, because the condition 

<Au,w> = O V w· E B 
is tantamount to require condition (5.6) and that the function W(y) van­
.ishes in a dense subset of C. 1'his implies that the premise in (5.3) is 
9.1tisfied. 

A proeedure similar to the one explained here, based on Green's third 
identity [lsl, ean be used to establish the foundations of the source 
method in many other problems (Stokes, biharmonic equation, etc.), 

6.- SEPARA1'ION OF VARIABLES. 

'A proeedure whieh is more general than the standard separation of 
variables is presented in this Section. Herrera's orthogonality relations 
far Rayleigh waves [ 191 , which have been used in the geophysieal litera­
ture [20-21] to treat diffraetion problems, are an example of its app.1iea­
tioll. 
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I A pair of completely regular subspaces {NI, N2 } of Np ' is said to be a 
canonical deeomposition when they span Np ' Un~er the general assumptions

I of the theory [2, 131. the results can be surnmarized as follows: 

"There are two families of separable solutions B = {<PI ,(h, ... }e N~ and 
B* {<j¡Í, <p~, ••• } e N~ which are orthonormal for the anti-syrnmetrie bilineart functional A, and e-complete for the subspaces of a eanonical deeomposition 
{N~,NP of the space Np". 

1 An example is the biharmonic equation in a horizontal strip (-1~~1).
I 
1 subjected to the boundary eondition u = du/3y = ° at y ~ ±1. In this case 
1 the subspaces of the canonical decomposit~on are charaeterized by u~O as 

x -+ +ro when u E N~, while u -+ O as x + _00 when u E N; • 

Taking Re A > 0, separable solutions satisfy [12] 
1n -A x ). x 

$ (x,y) = f (y)e n $*(x y) = f*(y)e n (6.1)
n n n' n ¡ 1 

where sin2 2A -4A 2 = O. The eorresponding families of separables solutions 
1 : are biorthogBnalnwith respeet to 

<Au,v> = ! {v 38u -8u 3v + 8v. 3u _ u 38V}dx (6.2) ¡e dn dn 3n 3n ~ 

where e is any curve that goes across the strip (Fig. 2). It'is easy to 
see that this definition of A is independent of the specific choice of, C. 

y 

u= au =0 
an 

x 

~ au
'-... u=--=o 

()n 

Figure 2 
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Similarly, the systcms (2.10) aud (4.4) are biorthogonnl, when A is 
n~'('n by (2.~) .nn~ R.is any bounded and simply connected region that con­
Oltlil the Orl.gl.n l.n l.ts interior. 

,\D-' flOC PROCEDURES. 

It is fre'quently possible to construct e-complete systems for compli­
(jtPd differential equations startirig from simpler ones. We illustrate 
this by building up such systems for the biharmonic equation nnd Stokes 
",(,'blern, stnrting from e-complete systems for Laplace equation. 
'/ . 

Consider again the biharmonic equation, but this time in a region R. 

d6u dV dU d6v}d<Au,v> f {v -- - 6u - + 6v -- u -- x (7.1)dn _dR dn dn dn 

!.ct {:J¡¡,i)i2,"'} be harmonic functions and let hVl, W2,"'} be such that 

6w. = l/J. j = 1,2, ... (7.2)
J ] 

.By. <1n extension of the arguments used in Ref. [10] it can be shown that 
the system 

B = {l/J¡, l/J2' ... } U {Wl, \V2, ... } (7.3) 
is e-complete in R, for the'biharmonic equation whenever the system 
!~¡, l/J2, ••• } is e-complete for Laplace equation. 

An easy manner of satisfying (7.2) is choosing 
d<P • 

w. = x<p. where ~x l/J. (7.4)
] J o J 

.lthl <Pj harmonic. When this procedure is applied to the system (2.10) one 
t.;ets the system 

n n . e }U{ 2, 2e n+2{l, reos ne, r sl.n n reos, r cos(n+l)e cos e, 

1\+2. e 
r Sl.I1(I1+1) cos e} (7.5) 

115 a e-complete system for the biharmonic equation in any bounded and 
simply connected region. 

The same result holds in an exterior domain. Applying a similar pro­
redure tosystem (4.3), one gets the sysiem 

(log r, r:-~ cos ne, r-n sin e} U{<p, r log reos e, r log r sin e, 

-n+l -n+l 
reos ne cos e, r sin ne cos el (7.6) 

\lhere <P r 2
[ Logr - 1]. 

As a lastexample let us consider Stokes problem in a region R (Fig. 
1). In this case the differential equations are 

v6u - 'Vp O (7.7a) 

O (7.7b) 

l~ con~ection with system (7.7), one is led to consider the space of func­
tions J) \vhose elements are pairs G = [u,p] where u is a vector \vhile p is 

u ..... '" '" "'* a scalar. A suitable formally symmetric operator P:fr~D is 

<PG,O> = f {vv· 6u - v • 'Vp + q'V. ~}d~ (7.8) 
R 

lIere v [ y, q]. 1'his yields 

, . 
e,..! 
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A .... A ott' 	 oVOJ 	 <Au..v> - ¡ {V" ('v -=:. - pn) -, U .. (\1 ~ - qn) }dx, dR - n - - dn - ­

rr can be shown [llI that equations (7.7) are satisfied. íf and only if,.
1 there exist funetions $ and H in R sueh that 
~ - lili=Q 	 (7.10a) 

I 
1 

ll~ + "''''!! ... a 	 (7.1Oh) 
with the: ¡l'ropeny 

u. "'" ~V4l .... 11) ; (T.U)- \1 _ , 
Conversely~ equations (7.10) are satisfied. if and only if,. the,re .!t"re fune­
tions p and u fulf.i1l:illg (7.7) snd. sueh. that. 

Aq¡ = V (7.1Za) 

(i;'12.l,,~ 

Tñese two representarions whieh will De used in conneetíon wil,:". .,tokes 
problem~ Iead~ to eonsider two linear spaees Du and De of funet~vna~ 
Elements ti = Du will be pairs"u ~ [u, pJ where u ~s a vector while p ia a 
sealar. Símilarly, elements HEDH will be pairs H = e!!. (ji} .. 

Lee N be the dimension oi the space (2, or 3) L Asauma 
= {Wl.~ ... ~, ..J (7.13a)BL 


B = J(jI1G ...~Q•••• }
o 
are e-complete systems far Laplaee equation (the passibil:ity BL = Bo is not 
exeIuded) • Take <ji. (a=I,.~. _.. N)" so that 

l.a 	 aw:. 
áclt. + --!.. = Q ,. 1""1.. 2...... (7.14)

l.a oXa 
Define 

== (w•• O) ;. v' => (0" w.) (7.15)W- 1-1. 1.. -1.2. l. 
Here. far s imp lic.ity• N=2 was assumed; the modification required far the 
case N=3 ís straight-forward. For every i=l, 2•••• , let be 

íL = (<ji. , w.;J ',; a = O.I, ••••N (7.16)
loa 	 loa -loa 

where wiO O. Define 

... } O.l •••• ,N (7.17) 
and 

(7.18) 

Wí th every HE @H. associate an element U. = 'C dI> E D where T is the trans­
formatíon (7.11). Let u I 

fi= {GEDu I n = '[dI>. BEBH} (7.19) 
I 

It has been shown [111 that the system B ía e-complete for Stokes 
prablem. 

A specífie application of this result, ís a'c-complete system for 
Stokes problema in a bounded region R, whieh ís derived from the e-complete 
system B for Laplace equation, given in equatíon (2.10). This is cons­
trueted taking I 

(.7.20) 

In additíon 
(7.21) 

i: 
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rhe same appIies to an exterior regíon .(Fig. 1) íf B, in the above construc 
lían, is replaced by the system given in equation (4.3) 
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