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ABSTRACT. )
. i Y Ay -
There are two main approaches to the formulation of N
boundary methods, these are boundary integral equa-
tions and approximations by complete systems of solu- .
tions. The latter has been the subject of extensive : £t
studies by one of the authors oriented to clarifying
the foundations of the method and increasing its -
versatility. The present paper is devoted to explain
the application of this procedure to free boundary

problems such as Signorini's and contact problem
[1-6]. :

1. INTRODUCTION : ' A W1

boundary methods; one is based on boundary integral

equations and the other one, on the use of complete

systens of solutions. One of the authors has given _
previously extensive descriptions of the latter method -
l1-11]. 1Its theoretical foundations and development

enbrace the following aspects: a) approximating pro- A
cedures and conditions for their convergence; b) for- . L
mulation of variational principles; and ¢) development o
0of complete svystems of solutionsT It has been shown ’ ’
that a suitable criterion for completeness is c-com-

pletcenmess. A method of considerable generality, for

generating such systems is described in [6] and [10].

A gencral version of separation of vqriables procedu~-

res yields biorthogonal systems which are c-complete

{91. Convenient features of c-complete systems are

their simplicity, as in the case of plane waves [11],

and the fact that the same system can be applied to
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large classes of regions and boundary conditions.

It has been shown [3,10] that under general con
ditions a system which is c~complete for a rvegion
has this property for any region which contains the
first one. The possibility of using this preperty
" to treat problems subjected to floating boundary con
ditions such as seepage flow was suggested previous-
ly [ 12]. 1In the present paper we initiate the sys-
tematic development of this subject. First, a very
simple version of a contact problem is presented as
an example and then theoretical vesults that can be
applied to a general class of contact problems are
developed. These theoretical developments are based
on the theory of variational inequalities [13-16]. s

2. AN EXAMPLE -
Let @ (Fig. 1) be a bounded and connected set in &°

with a Lipschitz continuous boundary [=[; UT, and
r‘r\r,-¢ It will be assumed that meas(?;)ﬁO.

I

FIGURE |

Write : ST -
vV = B (Q)G E=L2(Q) (1

where the symbol<; means densely conca:ned. Given
the functions -

PGI.(Q),
gERYYD,
SERI/YD),
n, €n/yr),

(2)

.*

°:eh¢an formulate the distributional boundary value
Prodlem which consxsta in finding u &V, such that

ToSmae
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-Au = F 1in 'f}. ]
u =13 on I“;‘, , .
) uh b o (3
d3u/3v > g » on T
(3u/3v-g) (u-h) = 0

Consider the continuous bilinear form
au,v) = J Vur9Yvdx, u, veﬂl(ﬁ}. (4)
0
As it is usual y_:B'(Q)*H'/%(T) and y1 H!(Q)+H" V()

are the trace operators, G:.ven = /(1'1) and
h €HuY¥r,), define

K = {vERY(): Yov-ﬁ on I‘x. Y.o\'_?_ha on Tz} (s)
and £E€V' by ‘
e+ <f,v> w [ Fvdx.+ [ gy, vds , ‘VGH (ﬂ), : (6)
Q T2

Clearly, K is a non-enmpty, closed and convex subset
of V. :

Using standard techniques ‘[13 14] it follows
that problem (3) is characterized by the variational
problem, find uEK such that, : .
f Ju- (Vv~Vu)dx>I F(v~—u)dx + ./ g(Y vy, u)dx, v vEK

- - Fe - M

In order to transform the var:.a::.onal problem
{7) into a boundary variational problem, let wGB ()
be such that . .o

4w =F -7, in R T (8)
"and define the functions ‘ , i ’ »
g, = &8 = YiwE€RY/YT) | ‘
8, = 8 - yuERAr) b L@
hg = b -y weu’f’m -
Consider the closed convex set
K = {vevelYov-“o on I’;, Yovz_‘ho ~on T2} (10
vhere ‘ ’
= {ve€r'(Q)|bv = 0 in Q) (11

’rhen under the transformation :
u, = u-wv €125

L e s
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where wEH?(R) is a fixed elemenc satisfying (8),
problem (7) and therefore (3) is equivalent to the
boundary varistional problem. findxﬂ)€K° such that

rfz (v~u°)8u°/Dnd§3rfl(v-uo)godf,. vvek, ()

The method we propose for solving the boundary
variational problem {13), is based on the use of a
basis {¥i,92,...} 0f Vo. The construction of such
basis has been extensively studied by Herrera [6,10]
recently for a large class of systems of partial dif
ferenrial equations. For Laplace's equation, for
example, it has been shown that a basis of V,, when
? is bounded and simply connected, is the system of
harmonic polynomials [ 6] ‘ :

{Re 2", Im 2" 3 n=0,1,2,...} o (14)

Given such basis define

Vom o Span{v’l,?.z,;..,vm}‘,'m z' 1 . T' (15)

Let . A S _ |
{p1,P2s++.} be a basis of u°(r,) : - {18)
{9:1,92,...)} be a’basis pf Ho(rg) . . (17)

It will be assumed that qF >0, = 1,2;...‘. Ele~
ments v, of the convex sugsec Kom» will be required
to satisfy : e c .

fipj(va-ﬁa)dfwo ; I{qj(Yo‘,'m“hoMfzo 3oi=l,...,m,
. 2 " ‘ (182
More precisely

Kom = {vm€§V0m|vm satisfies (18)} (19)
1f K, is replaced by Koy in the definition of the
boundary variational problem {(13), one obtains a
family of variational problems. Let ugn€Kgop be the
solution of such problem, then it can be shown that
Uop™Ug- The example given here is a particular case
of the general theory explained next.

. 13

3. NOTATION

(v,h-ll) is a real Hilbert space with topological
i??l (V' iellx); <+, +> denotes the duality pairing on
Vv G, (o,0), ]+ ]) is a real Hilbert space idenci-
fied with its dual, in which V is dengely and coa~
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tinously embedded: V H V', K is a nonempty,
closed and convex subset of V.

a:Vxv+8& is a continuous bilinear form (pot
necessarily symmetric) which satisfies the condition
c:(K-ellipticity) there is a constant a>0 such that

a(u-v,u~v) > all u-vll 2, ¥ u,vEXK.

A€L(V,v') is the corresponding continuous linear
operator:

au,v) = <Au,v>, u,vEV, : (20)

YEL(V, B) is a linear continuous~surjection
with kernel V, dense in H, B heing a Hilbert space
'1somorph1c to the quotient space V/V,, and the quo-
tient map y V/Vo*E norm-preserving.

A‘EI(V,vé) is the linear continuocus composition
pA, where p:V'+V, is the restriction to V, of func-
txonals on V, called the formal operator determined
by a(*,*), V and V4 ’ : .

' a(u,v) = <Au,v>.,' ‘uei’, ‘VEV- . ) (21)

Hence (cf. {13]), the follovxng abstract Green's fox
mula holds: .

<Au,v> ~ (Au,v) = [8u,Yv],_ uen . vev (22)

vhere Dy={u€V:Ay EH}, GL(DO,B } is the abstract
‘Green's operator and [° +] 1s the dualzty pairing on
BxB'.

jiK+(-=,+=] is a proper, convex and lower semi-
continuous functional. In addition £E€V',

L. ABSTRACT BOUNDARY VALUE PROBLEM

With the above notation in force, we now consider
the variactional problem (P) corresponding to a kind.
of abstract boundary value problems. Toward this
end, let K be characterized only by boundary con-
straints:

K + voCx, o ' (23)
Clearly, condition (23) is equivalent to
K+V =K ; (24)

Let a3:VxV+& and a:BxB+& be continuous b;lxnear
forms such that

b

N
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alu,v) = a;(u,v)+az(yu,yv), u,vEV, (25)

satisfies condition (c). Similérly,'let hiB+(-, +=]
be a functional such that '

"j(v) = n(yv), VEK (26)

is proper, convex and lower semi-continuous. Let
FEH and g€B', and define

f(v) = (F,V‘)‘f‘[g’,YV],. #évt ’ (27)

which belongs to V'. Then the variational problem
(P) takes the following f\orm: i

Find u€ K such that

a3 (u,v-u)+az(yu,yv-yu)+h(yv)-h(yu),
2(F,v=u)+lg,yv-yul, ¥ vEK

The following theorem determines the ahstract
boundary value problem to which (28) is equivalent.
A Theorem 1. Let A €L(v,v') and A, €L(B,B*) be
the operatons cornesponding to ay(+,*) and a,(*,*),
nespectively. Let A€L(v,v])) be the {oxrmal operatonr
dezermined by a;(-,*) lorn, equivalently, a(+,*)),
Voand V,, and iet 3, €L(D,,B') be the abstract
Green's openaton defined by (22): o

<Aru,v> - (Au,v) = [3yu,yv], u€D_, vEV. (29)
Then the problem (2q)vé4vequ£va£zhz 2o the problem
Find u€K such that |

_ Au = F 4in §,
[31utAz (yu),yv=yul +h(Yv)=-h(yu) €30)
‘ - 2.[3:\(?-?“] s ¥ VvEK »

Proof. Let u&€K be the solution of problenm
(28). Then, in accordance with (23), we can set
veu-vo €K, v, E€V,, and obtain Au=F in H, siace Vo is
dense in H, and.u€D,. Now, upon using (29), the
boundary inequality of (30) follows from {(28).

Convarsaly, let u€K be a solution Qf problem
(§0)- Then u€ Dy and because of (29), u is a solu-
tion of (28). ' L

<za)j]<'

b W o Ao
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5. BOUNDARY VARIATIONAL PROBLEM

In order to transform the abscract boundarv value
problem (30) into a boundary variational problen, we
introduce equation "Au=F ia H"” in K as an additional
constraint. Hence, reconsider problem (30) on the
closed convex set

*

K= {vEK : Au = F in H}. i (31)
Then problem (30) trénsfo:h§ into  the problem
Find u€K such that

[ 31utAs (yu),yv-vul #h (Yv)=h (Yu) :
< . (32)
.3la.*rv-*rul. ‘¥ vEKX '

Theorem 2. The abstract boundary value problem
(11) {on, equivalently, the vaniational problem (283},
L8 equavaﬂent Lo the boundazg ua&aataonat paobtam
(32).

Proof. It is clear that solutions of (30) are
also solutions of (32). - The converse follows by
observing cthat given vEK, there exist a vEK such

that v-vE€V, and, consequently. (32) holds for such
a v. PR

6. HOMGCENEIZATIOR 0‘:" THE DOMAIN CONSTRAII\T

For convenience in our s:udy on Lntetnal approxx::a-
tions of problem (32), we make homogeneoas the do~
main constraint of K and 1ncorporace it into the
space V. Toward this end, let -

wED : Aw = F in H . ' (33)

be a known function, and consider the change of
dependent variable o . A
‘ ' uo‘-.uév. S ¢ 1))
Then, according to the definitions
g, = 8-91w-Az (Yuw) € B'
. hw(v) » h{vtyw), ¥ vE€B
and : . ) .
o 'VA-{VEV:.Av-OinH}

l(A - {\TEVA : vew €K}

the following result is easily established:

(35)

(36)

ey meman o m e n -,

.
[
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Theorem 3. Via the }télau’dn (34),' the problem
(32) 414 equivalent Lo the problem
Find u_ €K ‘suchﬁchat,' '
o A S
( 31\30*/’@2 (Yo) .‘(V“Yuol +hw‘(V)-h“v_(uo) « (a7

28 »yv-ru ], ¥ vEX,

7. INTERNAL “Apékoxx\mnoﬁ'sl' P

Let (v Kn}m>l be an 1nterna1 apprexxmatxon ‘of
{VA.k §in tlie sense of [lS].

-

i) (vplm>y is a fanxly of f:nxte dimen-
. : 51onal subspace of VA uxch parameter
m=dim Vi o .
ii) ¥ vEV,, 3 vmévm : vm*v :m V as m>;
iii) For each m>1, X, is a nonemp:y, closed (38)
. and convex subsec of VYui .
iv) ¥ vEK,, I vmexm i vprv in ¥V as .m+;

v) If v €Ky “and VotV (weakly) in Vv as
m>®, chen VEKA- ,; _,< N R )

. e
For each m>1 we assacxate :o problem (37) the
discrete problem'

Fxnd umel( such :hat

[3xu +A2Yu .yv—yu ]+h (v)~h (u ) A ' -
(39)
- >.[g ,Yv-yu 1, ¥ vGK
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