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There are two main approaches to the formulation of boundary methods, these are boundary
integral equations and approximations by complete systems of solutions (frefftz method). The latter
has been the subject of extensive studies by one of the authors oriented to Clarifying the foundations of
the method and increasing its versatility. The present paper is devoted to explain the application of this
procedure to free boundary problems such as Signorini and friction problems in elasticity.

1. Introduction

In recent years, by a boundary method is usually understood a numerical procedure in
which a subregion or the entire region is left out of the numerical treatment, by use of
available analytical solutions (or, more generally, previously computed solutions). Boundary
methods reduce the dimensions involved in the problem leading to considerable economy in
the numerical work and constitute a very convenient manner of treating adequately un-
bounded regions by numerical means. Generally, the dimensionality of the problem is reduced
by one, but even when part of the region is treated by finite elements, the size of the
discretized domain is reduced [1, 2].

There are two main approaches for the formulation of boundary methods; one is based on
boundary integral equations and the other one on the use of complete systems of solutions. In
numerical applications the first of these methods has received most of the attention [3]. This is
in spite of'the fact that the use of complete systems of solutions presents important numerical
advantages; e.g., it avoids the introduction of singular integral equations and it does not
require the construction of a fundamental solution. The latter is especially relevant in
connection with complicated problems, for which it may be extremely laborious to build up a
fundamental solution. This is illustrated by the fact that there are methods for synthesizing
fundamental solutions starting from plane waves, which can be shown to be a complete system
[4].
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The use of complete systems of solutions is frequently associated with the name of Trefftz
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In recent years, by a boundary method is usually understood a numerical procedure in
which a subregion or the entire region is left out of the numerical treatment, by use of
available analytical solutions (or, more generally, previously computed solutions). Boundary
methods reduce the dimensions involved in the problem leading to considerable economy in
the numerical work and constitute a very convenient manner of treating adequately un-
bounded regions by numerical means. Generally, the dimensionality of the problem is reduced
by one, but even when part of the region is treated by finite elements, the size of the
discretized domain is reduced [1, 2].

There are two main approaches for the formulation of boundary methods; one is based on
boundary integral equations and the other one on the use of complete systems of solutions. In
numerical applications the first of these methods has received most of the attention [3]. This is
in spite of'the fact that the use of complete systems of solutions presents important numerical
advantages; e.g., it avoids the introduction of singular integral equations and it does not
require the construction of a fundamental solution. The latter is especially relevant in
connection with complicated problems, for which it may be extremely laborious to build up a
fundamental solution. This is illustrated by the fact that there are methods for synthesizing
fundamental solutions starting from plane waves, which can be shown to be a complete system
[4].

i.

The use of complete systems of solutions is frequently associated with the name of Trefftz
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[5]. The idea of his method [6] consists in looking for approximate solutions from among the
appropriate class of functions that satisfy exactly the differential equation, but do not
necessarily satisfy the prescribed boundary conditions. Although Trefftz's original formulation
was linked to a variational principle, this is not required. Indeed, complete systems of
solutions can be used to treat differential equations which are linear but otherwise arbitrary [7,

8].

.

The method has been used in many fields. For example, applications to Laplace's equation
are given by Mikhlin [9], to the biharmonic equation by Rektorys [10] and to elasticity by
Kupradze [11]. Also many scattered contributions to the method can be found in the
literature. Special mention is made here of work by Amerio, Fichera, Kupradze, Picone and
Vekua [12-16]. Colton [17, 18] constructed families of solutions which are complete for

parabolic equations,
However, general discussions applicable to arbitrary linear differential equations were

lacking until recently. Motivated by this situation Herrera started a systematic research of the
subject. The aim of the study has been two-fold; firstly to clarify the theoretical foundations
required for using complete systems of solutions in a reliable manner, and secondly, to expand
the versatility of such methods, making them applicable to any problem which is governed by
partial differential equations which are linear.

The aims of the research have been satisfactorily achieved, to a large extent. A first survey
article has already appeared [7], but two more complete ones soon will be published [8, 19].
The systematic development includes:

(a) approximating procedures and conditions for their convergence [4, 8, 20-22];
(b) formulation of variational principles [23-28]; and
(c) development of complete systems of solutions [29-33].

In addition, the algebraic framework [34] in which the theory has been constfJIcted has been
used for developing biorthogonal systems of solutions [35].

Thus far, the theory has been applied to linear problems only. This article is devoted to
extend it to free boundary problems; these are nonlinear even when the governing differential
equations are linear. Typical examples are contact problems in elasticity [36, 37] and seepage
problems in flow through porous media [38, 39]. They have been treated using finite element
approximations. Boundary integral equations have also been applied [40-43]. Trefftz method
has been applied [22] to seepage problems, but the theoretical analysis is wanting.

Liggett and Liu [40] hav"e concentrated on the discussion of the boundary integral equation
approach as applied to flow in porous media while Kikuchi [41-43] has given extensive
discussions of that approach for contact problems under the general heading of reciprocal
variational inequalities.

Advantages of Trefftz method (complete systems of solutions) are the simplicity of the
formulation and the possibility of using the same system of solutions independently of the
detailed shape of the region considered and of the specific boundary conditions. Frequently,
this is possible [8, 30, 33, 34] when the system is c-complete.m the case of seepage problems,
for which the region is not known in advance, this fact is specially relevant [22].

In the present paper, a very simple version of a contact problem is introduced as an
example and then general theoretical results that can be applied to a wide class of problems
are developed. These results are derived from general properties of variational inequalities

[44-49].
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2. An example

Let {J be a bounded and connected set in R n with boundary r = r 1 U r 2, where r 1 n r 2 = 0

and r is a CZ-manifold. It will be assumed that meas(r J > O.

Write

(1)v= H1(n)4H = L2(n)

where the symbol 4 means densely and continuously embedded. Given the functions

a E H3/2(r) , d E H3/2(r)g E H1/2(r) ,FE L 2([1) ,

one can formulate the distributional boundary value problem which consists in finding u E V

such that

on r1-6.u = F in .n u=u

on r2g)(u -d) = 0(au/avu~d, auf av ~ g ,

Consider the bilinear form

u, v E Hl({J)0;( u, v) = f n V u .V v dx

, will be the trace
which is continuous in H1(f1).

As usual, 'Yo: Hm (f1) ~ Hm-1/2(r:

operators. Define

and 11: Hm(.n)~Hm-3/2(n, m ~

(5)K = {v E H1(n): 'YoV = it on r 1, 'Yov ~ d on r 2:

and IE V' by

(6)v E Hl({};)(f, v) = f Fv dx + f gyov ds ,
In Jrz

Clearly, K is anon-empty, closed and convex subset of V.
Using standard techniques [44, 46] it is seen that problem (3) is characterized by the

variational problem:

Find u E K such that

(7)'Vv E K'You)ds

In order to transform the variational problem (7) into a boundary variational problem, let

w E H2(.{),) be such that
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in n-~w = F (8)

and define the functions

go = g -'YIW E H1/2(r), Uo = U -Yo w E H3/2(r) , do = d -"OW E H3/2(T)

(9)

There are available many procedures, both analytical and numerical, for constructing such a
function w. Indeed, (8) is a linear equation which is not subject to any boundary conditions in
contrast with problem (3) which is a nonlinear boundary value problem. For example, using a
fundamental solution for Laplace's equation, w can be obtained by quadrature.

Consider the closed and convex set

KA = {v EVA: 'YoV = Uo on r 1, 'YoV ~ do on [' J

where
VA = {V E H1(fl): -~V = 0 in fl}

Then, under the transformation

uo=u-w

where w E H2({),) is the fixed element satisfying (8), problem (7) and therefore
equivalent to the boundary variational problem:

Find Uo E KA such that

YIUO(YOV -Youo)ds ~ ( go(Yov -Youo)ds,

Jr2
v v E KA (13)

Notice that Uo E KA only grants that 'YIUO E H-I/Z(r). However, because of the regularity of
the region and the data [48], Uo E KA n W(ll) and 'YIUO E HI/Z(r).

The method we propose for solving the boundary variational problem (13) is based on the
use of a basis {'PI, 'PZ, ...} of VA, Its application is simplified if the equality condition in
definition (10) of KA is relaxed. This can be done if the variational inequality (13) is slightly
modified. Thus, let the bilinear form

a(u, v) = ( V'u. V'v dx + ( YouYov dx
In Jrl

while
KA = {v EVA: 'YoV ~ do on r 2}

Then system (3) is equivalent to the boundary variational problem

Find Un E KA such that
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(13':

v v E KA

A systematic study about the construction of complete systems applicable to boundary
methods has been carried out by one of the authors [33]. For Laplace's equation, for example,
it is known that a basis of V A, when n is bounded and simply connected, is the system of
harmonic polynomials [29]

{Re zn, 1m zn, n = 0, 1,2, (14)

Given such a basis define

, 'Pm},Vm = Span{'Pl, 'PZ, (15)m~

Let {PI, Pz, ...} be a basis of HO(r 2)' It will be assumed that Pi ~ 0, j=
of the convex subset Km will be required to satisfy

.,2 Elements Vm

pj( 'YoVm -do)ds ~ 0 , = 1, (16),m
Jr2

More precisely,

Km = {vm E V m: Vm satisfies (16)} (17)

Even more, it will be assumed that the system {PI, Pz,
rE HO(r z) one has

~
c HO(r 2) is such that for every

( rpjds ~ 0 'v'j = 1,2,
Jr2

r ~ 0 a.e. on r 2 (18)=}

Here a.e. means almost everywhere. For example, when r 2 = [0, 1], a system {PI, P2,
satisfies this condition is

.} 

that

{l, pj(X) = 0, 2-nu -2n) ~ x ~ 2-nu +

otherwise,
-2n) , 2n ~ j < 2n+l , n = 0, 1,2,

If KA is replaced by Krn in the definition of the boundary variational problem (13'), one
obtains a family of variational problems. Let Urn E Krn be the solution of such problem, then,
as will be demonstrated in Section 8, Urn ~ Uo in H1(O,).

The example given here is a particular case of the general theory explained in the next
sections.

Observe, for later use, that

v... nKACK... (1Q\
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3. Notation

(V, II.ID is a real Hilbert space with topological dual (V', 11.11*); (.,.) denotes the duality
pairing on V' x V. (H, ( ., .), 1.1) is a real Hilbert space identified with its dual, in which V is
densely and continuously embedded: V4H4V'. K is a non-empty, closed and convex subset
of V.

a: V x V ~ R is a continuous bilinear form (not necessarily symmetric) which satisfies the
condition (C): (K-ellipticity)

there is a constant a > 0 such that

v) ~ allu viP 'v' u, v E Ka(u v, u

dE .P(V, V') is the corresponding continuous linear operator,

u,vE V (20)a(u, v) = (du, v),

'Y E :£(V, B) is a linear continuous surjection with kernel Vo dense in H, B being a Hilbert
space isomorphic to the quotient space VIVo, and the quotient map '9: VIVo~ B norm-
preserving.

A E :£( V, V~) is the linear continuous composition pd, where p: V' ~ V~ is the restriction
to V 0 of functionals on V, called the formal operator determined by a ( ., .), V and V 0,

u E V, v E V 0 (21)a(u, v) = (Au, v),

Hence (cf. [45]), the following abstract Green's formula holds

(du, v> -(Au, v) = [au, yv] , U E Do. v E V (22)

where Do = {u E V: Au E H}, a E L(Do, B') is the abstract Green's operator and [.,.] is the
duality pairing on B' x B.

j : K ~ (-00, +00] is a proper, convex and lower semi-continuous functional. In addition
IE V'.

4. Abstract boundary value problem

With the notation of Section ,3 in force, we now consider the variational problem

Find u E K such that

'v'v E Ka(U, V -u)+j(v)-j(u)~f(v -u),

which possesses a unique solution (cf. [47]), corresponding to a kind of abstract boundary
value problems. Let K be characterized only by boundary constraints,

K+ VoCK. (23)
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Clearly, condition (23) is equivalent tp

K+ 

Vo= K

v x V ~ Rand 0,2: B x B ~ R be continuous bilinear forms such that

Jet 

a

u,vE Va(U, V)=al(U, V)+a2(YU, YV),

be a functional such thatsatisfies condition (C). Similarly, let h : B ~ (-00, +00

vEKj(v) = h(yv) (26)

proper, convex and lower semi-continuous. Let FE Hand g E B', and define

(F, v) + [g, yv]f(v) vE V (27)

which belongs to V', Then the variational problem (P) takes the following form

Find u E K such that

a 1 (u, v -u) + a2( yu, yv -yU) + h (yv ) -h ( yu ) ~

~ (F, v -u) + [g, yv -yu], V vE K.

The following theorem determines the abstract boundary value problem to which (28) is
equivalent. ~

THEOREM 4.1. Let d1 E .P(V, V') and d2E .P(B, B') be the operators corresponding to
a1(.'.) and aA.,.), respectively. Let A E .P(V, V~) be the formal operator determined by
a1(. , .) (or, equivalently, a(',' )), V and V 0, and let 01 E L(Do, B') be the abstract Green's
operator defined by (22),

(dIu, v)- (Au, v)= [a1u, yv], u E Do, v E V

Then problem (28) is equivalent to the problem

Find u E K such that

Au=F ,
[al u + d2( yu), yv -yu] + h (yv) -h (yu) ~ [g, yv -yu] 'v'v E K

PROOF. Let u E K be the solution of problem (28). Then, in accordance with (23), we can set
v = u:t Vo E K, VO E Va, and obtain Au = F in H, since Vo is dense in H, and u E Do. Now,
upon using (29), the boundary inequality of (30) follows from (28).

Conversely, let u E K be a solution of problem (30). Then u E Do and because of (29), u is a
solution of (28).
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5. Boundary variational problem

In order to transform the abstract boundary value problem (30) into a boundary variational
prob.lem, we introduce equation Au = F as an additional constraint in K. Hence, reconsider
problem (30) on the closed and convex set

K 

= {v E K: Av = F}

Then problem (30) transforms into the problem:

VvEK

Find u E K such that

[a1u + d2(yu), yv -yu] + h(yv)- h(yu) ~ [g, yv -yu],

THEOREM 5.1. The abstract boundary value problem (30) (or, equivalently, the variationalproblem 
(28)) is equivalent to the boundary variational problem (32).

PROOF. It is clear that solutions of (30) are also solutions of (32). The converse follows by
observing that given v E K, there exists a i5 E K such that i5 -v E Vo and, consequently, (30)
holds for such a v.

6. 

Homogenization of the domain constraint

For convenience in our study on internal approximations of problem (32), we make
homogeneous the domain constraint of K and incorporate it into the spaceql. Toward this
end, let

W 

E Do: A w = F

be a known function, and consider the change of dependent variable

uo=u-w

Then, according to the definitions

go = g -a1W -Ji'i2(yW) E B', 'v'vEB,hw(v) = h(v + yw),
and

VA={vEV:Av=O}, KA = {v E V A: V + w E K}

the 

following result is easily established.

THEOREM 6.1. Via relation (34), problem (32) is equivalent to the problem

Find Uo E KA such that

[a1uo + d2(yuo), yv -YUo] + hw(Yv) -hw(Yuo) ~ [go, yv -YUo} v v E KA



265Herrera, Boundary methods, Trefftz approachAlduncin,

7. Internal approximations

In what follows, all the topological notions to be used, are with respect to the V A -topology.
Let KA be a non-empty, closed and convex subset of V A, and {Vm, Km}m;.,l be an internal

approximation of {VA, KA} in the sense of [461:

(i) {Vm}m."l is a family of finite-dimensional
subspaces of V A with parameter m = dim V m

For each m ::31, Km is a non-empty, closed and
convex subset of V m ;

(ii)

:38)

~ v in V A as m ~ 00
(iii)

(iv)

VvEKA,3vmEKm:vm

If Vm E Km and vm~ v (weakly) in V A as m ~ 00

then v E KAo

A useful sufficient condition for property (iii) is given by

THEOREM 7.1. Let conditions (i) and (ii) of (38) hold. Assume the interior (in VA) kA of KA

is not empty and

(39)Vm nKACKm, 'v'm ~

Then the assumption

,2, Vm ~ v in V A as m ~ 00
(iii/) 'V v E V A, 3{ Vm E V m: m

implies assumption (iii) of (38).

PROOF. When kA is non-empty, kA C KA is dense in KA. In order to prove this assertion, let

v E KA; it is easy to see that

A)v + Az, 0 < A < 1}0 0KA = {W EVA: 3z E KA: W = (1

0 0Then v belongs to the closure of KA because if z E KA then (1- A)v + Az ~ v as A ~ o.
0Therefore, KA is dense in KA since this holds for every v E KA.

Once this has been shown, it will be enough to prove (iii) of (38) for the case when v E kA.
Let v E kA and choose {vm E V m: m = 1,2, ...} as in (iii/). Then there exists M > 0 such that
vm E KA C KA whenever m > M since kA is an open set which contains v. This shows

Vm E V m n KA C Km

because Vm E V m, and the restricted form of (iii') follows.
For each m ~ 1, we associate with problem (37) the discrete problem

Find Um E Km such that
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[alUm + d2(yum), yv -yum] + hw(Yv)- hw(Yum) ~ [go, yv -yum], 'v'v E Km (40)

It is clear that existence and uniqueness for problem (40) are granted if the bilinear continuous
form a : V A X V A ~ ~, which is KA -elliptic, and the lower semi-continuous proper convex
functional jw = hwo 'Y : KA ~ (-00, +00] satisfy the uniform conditions:

(Cl) (Uniform Km-ellipticity) there is a> 0 such that

a(U-V,u-v);;;!:iillu-vll~, "du, vE Km, "dm ~ 1

(C2) jw : Km ~ (-00, +00] is convex, and uniformly proper and lower semi-continuous in m; i.e.,
it is a lower semi-continuous proper convex functional on each Km, there exist 1 E V ~ and,u E ~
such that

jw(v)~l(v)+.u, 'v'V E Km , Vm~l,

and for every Vm E Km, converging weakly to v E KA,

lim infjw(vm) ~jw(V)
m-+oo

However, in general, these conditions do not guarantee weak convergence of the ap-
proximation process. They do imply weak convergence (cf. [49}), if in addition

(C3) a(u -v, U -v)~ 0, 'v'U E Km, v E KA, 'v'm ~

(C4) jw : Krn -'j. (-00, +00] is uniformly continuous in m; i..e., for every Vrn E~Km, converging

(strongly) to v E KA,

lim jw(vm) = jw(v)
m--oo

and strong convergence, if furtherm9re
(C5) there is a > 0 such that

a(U -V,U -v) ~ allu -vlF, 'v' u E Km, v E KA, 'v' m ~ 1

Since in some applications conditions (C2) and (C4) are not satisfied, it is then necessary to
approximate the functional jw: KA ~ (-00, +00] by a family {jm}m..l, for example, in the sense of

[49]:
(C2') jm : Km ~ (-00, +00] is proper, convex and .lower semi-continuous for each m ~ 1, there

exist 1 E V:" and ,u E R such that

jm(V) ~ l(v)+.u 'v'v E Km, 'v'm ~ 1

and for every Vm E Km, converging weakly to v E KA,
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lim infjm(vm) ~ jw(v)
m-+oo

(C4') For every Vm E Km, converging (strongly) to v E KA

lim jm(Vm) = jw(v)
m--oo

Then we approximate problem (37) by the family of discrete problems

rUm],

Find Um E Km such that

[alum + d2(yum), yv -rum] +jm(V)- v v E Km

im(Um)::3 

[go, yv

THEOREM 7.2. Let conditions (C1) and (C2') be satisfied. Then, for each m ~ 1 problem (41)
has a unique solution Urn E Krno Furthermore, the sequence of discrete solutions {Urn}rn..l is weakly
convergent in V A to the solution Uo E KA of problem (37) if, in addition, conditions (C3) and
(C4') hold. The convergence is strong if condition (C5) is also satisfied.

PROOF. These convergence results are established via the usual arguments (cf. [49]), and we
omit the details.

8. Convergence result of the example

In this final section we demonstrate that the convergence conditions of Theorem 7.2 are
satisfied by the example of Section 2. In this case, since jw = 0, conditions (C:l!') and (C4') are
trivially satisfied. Also conditions of ~eorem 7.1 are fulfilled by KA as given by (10') by virtue
of (19) and the fact that the interior KA of KA is non-empty. As a matter of fact, the main
reason for changing definition (10) by (10') is that the interior of KA, as given by (10), is empty.
On the contrary, KA as given by (10') has a non-empty interior. Taking all this into account,
only conditions (iv) of (38), (C1) and (C5) remain to be proved.

PROPOSITION 8.1. The family {Vm,Km}m;o.l defined by (15) and (17) is an internal ap-
proximation of {V A, KA} of (11) and (10').

PROOF. To prove (iv) of (38), let Vm E Km be a weakly convergent sequence to v in VA
Then, since 'Yo E .:£(VA, L 2(F»,

(weakly) in L 2(r:'YoVm 'YoV

Therefore,

( pj(YoV -do)ds ~ 0
Jr2

'v'j=1,2,

by virtue of (16) and (17). This shows that v E KA by virtue of (18).
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PROPOSITION 8.2. The bilinear form a Hl({)) X H1({))~ ~ of (4'), is V A-elliptic; i.e.

3{3 > 0: a(v, v) ~ {3llvlF V'vEVA

Here Ilvll stands for the norm in Hl({},).

PROOF. This is established using standard arguments (e.g. see [50, the proof of Theorem
1.2.1]. Consider the semi-norm

(vf=a(v,v)= (Vv.Vvdx+ ( (Yovfdx,
In Jrl

vE VA

in V A. Even more, [v] is a norm because

[v r = 0 ~ V v = 0 and 'Yov = 0 on r 1 ~ V = const = 0

Here, the fact that meas(r J ~ 0, was used. Taking into account the continuity of Yo: H1(n) ~
H1/2(r), it can be shown that there exists 15 > 0 such that

81IvIF~[V]2 (46)

.} C V A such thatAssume condition (43) is not satisfied, then there exists a sequence {VI, V2,

IlvnlF= ,2,n=
while

[Vn]~ 0
n--oo

Condition (47) implies that there exists a subsequence {V~, V~, ...} C {VI, V2, ...} which is
Cauchy in the L 2(n) norm, because the imbedding of HI(n) in HO(n) is compact. Therefore,
the same is true in the norm

Ilv~IF = In Vv~. Vv~dx + Ilv~lli2(n) (49)

because 

In Vv~.Vv~dx~O by virtue of (44) and (48).
Thus, there exists v E Hl({},) such that v~~ v in Hl({},). However, (46) implies that

[v~- v] ~o,
n--oo

e. 

v = 0 by virtue of (48). This contradicts (47) and the proof of Proposition 8.2 is complete

Once this proposition has been established, conditions (Cl) and (C5) are clear because

VA:J K1:J K2:J and

V 

A :) KA
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9. Conclusions

The numerical treatment of free boundary problems can be simplified when a complete
system of solutions of the homogeneous partial differential equations is available. In parti-
cular, if the approach is based on variational inequalities, they can be transformed into
boundary inequalities, i.e., variational inequalities involving boundary values only. Generally,
in order to obtain formulations suitable for numerical treatment and easy to analyze
theoretically, it is necessary to modify the functionals which are usually applied in the finite
element handling of such problems. The results presented in this paper supply the theoretical
basis for the case when the region of definition of the problem is fixed, e.g. Signorini and
friction problems in elasticity.

Notice that although the example discussed in the present paper refers to a scalar case, the
general results are indeed applicable to elasticity. As usual, the vector case is treated in terms
of product Hilbert spaces [51]. Inequalities analogous to (13) and (13') hold in which the inner
product of the tractions by the displacements vectors occur [51].
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