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10.1 Introduction

In recent years. by G boundary method. it is usually understood a numerical
procedure in which a subregion or the entire region, is left out of the numerical
treatment, by use of Gvailable analytical solutions (or, more generally, previously
computed solutions). Boundary methods reduce the dimensions involved in the
problem leading to Ct'nsiderable economy in the numerical work and constitute a
very convenient manr.:I of treating adequately unbounded regions by numerical
means. Generally, the dimensionality of the problem is reduced by one, but even
when part of the region is treated by finite elements, the size of the discretized
domain is reduced [1-2].

There are two main approaches for the f~rmulation of boundary methods; one is
based on boundary ir.:egral equations and the other one. on the use of complete
systems of solutions. b numerical applications, the first one of these methods has
received most of the attention [3 -4]. This is in spite of the fact that the use of
complete s~"Stems of solutions presents important numerical advantages; e.g.. it
avoids the introduction of singular integral equations and it does not require the
construction of a ft:ndamental solution. The latter is especially relevant in
connection \\lth comr:icated problems, for which, it may be extremely laborious to
build up a fundamotal solution. This is illustrated by the fact that there are
methods for s~'nthesizing fundamental solutions starting from plane waves, which
can be shO\\"D to be a complete system [5].

The use of complete systems of solutions is frequently associated with the name
of Trefftz [6]. The idea of his method [7] consists in looking for approximate
solutions, from among the appropriate class of functions that satisfy exactly the
differential equation. but do not necessarily satisfy the prescribed boundary
conditions. Although Trefftz's original formulation was linked to a variational
principle, this is not required. Indeed, complete systems of solutions can be used to
treat differential eque.:ions which are linear but otherwise arbitrary [8].

The method has been used in many fields. For example, applications to
Laplace's equation Gre given by Mikhlin [9], to the biharmonic equation by
Rektorys IIO] and to elasticity by Kupradze [1 I]. Also many scattered contributions
to the method can be found in the literature. Special mention is made here of \\"ork
by Amerio. Fichera. Kupradze, Picone and Vekua [12-]6]. Colton []7, ]8] has
constructed families of solutions which are complete for parabolic equations.
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However, systematic analysis applicable to arbitraf)' linear differential equations
were lacking. Motivated by this situation the author started a systematic research
of the subject. The aim of the study has been two-fold; firstly, to clarify the
theoretical foundations required for using complete systems of solutions in a reliable
manner, and secondly, to expand the versatility of such methods, making them
applicable to any problem which is governed by partial differential equations
which are linear.

Considerable progress has been made [8, 19]. The systematic development
includes: a) approximating procedures and conditions for their convergence [5. 8,
20-22]; b) formulation of variational principles [23-28]: and c) development of
complete systems of solutions [29- 33]. In addition, the algebraic frame-work [34]
in which the theory has been constructed has been used for developing biortho-
gonal systems of solutions [35].

Recently, the theory has been extended to free-boundary problems [36, 37].
These are non-linear even when the governing differential equations are linear.
Boundary integral equations have been applied to some of these problems [38]. For
seepage problem, numerical experiments using Trefftz method were reported [22],
but a theoretical analysis was not included. Many othe~ have been treated ~sing
finite element approximations; for example, contact problems in elasticity [39, 40].

Systems of solutions which are complete, frequently preserve this property when
the region of definition of the problem is changed. This is the case, for example, of
the systems given in Tables 10.1 and 10.2 (see Section 10.6). ]t is important to
develop procedures for constructing such systems and to formulate criteria to
elucidate their completeness. This subject is being studied at present and a

preliminary survey appeared recently [33].

10.2 Scope

To fix ideas we first consider a simple example. Take Laplace or Poisson's
equation in a bounded region D, illustrated in Fig. 10. I, and subjected to

an



232 TREFFIZ ME1liOD

(JO.J a)

boundary conditions of Dirichlel type:

L1 u = fo ; in 0:

and
u = foD; on ail (10.1 b)

where.fo and.foo are given functions.
In general, the application of boundary methods requires transforming equation

(10.1 a) into a homogeneous equation. This can be achieved by introducing a
particular solution Uofequation (10.1 a); i.e.

.1 U= fo; in.o (10.2a)

In applications the construction of function U is not difficult. because it is not
required to satisfy any prescribed boundary conditions. For example, when a
fundamental solution is available, it can be obtained by quadrature.

In addition, let Vbe a function such that

V= foD; on 0.0 (10.2b)

Then, Dirichlet problem (10.1) is equivalent to

A (u -U) = 0; in.o (10.3a)

and

/
/

u = V; on ao (IO.3b)

In order to formulate this problem precisely, it is necessary to define a space D
of admissible functions. Consider Sobolev space H' (0), where s is any real
number (- oc < S < 00). As it is well kno~-n the trace operator (i.e. the boundary
values) is not defined for some elements ofH'(O) when s ~ 1/2 [41. 42]. However,
there is a wide class of functions of H' (0) for which this trace is defined and
belongs to HJ-I/2(aO). Thus, define

D' = U hJ (0)

and

(10.5)

where Yo stands for the trace of u on aD. In general, for simplicity the symbol )10
will be omitted when it is clear from the context that we refer to the boundary
values. It can be noticed that the linear space D defined by (10.5) is not closed.
Indeed, a metric is not defined in the whole space.

Let
N p = {u E D i J u = 0 in.Q} (10.6)

and
1= {u E Diu = 0 on a.Q} (10.7)

Then, Dirichlet problem can be form~lated as a problem of linear restrictions.
Given any U e D and V e D (these functions can be taken as data of the problem),
find and element U E D such that

u- Ue Np and u- Ve 1 (10.8)
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The first of equations (10.8) is equivalent to (10.3a), while the second one to

(10.3b).
A first advantage of formulating the problem in this manner is connected with

its existence properties. Clearly equation (10.3 b) is equivalent to u -V = V-V on
oD. By well known results on the existence of solution [41], this problem possesses
a unique solution. Indeed, given V E D and V E D there are real numbers rand s
such that V E H' (D) and the trace 10 (V -U) E Hs (cD). Then, u -V E Hs'" 1/2 (Q).
Therefore. u = U + (u -V) belongs to H' (Q) where 1= min {r, s + 1/2J. This shows

UE D.
The above discussion also shows that there is no lack of generality by restricting

attention to the homogeneous case; i.e.

iJu = 0; on,Q (10.9a) v
and u = faD; on 0,Q (10.9b)

The boundary method to be applied depends on the continuity of the solutions on
their boundary values. In principle it can be applied when'the space of admissible
functions D is given by (10.5). However, this would lead to consider inner products
in the space of boundary values HS(o,Q) with arbitrary s, which may be
inconvenient in numerical applications. It is preferable to keep the computations in
./'2 (0,Q) = ~(o,Q), which, as wilJ be seen, leads to least-squares fitting. This, can

be achieved if attention is restricted to functions with boundary values belonging
to ~(0,Q) =./'2(0,Q). When this condition is incorporated in the definition of the
space of admissible functions, one gets

D = {u E Dr!you E Ho(oD)} (JO.10a)

This is again a linear space which is not closed.
In addition, in many applications it is necessary to compute the normal

derivative au/on on the boundary 0,Q. Similar considerations lead to require that
ou/on belong to Ho(o,Q) =-o1-"2(oD). When these two requirements are incorporated
in the definition of the space of admissible functions, equation (10.5) becomes

D = {u E Drjyou E Ho(oD) , )'1 u E Ho(o,Q)} (10.11 a)

Here, as it is costumary, )'1 u stands for the trace of the normal derivative on 0,Q.
This is again a linear space.

General results on the existence and continuity properties of solutions of elJiptic
equations [41], imply that any harmonic function u whose trace fO u belongs to
Ho(o,Q), necessarily is a member ofH1/2(D). Therefore NpC H1/2(,Q) in this case.
Even more, due to the continuity properties just mentioned, N p is a closed
subspace of HII2(,Q). This will be represented by N1/2(,Q). Thus

Np=N1/2(,Q) (IO.llb)

when D is defined by equation (10.IOa). Similarly, when equation (10.1 I a) holdscorresponding 
properties imply that

Np= N3/2(Q) (10.1 I c)where 

N3/2 (Q) is the subspace of harmonic functions belonging to H3/2 (Q) which
can also be shown to be closed.
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( ) 0.24)-
an

is minimized.
This leads to take the projection of au/aI' on the space spanned by

:11"1, ...,11.,.: c Ho(cQ). This requires the orthogonality condition.
)au ".~ --L b" "'", ".m = 0, m = 1, ..., N (10.25)

(/11 ,,-1

to be satisfied. Expanding (10.25), one gets

N
~ ".L.. K"m b" = dm
,,-1

(10.26)

where
K"",= J \\',,\\'md.\:;

00

n, m = I, ..., N (IO.27a)

and

,N (IO.27b)m=

Observe that the use of the reciprocity relation (10.20) has permitted to express dm
in terms of bound aT)' data only.

An additional point must be mentioned, In order for the approximating
,.' OU

sequence L. b~' I~'n to be convergent. it is necessary that the solution -0 E HO (0.Q).
n-1 /I

This is granted if f"a E HI (0.(2). Alternatively. this condition can be expressed in
matrix form. Let K -,. be the N x N square matrix whose elements are given by

(] 0.27 a). Similarly d-'- is the I x N vector defined by (] 0.27 b). Assume, the system
of traces {I~'I, ..., "'.'-: c: HI (0.Q) is linearly independent, which is required in order
for the system (10.26) to be invertible, and denote by (K,'-)-I the inverse of KN.
Then, the sequence of real numbers

,,- .,

II n~lb~-I~'nll*=d"-.(K")-I.dN~O, N= 1,2,... (10.28)

is non-negative and increasing. Convergence, of the approximating sequence is
granted when the sequence (10.28) is bounded. The meaning of this condition is
more easily understood by observing that when the system of traces {WI, W2, ...} is
orthononnal (i.e. Knm = cnm), in which case the coefficients dn are independent of

N, it becomes oc
L. d;< 00 (10.29)
n-!

The treatment of Neuman problem is similar. Let the space of admissible func-
tions be given again by equations (10.11 a). Then equation (10.9 b) is replaced by

au

an
on cJQ (10.30)=goo;

by its boundar)' values. instead. The coefficients hZ' "'ill be chosen so that
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where the boundary values goo E {1}J.c Ho(iJ.Q). The previous argument still
holds if(IO.17) is replaced by

J aw" ow'"= --dx
ao an onMnm (10.31 a)

~dx (10.31 b)

In this case UN -+ u in H 3/2 (Q); therefore, also uN -+ u in H 1/2 (Q). It must be

observed that this assertion is not strictly true because the solution of Neuman's
problem contains an undetermined constant. To remove it one can take
~= {I, WI, W2, ...} C N3/2(Q) and require

J"jd.x=O; j=I,2,... (10.32)
cO

(10.33)f u dx = 0
CD

GUN
In general. if the nonnal derivative an -+ gaD in HO(oQ). then UN -+ u in

H3/2(Q); hence. on the boundary UN -+u in H1(oQ). which implies uN -+ u in

Ho(oQ). Thus. the boundary values (i.e. YoU on ail). which in case of Neuman
problem are not known beforehand. can be derived from the approximating
sequence directly. However. the use of the reciprocity relation (10.20) offers an
alternative for computing them. Indeed, one simply has to replace equatio~s
(10.21) and (10.27), by

,

in HO(iJ.Q) (JO.34)--+u,

(IO.35a)

and

(IO.35b)

Again, equations (10.26) have to be satisfied. When this is the case the solution u
in (10.34) fulfills (10.33). This method can be used to accelerate the convergence of
the approximating sequence on the boundary. As a matter of fact, when the system

II au'" II.
of equations (10.12), (10.16) and (10.31) is applied, the norm II a;; -gaR II In

the J2(iJQ) sense, is minimal; however, Ilu.~'-ul! in J2(iJQ) in general is not
minimal. When equations (10.26), (10.34) and (10.35) are applied. on the contrary,
Ii UN -u: in the J2(iJQ) sense, is minimal; i.e. in the first case, the approximation
of the boundary data is optimal, while by the second method, the approximation
of the unknown boundary values is optimal. In applications, generally, the latter
would be preferable.

Cm = J gaD on
aD
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Generall~- when dealing with partial differential equations only some boundary
values of th: functions and their derivatives are relevant in the discussion of the
problems. For example, for Laplace equation these are the function u and its
nonnal deri~ative au/an, For Elasticity the displacements u and tractions T (u),
v.'hen a bol:rldary value problem is formulated, only one part of this boundary
infonnation is prescribed and the other part must be derived after the solution has
been obtain:d, For Dirichlet problem, for example, u is prescribed and au/an is
deri,'ed, Th~ converse has to be done in the case of Neuman problem. Approxi-
mating sequ:nces for the complementary boundary values which depend on reci-
procity relajons, such as (10.20) can be derived for very general classes of
differential equations. The reciprocity relations can be obtained from corre-
sponding Green's formulas, For example, from

or

on
d.\' (10.36)J

()

one obtains
(10.37)

when u and r are harmonic in D. Equation (10.37) can be recognized as (10.20).
The procedJ;re used to derive approximations (10.2 I) and (10.34) can be traced
back to a group of italian mathematicians [12-14] and was discussed extensively
by Kupradze [IS], The author has introduced an abstract formulation which
permits extending this procedure to problems with prescribed jumps [34] (applica-
tions to ela-Cticity are given in [5]). This is linked to a systematic classification of
boundary v~ues and will be explained in Section 3.

The possi":>ility of applying the boundary method here explained depends on the
a,'ailability of a system of solutions !YJ = {»'J, »'2. ...} c N 3/2 (D) of Laplace equa-

tion which ~ans N3/2 (D), In this connection, there are two general categories of
theoretical 'iuestions which must be analyzed in order to increase the flexibility
and versatil;ty of the procedure, These are: criteria for deciding when a system ;jj is
complete ar.1 methods for constructing complete systems which can be applied to

many probl~s.
Regarding the first one, we have seen that what is required is that the system

.;jj= {».J. W2 } spans N3/2(D). However, in applications it is frequently difficult
to verify thi5 in a direct manner and it is necessary to use alternative criteria; these
can be esta'!Jlished by analyzing the spaces spanned by the boundar)' values. For
example. f{lr Laplace equation. given a system of functions !YJ= {wI. '~'2, ...:
defined in fl. let us denote by "'2 = [»'21, ».22] the system of traces W21 = i'o '~'2 and
'~.21 = i'l ~'2. In addition oIiJ = {"'I, "'2, ...J, !YJ1 = {».JI, '~'21, ...} and !YJ2 = : »'12, "'22, ...J.

For examp::, when the region D is a circle (the unit circle for definiteness), by
separation cfvariables one obtains (in polar coordinates)

(J 0.38)~={I;rncosne,r"sjnn{J; n= 1,2,

This system is made of harmonic polynomials

!YJ= {1,x2-}.2,X)',...}

which can be recognized as Re::" and 1m::" (n = 0,1,

(10.39)

).
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(IO.40a)

Setting r = I in (10.38). one obtains the system of traces

.911 = {cos n 0, sin n 0: n = 0, I, ...

and
.:1i2={-nsinnO,ncosnO; n=O,I,...} (IO.40b)

Denote by Nt and N2 the spaces spanned in the -I"2(oQ) metric by the traces
i'ou and i'tU, respectively, when u ranges over N3/2(.Q), Clearly, N1=-I"2(oQ)=
Ho(oQ) while N2 = {IJl.c -1"2 (oQ), Here, the orthogonal complement {I}l. is taken

in the -1"2 (oQ) inner product.
Let & c N312(Q) be a system such that

span~I=N1=-I"2(0.Q) and span.:iJ2=N2= {ill. (10.41)

where the spans are taken in the -1"2 (0.Q) sense.
For simplicity, assume that the constant function "'0 = I is a member of .f;,}'. so

that
-.(10.42)[# = {II u [#'

]. It will also be assumed that

"'2 dx = 0 ; ~ = I. 2,

where !?if = {WI, W2,

(10.43)
CD

Any hannonic function U E N3/2(Q) can be written uniquely as

(10.44 )U = Go + U'

where 00 is the constant

u'd.\' = 0 ( I 0.45 J
aD

Go = J u dx , while
CD

In view of (10.41) and il "'0 = 0, it is clear that

span~= {I}l. (10.46)

Also i'l U' E {I }.I.. since u' is harmonic in Q, so that }'I u' is in the J2 (Q) -span of
.?is. This shows that there is a sequence r"" of linear combination of~' such that

yorN"F.'"=-::;'ou', in J2(i}Q) (10.47)

In view of (10,43), the second of conditions (10.45) and continuity properties [41]
of solutions of elliptic equations, it is clear that r"'. -+ u' in the metric of H3/2(Q).
Therefore, the linear combination u...' = Go + r"'. of elements of ~ c N 3/2 (Q). is such
that u...' -+ u in H 3/2 (Q). This shows that

span~= N3/2(Q) (10.48)

where the span is taken in the H3/2(Q) metric. Thus, in this case we have deri\"ed
the completeness of the system ~ c N3/2(Q) from the fact that the system of traces
!?J), spans the same space as the traces of harmonic functions (i.e. solutions of the
homogeneous equation) in N 3/2 (Q). Similar results hold in a more general context.

Let:il"= Ho(oQ) 63 Ho(oQ) be the space of pairs 11 = [UI, U2] with UI E Ho(iQ)

and U2 E Ho(oQ), provided with the usual inner product

«11, v» = (u), ".)0 + (U2, I."Vo (10.49)
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Denote by .j c X the image of N 3/2 (0) under the mapping u -+ Ii =

[,'0 U. i'l u] E ,.y. It can be sho~'n that A' c x' is closed in the metric of *. Notice
that the reciprocity relation (10.20) becomes (~'e assume Hilbert-spaces are being

taken with real coefficients):

(rl,U2)=(r2,u)VliEA&i:E.,f'~ (10.50)

A system of function ~c N312(.Q) will be said to be T-complete* if, for every

Ii E ~ one has
(WI,U2)=(W2,Ul)VM'E~=UEv;' (10.51)

Using this notation the following characterization of complete systems holds [19,

34].
Theorem 10.1. Let ~ C N312 (D). Then the folloM.;ng assertions are equ;~'alent:

(i) ~c N3/2(.Q) spans N3/2(D);n the metric of H3/2(D);
(ii) :::iJc .ii"spalzsA';n the metric of~.

(iii) !iJ c A';s a T -complete system,.
(iv) Equar;ons (10.41) are satisfied when rhe spans are taken in the -/,2 (aD) sense.

An advantage of having a system which satisfies any of the criteria (i) to (iv), is
that the same system can be used for both a Dirichlet and a Neuman probleQ1.
Indeed, the same T-complete system can be used for any linear boundary condition
which is prescribed point-wise. Such condition can be written as

alu+a2au/on=fcR, onoD (10.52)

The arguments presented previously, can be extended to this case by introduction
of more general Green.s formulas. This will be discussed in Section 3.

It has interest to observe that it is possible to develop systems which are
complete in regions which are, to a large extent, arbitrary. For example. the system
of harmonic polynomials given by (10.38) and (10.39), is T-complete in any
bounded and simply connected region [29]. Also, the system

{Logr, Re=-", Im=-"; n= 1.2,...} (10.53)

is T -complete in the exterior of any simply connected and bounded region which
contains the origin.

To develop general criteria establishing conditions under which a system which
is complete in a region is also complete in another one, is quite valuable.
£.specially if such criteria are applicable to a wide class of partial differential
equations. For this purpose the notion of T -completeness is useful.

10.3 Green's Formulas

The development of Green's formulas for general classes of partial differential
equations is a classical topic of the theory of partial differential equations [41]. A

* TrefTtz-complete. Previously, such systems had been called c-complete by the author.
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theory which pennits obtaining such formulas systematically and which in some
respects enlarges the kind of problems that can be treated in this manner, has been
developed by the author [19, 28, 34]. The "fundamental notions are closely related
with simplectic geometry [44]. ,

Basically, what is done is to characterize the space of boundary values which are
relevant for each differential equation or system of such equations. Then such
space is decomposed into two subspaces. With every Green's formula there is
associated such a decomposition and conversely with every decomposition there is
a unique Green's fonnula. A procedure for reconstructing the Green's formula
when the decomposition is known, is established [34].

We consider a bilinear functional P defined on an arbitrary linear space D; it
will be denoted by P: D -0 D. because it can bethought as an operator defined on
the linear space D and taking values on its algebraic dual D. (this is the space of
linear functionals defined on D) [45]. The value of such bilinear functional at
elements U E D and I. E D, will be denoted by (P u, v). The transposed bilinear
functional of P: D -0 D., will be p. : D -0 D.; thus

(p.u,t)=(Pt',u) (la.54)

The theory is applicable to general non-symmetric linear operators, although its
application to fonnally symmetric ones is simpler, because it does not require the
introduction of a fonnal adjoint. Here, attention is restricted to such operators.
Given an operator P : D -0 D., we define the antisymmetric bilinear fonn

A=P-P. (la.55)

The operator A, given by (10.55) plays a central role in the theory. Firstly, we pre
going to use it, to define the relevant boundary values. For this purpose, we
consider the null subspace N A of A; i.e.

NA={ueDiAu=O} (10.56)

With reference to the reduced wave equation

Au + k2 U = 0, on R (10.57)

as an example (recall that Laplace equation corr~sponds to the case k = 0),
consider the bilinear functional P: D --D*, given by

(Pu,r)=Jr(Au+k2u)dx (10.58)
R

Then A = P- P* is

(JO.59)
a,..

}--u- dxan -
{ au (A u, r) = J r-

oR an

The null subspace N p. is the linear subspace of functions which satisfy (10.57).
There are many ways of taking the linear space D. A convenient one is by means

/of equation (10.1 I a). This defines a linear sub~ce. but we do not introduce a
topology in it We notice that the null subspac~ N p is well defined, if (10.57) is
interpreted in the sense of distributions [4IJ. Also the bilinear form A: D -+ D*.
given by (10.59); however, the operator P: D -+ D*. given by (10.58) is not Many
technical difficulties are avoided by leaving the operator P out of the discussion.
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It is easy to see that

au
an

!\'A = {U ED! U = (10.60)

D-.le to (10.60), the relevant boundary values for Laplace and reduced wave
ou

~uations (10.60), will be u and a;' on oD. We notice that given u E D and I" E D,
OI:e has that ~ ~

vU vI"
u=r; =-a;' on oD (10.61)-

on

if and only if u -t. E NA; i.e. two functions u ED and t E D have the same
re:evant boundary values, if and only if, u -r; E NA.

Similar notions can be applied to any linear differential equation. Let us
~ider the biharmonic equation:

L12u = 0; on Q (10.62)

which occurs, for example, in connection with incompressible flows at low
Re)110lds numbers. Define

(PU,t:)=Jt:A2Udx
0

aAu at" au

() 0.63)

Then
OLlr

}-u -dx
on

(A u, r) = J --Au~+Ar~ (10.64)on on oniJU '

Again, a convenient definition of the space D is (see equation (10.4):

{ au oAu }D = U E Dr: u, -a;' Au and a;; belong to RO(oO) (10.65)

n.en, A as given by (10.64) is well defined, and N p can be taken as the linear
su~space of D which satisfies (10.62) in the sense of distributions. The operator
P: D -+ D*, given (10.63), is not defined for this space D. and we leave it out from

o~ discussion.
The null subspace N,f. is

{ I au oA u } ""- N A = U E D u = -= Au = -= 0, on 00 :

an an

The classification of boundary values induced by (10.66), is characterized by
- , ..au oAu Ilh h f .. Id hc--- ~ --; reca t at t ese unctIons Yle enoug

{IO.66}

q1;adruplets of fulll;()ons u, ~ ' LJ u, ~
.un un

infonnation to have u and its derivatives up to order 3 detennined
The homogeneous stationary Stokes equations are

vLJu-Vp=O (IO.67a)
V'u=O (IO.67b)

where v is the viscosity. In this case, it is convenient to define the bilinear form
P: D -+ D*, by

(P ii, f) = J {v' (vLfu -V p) + qV. u} dx
D

(10.68)
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Here, if stands for a pair of functions; u which is vector valued and defined in D,
and p scalar valued and also defined in D. With (, we have associated the pair v, q.
Then { ( ou ) ( 0\' .. )}<Aif,v>=~~ '" \'a;-pn -u. "a;-qn dx. (10.69)

Elements of the linear space D will be pairs if = [u, p] such that the traces u and

au .
v ~ -p n are well defined and span HO (oD). One must also require that the set of

on
functions },' pc D which satisfy Stokes equations (10.67) in the sense of distribu-
tions be well defined. In general, P: D -+ D. may not be defined in this space. The

null subspace
N A = {if ED! u = v!i; -p n = 0, on OD} .(10.70)

The classification of boundary values induced by (10.70) is characterized by the
au

values of u and \' a;; -P n on the boundary 00..

As it has been seen in the specific examples given thus far, in general, it is not
necessar)' to define on operator P : D -+ D* in order for the theory to be appli-

cable. Thus, in what follows, it will simply be assumed that there is available an
antisymmetric bilinear form A : D -+ D*.

A subspace I c D is said to be regular for A, when

(i) For every uEland I' E I,

(10.71)(A u, r) = 0

i.e. I is a commutative subspace for A.
(ii)

I=> N,c (10.72)

We have seen that the null subspace NA, induces a classification of D which
defines what could be properly called, the boundary values which are relevant for
the differential equation considered. In the light of this fact, condition (ii) implies
that a regular subspace is characterized by boundary values, only.

To illustrate this fact, assume, I c: D is a regular subspace. In connection with
the examples given previously, let U E Dand rED, be such that

OU or ~,
(10.73)u = r", a; = a;; , on of}

when the reduced wave equation is considered; or

; on iJD (10.74)
AU or 0.1 u 0.1 l'

u=r" -=-" .1u=.1r" -=-
.on on' .on on

for the bihannonic equation. Then, there are only two mutually exclusive possi-
bilities

a) u and r belong to I, or
b) neither u, nor v belongs to 1.
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A corTesponiing proposition holds for Ii E D and feD, in connection with Stokes
equations, ~~en it is assumed that

au Ov -p n = va;; -q n; on iJQ
(JO.75)u = v; \'-;;;;

The following statement summarizes this discussion. A regular subspace, is a
commutativfsubspace which is defined through boundary values only.

Examples~fregular subspacesfor the reduced wave equation are

J1={UEDlu=0, onoQ} (10.76a)
/2 = {u E D I ~

au

an (IO.76b)

and

au

an +pu=o, onOQ} (10.76c)IX

where (%2 + f '*' O.
tIoiany exanples of regular subspaces can be given for the biharmonic equation;

an interestinf' set of such subspaces is

(10.77 a)

(IO.77b)

and

au

an

aLfu

an
= 0, on Oil}13 = {U E D (IO.77c)=

(10.78 a)

(IO.78b)

Of course, m2!1Y more can be given.
Of special mterest is the case when a regular subspace lcD, has the following

additional prcperty

(iii) For eveI} U E D

(Au,t-)=OVreI=>uEI (10.79)

A regular sub;pace, which enjoys (iii) is called completely regular.
It is not dfficult to verify that in all the examples given in equations (10.76)

through (10. 7~) the subspaces are, actually, completely regular.
Given an a:ltisymmetric bilinear from A : D -+ D*, a pair of subspaces {II, Iv is

said to be a ~onical decomposition of D for A, when

(i) I) and /21re regular subspaces; and
('. ) D _ I I (10.80)
11 -J + 2.
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It has been sho\\'n [28,34] that when {I., 12J is a canonical decomposition of D,
then I, and 12 are necessarily, completely regular and

NA=I)~I2 (10.81)

Now, condition (10.8,0) is equivalent to the requirement that given any U E D, one
can find elements UI E II and U2 E 12 such that

u=UI+U2 (10.82)

In the presence of equation (10.81), this representation of u, is unique except for
elements of subs pace ""A; more precisely, ifuj E II and U2 E 12 are such that

U=uj+U2 (10.83)

then UI -uj E N A and U2 -U2 E N A. Taking into account that N A is the set of func-
tions with vanishing boundary values, it is seen that the boundary values of UI and
u2 are uniquely defined, Thus, when a canonical decomposition {I 1,121 is

available, representation (10.82) supplies a convenient manner of dividing the
information on the boundary values of the function U into two parts, u.. E II and
U2 E 12, which is useful in the formulation of many boundary value problems.

For the reduced wave equation, the pair {I),I2J, defined by (IO.i6a) and
(10.76 b), constitutes a canonical decomposition of the space D, with respect to A,
as defined by (10,59). In this case, the representation (10.82), breaks the boundary
information in the following manner

iJu OU)
,U=U2;on=a;; ono.Q (10.84)

The pair {IJ,I3}, given by (IO.76a) and (IO.76c), is also a canonical decomposi-
tion, whenever (X * O. In this case, if U = U. + U3, with UJ E I, and U3 E 13, then the
boundary values are given by

AU au) OU3
u=uJ+U3; -=-+-; on oQ

on on on (10.85)
If we define

au
"B;

+ 

ou = 0, on o.Q}
/4={UED (10.86)

it is easy to see that {I3. I.J is a canonical decomposition. whenever ~ c5 -P y '*' O.
Clearly, the previous ones are particular cases of this more general canonical
decomposition.

For the biharmonic equation, the following pair is a canonical decomposition

II = {u e DiU = ~ = 0, on ail} (IO.87a)

{ I oL1 U
12= ueD Au=- (IO.87b)on

Also

(IO.88a)

~4tt(
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Finally, for Stokes ;'Toblems one has

I. 

= {U ED; u = 0, on cD} (IO.89a)

J2={UEDI~'!f;-pn=o, on iJQ} (10.89b)

Of course many mcre can be constructed.
In many bound1.ry value problems the prescribed boundary data is given by

means of one of tie elements in (10.82), for example UI, and the complementary
boundar)' infonna:ion U2, can only be obtained after the boundary value problem
has been solved. II. Dirichlet problem for example, U is prescribed on iJ.Q and the

derived boundary infonnation !f; on iJ,Q, is obtained, only after the problem has
been solved.

The notion of Green's fonnula is closely related with that of canonical
decomposition. So~e auxiliary notions are required in order to introduce ~bstract
Green's fonnulas.

Given the bilineLr fonn B : D -+ D., let

(10.90)NB={ueDIBu=O)

be the null subspa~ of ,B. Then, if

D=NB+NBo (10.9])

where B*: D -+ D8 is the transposed bilinear form of B, one says that Band B*
can be varied inderendently. When Band B* can be varied independently and

(10.92)A = B -B*

equation (JO.92) is called a Green's fonnula. It can be shown [34) that in this case
B: D -+ D* is nece:sarily a boundary operator.

There is a genenl result of the theory according to which there is a one-to-one
correspondence be::ween canonical decompositions {II, I2} and Green's formulas.

This is established 2S follows:

(i) Given a Greens formula, define

(10.93)I)=NBo; /2 = N B

then {I), 12) is, canonical decomposition.
(ii) Given a canorn:al decomposition {II, 12}, let B : D -D. be defined by

(B u, r) = (A UI, ('2) (10.94)

Here, the reprfSentation (10.82) of every element u E D of the space, in terms
of its compone:.ts UI E II and U2 E 12, has been used.

To illustrate th~e notions, in the case of Laplace and reduced wave equation,
we notice that if we define au

<Bu,v)= J I; (10.95)
oR on

then (10.91) and (10.92) are fulfilled. Also. the canonical decomposition {I., Iv.
given by (10.76 a, r) satisfies (10.93).

-dx
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In the case of the biharmonic equation, the canonical decomposition (10.87), is
associated with ~ ~{ v.1 U vI"

}<Bu,r)=J r--'".1u- d.\" (10.96)
all on on

The canonical decomposition (JO.88), on the other hand, yields

au

an
~+Ar
on

dx (10.97)(B u, r> = 5.
oR

Finally, for Stokes equations, the canonical decomposition (10.89), is associated
with ( au )(Bu,i)=}R"o v-a;-pn dx (10.98)

10.4 Dlustration of Green's Formulas

In this section general examples of Green's formulas are presented. Many of the
operators listed are formally symmetric in the classical sense; others can be
included due to the extension of this concept introduced in the algebraic theory of
boundar)' value problems [19, 34] which supplies the basic frame-work for this

chapter.

Elliptic Equations

This subject is classical. The reader is referred to the book by Lions and Magenes
[41]. The extension of such formulas to problems with prescribed jumps can be
done along the lines presented in Section 5. A general discussion of Greens
formulas from the point of view of the algebraic theory will appear soon [19].

Time Dependent Problems

For a discussion of the spaces which are suitable for the formulation of this class
of problems, the reader is referred to the second volume of the treatise by Lions
and Magenes [41]. In this Section we simply assume that the linear space of func-
tions D is such that the operators to be considered are well defined.

Two examples will be given: the heat and the wave equations. These can be
associated with formally symmetric operators, in the sense of the algebraic theory
[19, 34], using Gurtin's convolutions [46, 47]. The basic ideas can be applied to
more general problems. For each one of these operators we give only one Green's
formula: of course, many more can be constructed.

(i) The Heat Equation. Consider the cylinder .Q x [0, T] (Fig. 10.2). Let the linear
space D, be made of functions defined on .Q x [0, T]. The operator P : D -+ D., is

defined by

-L1 U) dx
au
at

(10.99)

(PU,l,)=Jr*

D



248 TREFFTl ~1El1iOD

't
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-

Xl

\:~~~~~~)
Fig. 10.2.

~

where the notation
T

U .l: = J u (T -t) t' (t) dt
0

(10.100)

is used. Let A = P -p', then

A = B ,- B* (10.101)
where

(O2U )<Pu,r)=~r. ~-Au dx
(10.103)

with the con\'ention (10,100), A Green's formula for thjs operator is obtained
takingB: D -+ D* as

c3z..(B u, r> = J u.
8D

a~' dx -J
0

(10.104)

Fonnulas (10.J02) and (10.J04) are suitable for application to initial value
problems w~en the function u is prescribed on the lateral boundary of the space-
time C).linder (Fig. JO.~). More general boundary conditions can be treated by
using the Green's fonnula of the Laplace operator, associated with the canonical
decomposition defined by (10.76 c) and (JO.86).

Elasticit.\'

Let the elastic tensor C;j;q be Ca:- (D), satisfy the usual symmetry conditions [48]

C;jpq= Cpq;j= Cj;pq (10.105)

and be strongly elliptic; i.e.

Cijpq ~i n) f.p '1q > 0 whenever ~ *0,11,,11*0 (10.106)



TREFFTZ METHOD 249

(i) Static and Periodic Motions. Let D = HS(Q) = HS(Q) e HS(Q) e HS(Q), s ~ 2.
Define au

T;j(U)=C;jpq.:;:=t. on Q (10.107)
uXq

at.
-I"j(U) =-!l.+ p(J)2Uj, onQ (10.108)

oxJ
where summation convention is understood. Here the density p, is a function of
position belonging to C:(C (Q) while w is a constant. The case (J) = 0, is associated
with elastostatics.

Let P : D -+ D. be
(P u, r) = J rj -I'j(U} dx

D
(10.109)

Then, A = P -p. is given by

(A u, r) = J {Vi Tj(u) -Uj Tj(u)} dx
cD

(10.110)

where
(10.111)Tj(u) = r;j(u) njo

An operator B : D -D. that decomposes A is

(Bu,r)=- J u; T;(r) dx
aD

(10.112)

There are many more.

(ii) D}'namics. Let D be a suitable linear space of functions defined on .Q x [0, T).
Define' ( &u ).(Pu,r)=!rj. eaf-../tu d.\" (10.113)

where the conventions (10.100) and (10.108) (with (1)=0) are used. A=P-P. is
given by
(Au,r)= J {Uj. Tj(r)-rj. Tj(u)}dx

cO
(10.114)

{ au
+le r;(O)--a;-(T)+

10.5 Green's }'ormulas in Discontinuous Fields

An advantage of introducing abstract boundary operators is the large class of
problems that can be formulated using them; a very general example is the
problem of connecting or matching [28]. This is an abstract version of problems
formulated in discontinuous fields with prescribed jump conditions.
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Such problems occur in many applications. In potential theory, for example, the
jumps of the Tunction and its normal derivative are usually prescribed, while in
Elasticity the prescribed functions are the jumps of the displacements and the
tractions. \'ariational principles for some of these problems were developed by
Prager [49] and Nemat-Nasser [50,51] presented more recent surveys. Here, general
Green's fonnulas for such problems are developed which are applicable irrespec-
tively of the specific operators.

"d'N = 0'[

a"£

Consider two neighboring regions Rand E (Fig. ] 0.3), Jet 0' R = 0' E be the
common boundary separating them; in addition, Off R and Off E will be the
remaining parts of the boundaries of Rand E, respectively. Let DR and D £ be two
linear spaces; in the applications to be made their elements will be functions
defined on Rand E, respectively. Consider the product space 15 = DR 6:> D£;
elements Ii E 15 are pairs Ii = {UR, u£} where UR E DR while U£ E D£. Given
operators PR: DR -+ D~ and P£: D£ -+ Dt, define }5:15 -+ 15. by

(}5 Ii, f) = (PR UR. I'R) + (P£ U£, l"£) (10.166)

This additive property is usually satisfied when }5: 15 -+ 15. is defined by means
of an integral on the region RuE. From (10.116) it follows that

(AIi,I~)=(ARUR,I'R)+(A£u£,I'£) (10.117)

The symbol N A will be used for the null subspace of ).: 15 -+ 15 -+ 15.. A linear
subspace S c 15 will be considered. Elements Ii = {UR, u£: E S will be said to be
smooth. \\'hen Ii = {UR, u£} is smooth, UR E DR and U£ E D£ will be said to be

smooth extension of each other.
Let S c 15 = DR 6:> D£ be a linear subspace. Then S is said to be a smoothness

relation if every UR E DR possesses at least one smooth extension U£ E D £ and
conversely. A smoothness relation S is said to be regular or comple\ely regular for

I}5, when as a subspace, it is regular or completely regular for P, respectively.
Therefore, a smoothness relation S is regular when .

a) S:=>NA (10.]]8a)

and

(IO.118b)b) (A ii, f) = 0 VilE S and v E S

Similarly, it is completely regular when

(A ii, f) = (AR UR. v R) + (AE UE. r E) = 0 V l~ E S <=> iI E S (10.119)
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The mapping f: 15 -+ 15 defined by f U = fUR, -uc}, for every U = fUR, ucJ E 15

will be used in the following discussion. Given S, let f S be the image of Sunder
this mapping: i.e. ~ { ' , .-;, ' ~

}f.)= U=fl.ELlI"E.) (10.120)

Given U = fUR, ucJ, Jet be ii' = fuR. ucJ, where uR and Uc are smooth extensions

of Uc and UR. respectively. Define

ii=t(iI+iI')=t{uR+uR,uc+ucJ (10.12Ia)
and

[a] = Ii' -U = {UR -UR, UE -UE} (10.121 b)
Then

u=ii-t[u] (10.122)

and it can be seen that u E S while Iu] E T S. Therefore

D=S+TS (10.123)

From (10.123), it follows that when S c 15 is a regular smoothness condition, then
the pair T S, S is a canonical decomposition of D with respect to P: 15 -+ 15*.

Application of formula (10.96), shows that the relation

P -p* = A = J- J* (10.124)

(10.125) / oz;:

is a Green's formula when J: 15 -+ 15* is defined by

<J u, f) = -t <A [Ii], i)

This is called jump operator [19. 34] because it characterizes the jumps since

JIi=Jf.:::>u-iES

(10.126)

by virtue of the second of equations (10.93).
To apply these results to potential theory and reduced wave equation, given Q

and non-zero functions kR and kE, define (Fig. 10.3)

(10.127)

(10.128) / "'-

orE )-UE- d.\"
on

(] 0.] 29)

Observe that the unit nonnal vector n is taken pointing outwards from the region
of integration. Equation (10.129) implies that

NA={{UR,UE}eD!UR=UE=OUElon=OURlon=O, on o3R} (10.130)

Smoothness conditions can be defined in many alternative manners. One which
is suitable in many applications (in flow through porous media, for example) is

S={ueDluR=UE,kRouRlon=kEoUElon, on o'R} (10.131)
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Gi,en Ii = {UR, UC} E D, let be Ii' = {UR. u£J, where UR and U£ are smooth extensions

of U E and UR. respectively. Write

[Ii] = {[Ii]R, [Ii]c}; U = fUR, uc} (JO.132)

Applying definitions (10. 12 I) and (10. I 3 I), it is seen that

(IO.133a)

(IO.133b)

where the normal derivative is taken pointing outwards from R. When'; E S,
equation (lO.1~9) reduces to

dx (10.134)

Here, as in what follows, the components (R or E) to be used when carrying out
the integration are indicated by the subindex under the integral sign. Also the
notation

, ] O. OUE OUR-=kR-[U]R=k£--kR-
R On on on (10.135)lk~

on

was introduced. Application of (10.134) in (10.125) yields
{ [ QUc -

2<Ju,i)= J f k-
8'R on

Observe that equations (10.121) imply

] or }-k a;;- [Ii] dx
(10.136)

~

-ar- Ol"R
[U]R= U£- UR,

orE.
=kla;;+kR an (10.137)

In view of equations (10.128) and (10.137), the Green's formula

{r J"U -U J" r} dx = «B + J) u, v) -«B + J) i, Ii) (10.138)

is clear. Here
au- J ar J<B ii, f) = uk -dx -t" k d.\"

D,IRvE) an ~.IRuE) an (10.] 39)

In a similar fashion for static and quasi-static elasticity, when the smoothness
criterium consists of continuity of displacements and tractions, one obtains for the
jump operator [28]

2(Ju,t)= J {f;[T;(u)]-1u;]~Jdx (10.140)
o'R

This yields corresponding Green's fonnulas,
The fonnulation of Greens's fonnulas in discontinuous fields here presented is

applicable to arbitrary Connally symmetric operators which are linear. Thus, for
example, the bihannonic equation or Stoke's problem are included. Green's
fonnulas for two phases systems have also been derived in this manner [28].

2f=r}1" 'E and 2kR on
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10.6 T -Complete Systems

\\'ith every operator P: D -+ D*, we can associate a linear subspace I pC D,

defined by
Ip= Np+ N... (10.141)

this equation implies that every element U E I p, can be written as

U=Up+UA (10.142)

with Up E Np while UA E NA; since UA vanishes on the boundary, we see that a
function U belongs to J p, if and only if, there is a solution Up of the homogeneous
partial differential equation such that the boundary values of U and Up coincide. As
illustration, in the example given previously of the reduced wave equation, a
function L" E J p, if and only if, there is a solution U E D of the homogeneous

ov au
equation such that I: = U and a;; = a;;' on the boundary oQ.

It can be shown [28, 34] that I p, as defined by (6.1), is always regular. Due to
this fact the concept of T -complete system will be useful. Let I pC D, be regular,
and ~ be a subset of I p, then we say that. ~ C I p is T -complete for I p, when for
every U E D

(10.143)(A u, ",) = 0 V W E !# =:> U E I p

Under very general conditions Npc Ip is T-complete for Ip [19,28,34]. For the
representation of solutions it is, however, of greater interest to have denumerable
subsets f¥J c N p which are T -complete. Examples of such systems are given in
Tables 10.1 and 10.2. It has interest to mention that for the reduced wave equations
the author has shown that a system of plane waves, which have a very simple
structure, is T-complete in any bounded and simply connected region [5].

In these tables J n (r) and H~I) (r) are Bessel and Hankel functions of the first class
[52. 53]. ~ is the associated Legendre function, while jn and h~ are the spherical
Bessel and Hankel functions [52]. We recall, in addition, that the T-complete
s)'Stems given in Tables 1 and 2 for Laplace equation in a bounded region are
harmonic polynomials expressed in polar and spherical coordinate~. Observe that

the detailed shape of.Q is arbitrary.

Table 10.1 T-oomplete systems in two dimensions

Bounded .Q .Q = exterior of a bounded region

{Ln ,-. CDS n 6, ,-. sin n 6J
Laplace Equation
{1,~cosnO,~sinnO}
Reduced Wave Equation AU + U = 0

(Jo(r), J.(r) cos nO, J. (r) sin n O} {Hbl) (r), Hll) (r) cas n 9, H(I) (r) sin n 9)

n= 1,2.



254 TREFFIZ METliOD

Table 10.2 T-romplete systems in three dimensions

{} = exterior of a bounded regionBounded .Q

{,-II-I PZ (cas fJ) tlq.}

Laplace Equation
{r" ~ (cos lJ) elt.}

Reduced Wave Equation

U,,(r) P'j,(cos lJ) tit.}
.

Ih~l) (r) ~ (oos 8) eiqP}

n = 0, 1,2, -n~q~n

10.7 Hilbert-Space Formulation

Associated \\lth every Green's formula or equivalently, with every canonical
decomposition. there is a Hilbert-space formulation.

For this purpose, we focus our attention in boundary values; i.e. we identify
functions possessing the same boundary values. More precisely, two functions u
and r of D, are identified whenever u -r E NA. The resulting space g is called the

quotient space; i.e.
9 = D/NA (10.144)

Thus, for example

(i) For Laplace and reduced wave equation, g is made of pairs of functions
auu, a;;-' defined on the boundary oR and square integrable there. Indeed

y= {l u, ~-

(ii) Biharmonic equation

au o,1ull

au
E HO(OR)} (10.145)u E ~(aR). an

au oAu
Each one of u, an ,Au, an

g=

:a;;' .1 U, --a;;U,-

(iii) Stokes equation

iJu

on -po11 ueHO(oR),v on -POeHO(OR)}

In each of these examples, one can give to g, the structure of a Hilbert space,
Possible choices for the corresponding inner products are

-

{ u t' + -~u _~l'
cD cn :-:.

.. { au or(11) J U r + ~
cD on on

(iii) iD {u .,. + ( v ~

au
(10.146)g= 0."-

(IO.147a)(i) S dx

oAu o::.} dx

-q n)} dx

(JO.J47b)

--+AuAv+~-

on

(10.147c)--p n)
r ov

~Va;
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With. these inner products, the linear space 9 is isomorphic to the following Hilbert

spaces:

(i) fIO(oD) ~ ~(oD) (10.148a)

(ii) ~(oD) ~ HO(oD) e> HO(oD) e> HO(oD) (10.148b)

(iii) ~(oD) ~ ~(oD) (10.148c)

Now, given any canonical decomposition {II, 12J it is possible to chose the
Hilbert-space structure so that the associated operator B: D -D* (equation 10.94)
is given by

(B u, r) =(UI, t'V (10.149)

Thus, for example, when the inner product (10.147a) is used, equation (10.149)
yields the operator B associated with the canonical decomposition given by (10.76a
and b). The same happens if this decomposition is replaced by (10.76a and c).
When one uses the inner product (10.147b), equation (10.149) supplies the
operator B: D -+ D* associated with any canonical decomposition corresponding to
the biharmonic equation; for example, those given by equations (10.87) or (10.88).
For Stokes problem the inner product can be (10.147c) and a possible canonical
decomposition is defined by (10.89).

10.8 Representation of Solutions

For the fonnulation of the general boundary value problem to be considered here,
we assume there is a canonical decomposition {II,12}, and an operator B: D -+ D.

such that (10.92) is a Green's fonnula. Using the representation (10.82), we
fonnulate the problem as follows; find U E N p, such that

UI = VI (10.150)

where VI is a given element of I I.
Let A 'p = N pi N A C g =:i", be the linear space generated by the boundary values

of solutions of the homogeneous equation. Then every U E A 'p can be written as

U=Uj+U2; (10.151)

where U. ef) = /I/NA while U2 ef2= /2/NA. Let A'I cfl be the range of values
taken by UI, in (10.151), when U ranges over A'p. Similarly, let A2 cf2, be the
range of values taken by U2, in (10.151), when U ranges over v-f'p.

Given a system offunctions~= {M'I, W2, ...} c Np, write

(10.152)K'a= K'al + K'a2

We denote
.':i'l = {WII, W21, W31, } C"'-I; ~2= {WI2, "'22, "32, ...} c"'-2 (10.153)

Clearly, we will be able to approximate the boundary values of every solution of

(10.150), if and only if --/ (10154)span~1 -A I .

Here, the bar refers to the closure of.IYJ.
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A result similar to Theorerr.IO.I, holds in this more general context. Assume
J" = N" + NA is completely reg;lar and ~ c: N ", Then the follo\\'ing statements are

tquivalent:

(i) Iii c .i'" c: ;;;'--spans .A-'" in lIe metric of *;
(ii) ,,;j C vi" is T -complete; and
(iii) span~l =.11 while span .;:ti:=A'2 (10.155)

Therefore, when ;jj is T -CO:1plele, it is possible to construct approximating

sequences
uN=L a~K'n; N=1,2,... (10.156)

n-J

such that u~'-+ VI, whenever ('1 eA); therefore, if the problem (10.150) has a
solution u, then ".U -+ u (10.157)

The convergence in (10.157), is;D any metric in which the solution of the problem,
depends continuously on the boU1dary data V I.

When a Green's formula is 27ailable, the results of Section 7, yield an efficient
procedure to compute the coJD.:'lementary boundary data. In this case, for every
K'~ e ~, we have /IT

)(K.~2,1.1 =(K'~2,UI)=(K'~I,U2) (10.158)

which gives (K'~I, U2) in terms of the boundary data VI. This gives the approximat-

ing sequence N

U~= L b~Wnl (10.159)
n-1

(10.160)

where the coefficients bZ. satisfy. for every fixed N, the system of equations.
N

(Wm2-U1) = Lb~(Wml,Wnl)
n-1

This generalizes the results of Se.."tion 2.
Observe that the values of u: are approximated by linear combinations of ».nl.

This implies, for example. that in applications to problems formulated in discon-
tinuous fields, with precribed j\rnp conditions, the averages of the functions across
discontinuities are approximated by the jumps of the basic systems (a specific
application of this kind is given 1:1 [5]).
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