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Chapter 10

Trefftz Method

by Ismael Herrera

10.1 Introduction

In recent years. by z boundary method, it is usually understood a numerical
procedure in which a subregion or the entire region, is left out of the numerical
treatment, by use of zvailable analytical solutions (or, more generally, previously
computed solutions). Boundary methods reduce the dimensions involved in the
problem leading to ccnsiderable economy in the numerical work and constitute a
very convenient mancer of treating adequately unbounded regions by numerical
means. Generally, the dimensionality of the problem is reduced by one, but even
when part of the region is treated by finite elements, the size of the discretized
domain 1s reduced [1-2].

There are two mairn approaches for the formulation of boundary methods; one is
based on boundary irtegral equations and the other one. on the use of complete
systems of solutions. In numerical applications, the first one of these methods has
received most of the attention [3—4). This is in spite of the fact that the use of
complete systems of solutions presents important numerical advantages; e.g.. it
avoids the introduction of singular integral equations and it does not require the
construction of a fundamental solution. The latter is especially relevant in
connection with complicated problems, for which. it may be extremely laborious to
build up a fundamental solution. This is illustrated by the fact that there are
methods for synthesizing fundamental solutions starting from plane waves, which
can be shown to be a complete system [5).

The use of complete systems of solutions is frequently associated with the name
of Trefftz [6). The i1dea of his method [7] consists in looking for approximate
solutions, from amorg the appropriate class of functions that satisfy exactly the
differential equation. but do not necessarily satisfy the prescribed boundary
conditions. Although Trefftz’s original formulation was linked to a variational
principle, this is not required. Indeed, complete systems of solutions can be used to
treat differential equz:ions which are linear but otherwise arbitrary [8].

The method has been used in many fields. For example, applications to
Laplace’s equation zre given by Mikhlin [9], to the ‘biharmonic equation by
Rektorys [10] and to elasticity by Kupradze [11]. Also many scattered contributions
to the method can be found in the literature. Special mention is made here of work
by Amerio. Fichera. Kupradze, Picone and Vekua [12-16]. Colton [17, 18] has
constructed families of solutions which are complete for parabolic equations.
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However, systematic analysis applicable to arbitrary linear differential equations
were lacking. Motivated by this situation the author started a systematic research
of the subject. The aim of the study has been two-fold; firstly, to clarify the
theoretical foundations required for using complete systems of solutions in a reliable
manner, and secondly, to expand the versatility of such methods, making them
applicable to any problem which is governed by partial differential equations
which are linear.

Considerable progress has been made (8, 19]. The systematic development
includes: a) approximating procedures and conditions for their convergence 5. 8,
20-22}. b) formulation of variational principles [23~-28]: and ¢) development of
complete systems of solutions [29-33]. In addition, the algebraic frame-work [34)
in which the theory has been constructed has been used for developing biortho-
gonal systems of solutions [35).

Recently, the theory has been extended to free-boundary problems [36, 37}
These are non-linear even when the governing differential equations are linear.
Boundary integral equations have been applied to some of these problems [38]. For
seepage problem, numerical experiments using Trefftz method were reported [22],
but a theoretical analysis was not included. Many others have been treated using
finite element approximations; for example, contact problems in elasticity [39, 40].

Systems of solutions which are complete, frequently preserve this property when
the region of definition of the problem is changed. This is the case, for example, of
the systems given in Tables 10.1 and 10.2 (see Section 10.6). It is important to
develop procedures for constructing such systems and to formulate criteria to
elucidate their completeness. This subject is being studied at present and a
preliminary survey appeared recently [33].

10.2 Scope
To fix ideas we first consider a simple example. Take Laplace or Poisson’s

equation in a bounded region , illustrated in Fig. 10.1, and subjected to

a2

Fig. 10.1.
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boundary conditions of Dirichlet type:

du=fg; in (10.1a)
and
u=fag, on 9N (10.1b)

where fj; and f3q are given functions,

In general, the application of boundary methods requires transforming equation
(10.1a) into a homogeneous equation. This can be achieved by introducing a
particular solution U of equation (10.1a); i.e.

4U=fp; in Q (10.2a)

In applications the construction of function U is not difficult, because it is not
required to satisfy any prescribed boundary conditions. For example, when a
fundamental solution is available, it can be obtained by quadrature.

In addition, let ¥'be a function such that

V=fs;, on 0Q (10.2b)
Then, Dirichlet problem (10.1) is equivalent to .
Au—-U)=0; in Q (10.3a)
and
u=V, on dQ (10.3b)

In order to formulate this problem precisely, it is necessary to define a space D
of admissible functions. Consider Sobolev space H*(Q), where s is any real
number (— or < 5 < oo). As it is well known the trace operator (i.e. the boundary
values) is not defined for some elements of H*(2) when s = 1/2 [4], 42]. However,
there is a wide class of functions of H*(Q) for which this trace is defined and
belongs to H*~'2(0Q). Thus, define

Di=) k()
and
D={ue D*{puel) H Q) (10.5)

where 7, stands for the trace of u on Q. In general, for simplicity the symbol
will be omitted when it is clear from the context that we refer to the boundary
values. It can be noticed that the linear space D defined by (10.5) is not closed.
Indeed, a metric is not defined in the whole space.
Let

Np={ue Didu=0 in Q} (10.6)
and

I={ueDju=0 on éQ) (10.7)

Then, Dirichlet problem can be formulated as a problem of linear restrictions.
Given any U € D and V € D (these functions can be taken as data of the problem),
find and element ¥ € D such that

u~UeNp and u—-Vel (10.8)
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The first of equations (10.8) is equivalent to (10.3a), while the second one to
(10.3b).

A first advantage of formulating the problem in this manner is connected with
its existence properties. Clearly equation (10.3b) is equivalenttou — U= V= Uon
0Q. By well known results on the existence of solution [41], this problem possesses
a unique solution. Indeed, given U € D and V € D there are real numbers r and s
such that U € H'(Q2) and the trace yo(V— U) € H*(éQ). Then, u — U € H**'(Q).
Therefore, u = U+ (u — U) belongs to H'(22) where 1 = min {r, s + 1/2}. This shows
ueD.

The above discussion also shows that there is no lack of generality by restricting
attention to the homogeneous case; i.e.

4du=0; on Q (10.9a)
u=fn, on 69 (10.9b)

The boundary method to be applied depends on the continuity of the solutions on
their boundary values. In principle it can be applied when’the space of admissible
functions D is given by (10.5). However, this would lead to consider inner products
in the space of boundary values H*(éQ) with arbitrary s, which may be
inconvenient in numerical applications. It is preferable to keep the computations in
72(02) = H*(99Q), which, as will be seen, leads to least-squares fitting. This, can
be achieved if attention is restricted to functions with boundary values belonging
to H°(9Q) = _#2(00). When this condition is incorporated in the definition of the
space of admissible functions, one gets

D={ue D{you e H*(0Q)) (10.10a)

This is again a linear space which is not closed.

In addition, in many applications it is necessary to compute the normal
derivative du/0n on the boundary Q. Similar considerations lead to require that
0u/dn belong to H®(6Q) = #2(6Q2). When these two requirements are incorporated
in the definition of the space of admissible functions, equation (10.5) becomes

D={ue D'iyue H(02),y,u € H*(32)} (10.11a)

and

Here, as it is costumary, y, u stands for the trace of the normal derivative on 6%.
This is again a linear space. :

General results on the existence and continuity properties of solutions of elliptic
equations [41], imply that any harmonic function ¥ whose trace y,u belongs to
H®(0Q), necessarily is a member of H2(). Therefore Np = HY?(Q) in this case.
Even more, due to the continuity properties just mentioned, Np is a closed
subspace of H'”2(Q). This will be represented by N'?(Q2). Thus

Np=N"(Q) (10.11b)

when D i$ defined by equation (10.10a). Similarly, when equation (10.11a) holds
corresponding properties imply that
Np=N¥(Q) (10.11¢)

where N¥2(Q) is the subspace of harmonic functions belonging to H*2(Q2) which
can also be shown to be closed.
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by its boundary values. instead. The coefTicients b5 will be chosen so that

N
ai - Z bﬁ W

n=1

2
(10.24)

is minimized.
This leads to take the projection of du/dn on the space spanned by

Wy e wy) © H(éQ). This requires the orthogonality condition
ou X N
= B wawa)=0, m=1,..,N (10.25)
on .o
to be satisfied. Expanding (10.25), one gets
N
Y Kombh = dn (10.26)
ne=)
where
Kpm= § wawndx; nm=1,...,N (10.27a)
FYe)
and
7 oW,
o= | = wmdx= [ faoomdx; m= ,N (10.27 b)
é On o On

Observe that the use of the reciprocity relation (10.20) has permitted to express d,,
in terms of boundary data only.

An additional point must be mentioned. In order for the approximating
N

: .. . Ou
sequence 2 b% w, to be convergent, it is necessary that the solution T € H%(60).
n

n=]
This is granted if fap € H'(6Q). Alternatively, this condition can be expressed in
matrix form. Let KV be the NxN square matrix whose elements are given by
(10.272a). Similarly d" is the 1 x N vector defined by (10.27 b). Assume, the system
of traces {7y, ..., wx) = H'(0) is linearly independent, which is required in order
for the system (10.26) to be invertible, and denote by (K*)~! the inverse of K.
Then, the sequence of real numbers

N
Z b w,

ne]

- d.’\‘ . (KA')—I . dN =0. N= ], 2, (]028)

is non-negative and increasing. Convergence, of the approximating sequence is
granted when the sequence (10.28) is bounded. The meaning of this condition is
more easily understood by observing that when the system of traces {w,, wy,...] is
orthonormal (i.e. K.m= &:m), in which case the coefficients d, are independent of
N, it becomes

A€X
T dl<w | (10.29)
n=]

The treatment of Neuman problem is similar. Let the space of admissible func-
tions be given again by equations (10.11a). Then equation (10.9 b) is replaced by
u

< =9=i ondQ (10.30)
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where the boundary values gap € {1}* =« H°(0Q). The previous argument still
holds if (10.17) is replaced by

ow, Ow,,
nm= d .
M a";y 3 on x (10.31a)
A ,
cm=a£)gm an” 9% (10.31b)

In this case u — u in H*?(Q); therefore, also ¥V — u in HY?(2). It must be
observed that this assertion is not strictly true because the solution of Neuman’s
problem contains an undetermined constant. To remove it one can take
B=1{1, w;, w,...} € N¥2(Q) and require

fwidx=0; j=12,.. (10.32)
an
fudx=0 (10.33)
o
ALN

In general, if the normal derivative = gso in H%(@Q), then v¥ = u in

on
H¥*(Q). hence, on the boundary u — u in H'(Q), which implies «” = u in
H%(0Q). Thus, the boundary values (i.e. you on 8Q), which in case of Neuman
problem are not known beforehand, can be derived from the approximating
sequence directly. However, the use of the reciprocity relation (10.20) offers an

alternative for computing them. Indeed, one simply has to replace equations
(10.21) and (10.27), by

; 0wy .
W=7 bl a'; ~u, in H(0Q) (10.34)
n=]
ow, Ou
Konm ~—"d .
ajn on on X (10.35a)
and
Fi [T
-’_;rm = ||’ W -~ dx = [ qan Wem dx (1035 b)
2 on 20

Again, equations (10.26) have to be satisfied. When this is the case the solution u
in (10.34) fulfills (10.33). This method can be used to accelerate the convergence of
the approximating sequence on the boundary. As a matter of fact, when the system
ul .
on —gor “ mn
the ~2(0Q) sense, is minimal; however, |u* —u| in 2(0Q) in general is not
minimal. When equations (10.26), (10.34) and (10.35) are applied, on the contrary,
[ u¥—u' in the ~?(AQ) sense, is minimal; i.e. in the first case, the approximation
of the boundary data is optimal, while by the second method, the approximation
of the unknown boundary values is optimal. In applications, generally, the latter
would be preferable.

. o 1l
of equations (10.12), (10.16) and (10.31) is applied, the norm ”
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Generally. when dealing with partial differential equations only some boundary
values of thz functions and their derivatives are relevant in the discussion of the
problems. For example, for Laplace equation these are the function v and its
normal derivative du/dn. For Elasticity the displacements u and tractions T (u).
When a boindary value problem is formulated, only one part of this boundary
information is prescribed and the other part must be derived after the solution has
been obtainzd. For Dirichlet problem, for example, u is prescribed and du/on is
derived. The converse has to be done in the case of Neuman problem. Approxi-
mating sequances for the complementary boundary values which depend on reci-
procity relations, such as (10.20) can be derived for very general classes of
differential equations. The reciprocity relations can be obtained from corre-
sponding Green's formulas. For example, from

Ou or
‘du—udrydx= [ {t ——u—— dx :
‘];{x u—udr)dx ajr') e vl (10.36)
one obtains o
Il Edr-—fu-g;—dx (10.37)

when u and r are harmonic in Q. Equation (10.37) can be recognized as (10.20).
The procedzre used to derive approximations (10.21) and (10.34) can be traced
back to a group of italian mathematicians {12~ 14] and was discussed extensively
by Kupradze [15]. The author has introduced an abstract formulation which
permits extending this procedure to problems with prescribed jumps [34] (applica-
tions to elasticity are given in [5]). This is linked to a systematic classxﬁcanon of
boundary vzlues and will be explained in Section 3.

The possmhty of applying the boundary method here explained depends on the
availability of a system of solutions %= {w), wy,...} € N¥*(Q) of Laplace equa-
tion which spans N¥?(). In this connection, there are two general categories of
theoretical guestions which must be analyzed in order to increase the flexibility
and versatility of the procedure. These are: criteria for deciding when a system # is
complete ard methods for constructing complete systems which can be applied to
many problems.

Regarding the first one, we have seen that what is required is that the system
#={w,.wy....} spans N¥?(Q). However, in applications it is frequently difficult
to verify this in a direct manner and it is necessary to use alternative criteria: these
can be established by analyzing the spaces spanned by the boundary values. For
example, for Laplace equation, given a system of functions #= {w, w3,...]
defined in . let us denote by W, =[w;, w3)] the system of traces w; = 3w, and
Wy = 3 Wae In addition .@;= {ﬁ'], W, }, # = {W“, Wi, } and %= :le, Wa2,.. }
For examp.2, when the region £ is a circle (the unit circle for definiteness), by
separation cf variables one obtains (in polar coordinates)

@#={1;r"cosnf,r"sinnf, n=1,2, (10.38)
This system is made of harmonic polynomials
$={1,x2—yz,xy,...} (10.39)

which can be recognized as Rez"and Imz" (n=0,1, ).
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Setting r =1 in (10.38). one obtains the system of traces

# ={cosnb,sinn@. n=0,1,... (10.40a)
and
Fy={—nsinnf,ncosnf, n=0,1,...} (10.40b)

Denote by N, and N, the spaces spanned in the #2(8Q) metric by the traces
sou and jyu, respectively, when u ranges over N¥?(Q). Clearly, N, =_»2(02) =
H®(Q) while Ny = {14 c #2(8Q), Here, the orthogonal complement {1} is taken
in the *(4Q) inner product.

Let # < N¥2(Q) be a system such that

span# = N, =_2(0Q) and span®,= N,={1}* (10.41)

where the spans are taken in the 2(0R) sense. :
For simplicity, assume that the constant function wg=1 is a member of %. so
that

Z={1}uF (10.42)
where & = {w;, w3, . It will also be assumed that
[wedx=0; a=1.2, (10.43)
” .
Any harmonic function u € N*2(Q) can be written uniquely as
u=apg+u (10.44)
where ag is the constant
ag= | udx, while wdx=0 (10.45)
0 an

In view of (10.41) and 7} we = 0, it is clear that
span % = {1}*+ (10.46)

Also 7, u' € {1}, since ¥’ is harmonic in . so that y;u’ is in the #%(Q) — span of
#4. This shows that there is a sequence r* of linear combination of #’ such that

wet¥N gz ow, in £1(0Q) (10.47)

In view of (10.43), the second of conditions (10.45) and continuity properties [41]
of solutions of elliptic equations, it is clear that +* — u’ in the metric of H3?(2).
Therefore, the linear combination u® = ag+ t-* of elements of # = N¥?(Q). is such
that ¥® — u in H¥2(Q). This shows that

span &= N¥2(Q) ' (10.48)

where the span is taken in the H3?(Q) metric. Thus, in this case we have derived
the completeness of the system # = N*2(Q) from the fact that the system of traces
4,, spans the same space as the traces of harmonic functions (i.e. solutions of the
homogeneous equation) in N ¥2(£2). Similar results hold in a more general context.

Let #°= H%(6Q) @ H°(69) be the space of pairs i = [u), u] with u; € H*(¢Q)
and u; € H°(8Q), provided with the usual inner product

(@, £)) = (uy, v1)e+ (w2, r2)e (1049)
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Denote by .7 €2 the image of N32(Q) under the mapping u— i=
[0 u. 31 u) € 5. It can be shown that 4" < # is closed in the metric of 2. Notice
that the reciprocity relation (10.20) becomes (we assume Hilbert-spaces are being
taken with real coefficients):

(tr,u)= (2, u)) Vil e A &ieA (10.50)

A system of function # < N¥2(Q) will be said to be T-complete* if, for every
i € #, one has :

(wi,ua)=(wy, u))Vwed= GeN (10.51)

Using this notation the following characterization of complete systems holds [19,
34).

Theorem 10.1. Let & = N32(). Then the following assertions are equivalent:

(i) #< N32(Q) spans N**(Q) in the metric of H¥*(Q).
(ii) &< # spans A~ in the metric of #;
(iii) # < 4" is a T-complete system;
(iv) Equations (10.41) are satisfied when the spans are taken in the 2(09) sense.

An advantage of having a system which satisfies any of the criteria (i) to (iv), is
that the same system can be used for both a Dirichlet and a Neuman problem.
Indeed, the same T-complete system can be used for any linear boundary condition
which is prescribed point-wise. Such condition can be written as

ayu+ay0u/dn= fzr, on 0Q (10.52)

The arguments presented previously, can be extended to this case by introduction
of more general Green’s formulas. This will be discussed in Section 3.

It has interest to observe that it is possible to develop systems which are
complete in regions which are, to a large extent, arbitrary. For example, the system
of harmonic polynomials given by (10.38) and (10.39), is T-complete in any
bounded and simply connected region [29]. Also, the system

{Logr, ’Re_:’", Imz7", n=12,...} (10.53)

is T-complete in the exterior of any simply connected and bounded region which
contains the origin. _

To develop general criteria establishing conditions under which a system which
'is complete in a region is also complete in another one, is quite valuable.
Especially if such criteria are applicable to a wide class of partial differential
equations. For this purpose the notion of T-completeness is useful.

10.3 Green’s Formulas

The development -of Green’s formulas for general classes of partial differential
equations is a classical topic of the theory of partial differential equations [41]. A

* Trefftz-complete. Previously, such systems had been called c-complete by the author.
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theory which permits obtaining such formulas systematically and which in some
respects enlarges the kind of problems that can be treated in this manner, has been
developed by the author (19, 28, 34]. The fundamental notions are closely related
with simplectic geometry {44]. .

Basically. what is done is to characterize the space of boundary values which are
relevant for each differential equation or system of such equations. Then such
space is decomposed into two subspaces. With every Green's formula there is
associated such a decomposition and conversely with every decomposition there is
a unique Green's formula. A procedure for reconstructing the Green’s formula
when the decomposition is known, is established [34].

We consider a bilinear functional P defined on an arbitrary linear space D, it
will be denoted by P: D — D* because it can be thought as an operator defined on
the linear space D and taking values on its algebraic dual D* (this is the space of
linear functionals defined on D) [45]. The value of such bilinear functional at
elements u € D and ¢ € D, will be denoted by (P u,¢). The transposed bilinear
functional of P: D — D*, will be P*: D — D*; thus

(Pru,cy=(Prv,u) (10.54)

The theory is applicable to general non-symmetric linear operators, although its
application to formally symmetric ones is simpler, because it does not require the
introduction of a formal adjoint. Here, attention is restricted to such operators.
Given an operator P: D — D* we define the antisymmetric bilinear form

A=P—p* (10.55)

The operator 4, given by (10.55) plays a central role in the theory. Firstly, we 2re
going to use it, to define the relevant boundary values. For this purpose, we
consider the null subspace N, of 4;i.e.

Ny={ueDiAu=0} (10.56)
With reference to the reduced wave equation
du+k*u=0, onR . (10.57)

as an example (recall that Laplace equation corresponds to the case k =0),
consider the bilinear functional P: D — D*, given by

(Pu,vd=[r (du+ k*u)dx (10.58)

R .
ThenA=P— P*is
: ou
A N = 22
{Au,r) BIR.{I o

The null subspace Np, is the linear subspace of functions which satisfy (10.57).
There are many ways of taking the linear space D. A convenient one is by means
of equation (10.11a). This defines a linear subdipce, but we do not introduce a
topology in it. We notice that the null subspace Np is well defined, if (10.57) is
interpreted in the sense of distributions [41]. Also the bilinear form A: D — D*,
given by (10.59); however, the operator P: D — D*, given by (10.58) is not. Many
technical difficulties are avoided by leaving the operator P out of the discussion.

/
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It is easy to see that
. Ou
Ny= 'ueDfu=—a-—-=0, on 0Q (10.60)
n

Due to (10.60), the relevant boundary values for Laplace and reduced wave

o
ecuations (10.60), will be v and —a—u—, on Jf2. We notice that givenw € D and v € D,
ore has that n du o ‘
=r;, =—=—, on dQ 10.61
U=t on  on n ( )
if and only if u—rv € Ng; i.e. two functions w€ D and r € D have the same
re.evant boundary values, if and only if, u — ¢ € N,.
Similar notions can be applied to any linear differential equation. Let us
ccasider the biharmonic equation:

4u=0; onQ (10.62)
which occurs, for example, in connection with incompressible flows at low
Reynolds numbers. Define

(Pu,v)=frA%udx (10.63)
o

Then

AAu A A o4t
(Au,t')=f{r  Au— 4 dr -y
o

s

! dx (10.64)

Again, a convenient definition of the space D is (see equation (10.4):

ou , 4u and Gdu belong to H°(ag)} (10.65)
on on
Tten, A4 as given by (10.64) is well defined, and Np can be taken as the linear
subspace of D which satisfies (10.62) in the sense of distributions. The operator
P:D — D*, given (10.63), is not defined for this space D, and we leave it out from
our discussion.

The null subspace N4, is

D={ueD'§u,

0 o4
NA={u€D]u=—u=Au=—u—=0, on 9Q (10.66)
on on
The dassification of boundary values induced by. (10.66), is characterized by
Ou 0d4u
quadrupiets of funcuions u, , du,
- on on

information to have w and its derivatives up to order 3 determined
The homogeneous stationary Stokes equations are

vau—Vp=0 (10.67a)
Vou=0 (10.67b)

where v is the viscosity. In this case, it is convenient to define the bilinear form
P.D— D* by
(Pa,fy=[{v-(vdu-Vp)+qV-u}dx (10.68)
' o
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Here, 1 stands for a pair of functions; u which is vector valued and defined in £,
and p scalar valued and also defined in Q. With ¢, we have associated the pair v, g.

Then ou

ov .
(Aﬁ,t“>=0£2 V'(\'a—n—pn)—U'(\'-b;—q n)} dx . (10.69)
Elements of the linear space D will be pairs & = [u, p] such that the traces u and

o
v puare well defined and span H°(82). One must also require that the set of

functions Np < D which satisfy Stokes equations (10.67) in the sense of distribu-
tions be well defined. In general, P: D — D* may not be defined in this space. The
null subspace

. ou :
Ny= ﬁeD3u=v-$—pn=0, on 0Q) . (10.70)

The classification of boundary values induced by (10.70) is characterized by the
u
values of uand v P n on the boundary 09.

As it has been seen in the specific examples given thus far, in general, it is not
necessary to define on operator P: D — D* in order for the theory to be appli-
cable. Thus, in what follows, it will simply be assumed that there is available an
antisymmetric bilinear form 4: D — D*

A subspace I < D is said to be regular for 4, when

(i) Foreveryue Iandr € I,

{Au,r)=0 (10.71)
i.e. ] is a commutative subspace for A.
(1)
I>N, (10.72)

We have seen that the null subspace N,, induces a classification of D which
defines what could be properly called, the boundary values which are relevant for
the differential equation considered. In the light of this fact, condition (ii) implies
that a regular subspace is characterized by boundary values, only.

To illustrate this fact, assume, 7 < D is a regular subspace. In connection with
the examples given previously, let u € D and v € D, be such that

ou o o .
=r; a—n—-a—'n-, on 02 (10.73)

when the reduced wave equation is considered; or

u o 04u 0Ac
=r; —=—o01), =4r; —— = ——; oQ 10.74
A i R S (10.74)
for the biharmonic equation. Then, there are only two mutually exclusive possi-
bilities
a) uandt belongto 7, or
b) neither u, nor ¢ belongs to I.
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A corresponiing proposition holds for & € D and ¢ € D, in connection with Stokes
equations, waen it is assumed that

Ju v
U=V, yv——pn=y——gn; on R (10.75)
on on
The folloving statement summarizes this discussion. A regular subspace, is a
commutative subspace which is defined through boundary values only.
Examples of regular subspaces for the reduced wave equation are

IL={ueD{u=0, on 602} (10.76 a)

12={ueD_ 2—:=0,on69} (10.76 b)
and

I ={ueD a%——+ﬂu—0 oné.Q} (10.76 ¢)

where a?+ F % 0.
Many exanples of regular subspaces can be given for the biharmonic equation;
an interesting set of such subspaces is

P
L={ueD |u=2-y, onag}, (10.77 a)
on
L={ueD|u=4u=0, onoQ) (10.77b)
and
ou @
L={uep 2_%4%_, onag} (10.77¢)
on on

More peneral examples were given previously [8],
For Stokes oroblem we have the following regular suspaces

L={te D|o=0, ondQ} (10.78 a)

= [rz eDd |y -rfi—_nn E H“(ﬁﬂ;] (10.78 b)
on

Of course, mzny more can be given.
Of special mterest is the case when a regular subspace I = D, has the following
additional property

(iii) Forevenue D
{(Au,t)=0Vrvel=uel (10.79)

A regular subspace, which enjoys (iii) is called completely regular.

It is not difficult to verify that in all the examples given in equations (10.76)
through (10.7%) the subspaces are, actually, completely regular.

Given an axtisymmetric bilinear from A4 : D — D*, a pair of subspaces {I,, I} is
said to be a cznonical decomposition of D for 4, when

(i) 1, and I, are regular subspaces; and

(i) D=1,+1,. (10.80)
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It has been shown [28, 34] that when {I,, I,} is a canonical decomposition of D,
then /, and /1, are necessarily, completely regular and

Ni=Iinl, (10.81)

Now, condition (10.80) is equivalent to the requirement that given any u € D, one
can find elements u, € /, and u; € I, such that

u=u;+u (10.82)

In the presence of equation (10.81), this representation of u, is unique except for
elements of subspace N,; more precisely, if u] € I, and uj € I are such that

u=uy+ ujh (10.83)

then u, — uj € N,y and u,~ uj € N,. Taking into account that N, is the set of func-
tions with vanishing boundary values, it is seen that the boundary values of u, and
u; are uniquely defined. Thus, when a canonical decomposition {I,, 1.} is
available, representation (10.82) supplies a convenient manner of dividing the
information on the boundary values of the function  into two parts, uy € I; and
uz € I, which is useful in the formulation of many boundary value problems.

For the reduced wave equation, the pair {I,, I}, defined by (10.76 a) and
(10.76 b), constitutes a canonical decomposition of the space D, with respect to A,
as defined by (10.59). In this case, the representation (10.82), breaks the boundary
information in the following manner

- . -— au‘ . a
U= Uz, on = o’ on 00 (10.84)
The pair {1,, 13}, given by (10.76 a) and (10.76 ¢), is also a canonical decomposi-
tion, whenever a = 0. In this case, if u = u) + uy, with u, € I) and w3 € I3, then the
boundary values are given by

R LT S 10.85
U= wrus on on  omn’ (1085)

If we define . ou
I4=lueD y3n—+¢5u=0, onéQ} (10.86)

it is easy to see that {/;, 1,} is a canonical decomposition, whenever 26— £y # 0.
Clearly, the previous ones are particular cases of this more general canonical
decomposition.

For the biharmonic equation, the following pair is a canonical decomposition

1= IueD u=2"20. on ao} (10.872)
on
OAu
I,= [ue D|au= =0, on ag} (10.87b)
n
Also
Lh={ueD|u=4u=0, on Q) (10.88a)
- 0 04
12={ueD Z %% 0. on ag] (10.88b)/
on on

el
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Finally, for Stokes problems one has

IL={ie Diun=0, on 92} (10.89a)
. Ou
Iy={t€eD \'E-—pn=0, on 0Q (10.89b)

Of course many mcre can be constructed.

In many boundiry value problems the prescribed boundary data is given by
means of one of tte elements in (10.82), for example u;, and the complementary
boundary informazon u,, can only be obtained after the boundary value problem
has been solved. Ir Dirichlet problem for example, u is prescribed on 622 and the

derived boundary information é‘— on 49, is obtained, only after the problem has
been solved. on

The notion of Green’s formula is closely related with that of canonical
decomposition. Some auxiliary notions are required in order to introduce gbstract
Green’s formulas.

Given the biline:r form B: D — D* let

Ny={ue D|Bu=0] (10.90)
be the null subspacs of, B. Then, if
D=Ng+ Np. (10.91)

where B*: D — D* is the transposed bilinear form of B, one says that B and B*
can be varied inderendently. When B and B* can be varied independently and

A=B- B* (10.92)

equation (10.92) is called a Green's formula. It can be shown [34] that in this case
B : D — D* is necessarily a boundary operator.

There is a general result of the theory according to which there is a one-to-one
correspondence be-ween canonical decompositions {I,, I;} and Green’s formulas.
This is established zs follows:

(1) Given a Green's formula, define
1|=NB‘: 12=N5 (’093)

then {I,, I3} is z canonical decomposition.
(ii) Given a canonizal decomposition {Iy, I3}, let B: D — D* be defined by

(Bu,vy=<{Au,ra) (10.94)

Here, the representation (10.82) of every element u € D of the space, in terms
of its componezts u; € I and u; € I, has been used.

To illustrate these notions, in the case of Laplace and reduced wave equation,
we notice that if we define . bu
v — dx (10.95)
3R on
then (10.91) and (10.92) are fulfilled. Also, the canonical decomposition {1, I},
given by (10.76 a, t) satisfies (10.93).
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In the case of the biharmonic equation, the canonical decomposition (10.87), is
associated with

o4 or
(Bu,t)= j { L o du—tf dx (10.96)
on
The canonical decomposition (10.88), on the other hand, yields
BA 0
Bury=1{{ L+ 4v 733] dx (10.97)
Finally, for Stokes equations, the canonical decomposition (10.89), is associated
with
.. ou
Biuiy=| v-(v———pn) dx (10.98)
3R on

10.4 Mustration of Green’s Formulas

In this section general examples of Green’s formulas are presented. Many of the
operators listed are formally symmetric in the classical sense; others can be
included due to the extension of this concept introduced in the algebraic theory of
boundary value problems [19, 34] which supplies the basic frame-work for this
chapter.

Elliptic Equations

This subject is classical. The reader is referred to the book by Lions and Magenes
[41]). The extension of such formulas to problems with prescribed jumps can be
done along the lines presented in Section 5. A general discussion of Green's
formulas from the point of view of the algebraic theory will appear soon [19].

Time Dependent Problems

For a discussion of the spaces which are suitable for the formulation of this class
of problems, the reader is referred to the second volume of the treatise by Lions
and Magenes [41]. In this Section we simply assume that the linear space of func-
tions D is such that the operators to be considered are well defined.

Two examples will be given: the heat and the wave equations. These can be
associated with formally symmetric operators, in the sense of the algebraic theory
[19, 34}, using Gurtin’s convolutions [46, 47]. The basic ideas can be applied to
more general problems. For each one of these operators we give only one Green’s
formula; of course, many more can be constructed.

(i) The Heat Equation. Consider the cylinder Q x [0, T'} (Fig. 10.2). Let the linear
space D, be made of functions defined on £ x [0, T}. The operator P: D — D*, is
defined by

(Putd= 5L (—-—Au)dx (10.99)
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! ’

7
0,
| | X
s R
Fig. 10.2.
where the notation r
usv=[u(T-0u(1)dr (10.100)
0
is used. Let 4= P— P* then
A= B+ B* (10.101)
where )
(Bu,ty= [ ue——dx—[c(T)u(0)d (10.102)
Ere) on o

fii} The Wave Equation. The incorporation of this equation in the frame-work here
presented 15 similar.

Taking the region £2x[0. 7] and the linear space of functions D, as explained
before, define P: D — D* by

u
(Pu,vd={r t(-—z—du) dx (10.103)

0 or
with the convention (10.100). A Green’s formula for this operator is obtained

taking B: D — D* as

Bu.r)= = [-Ta"o & d 104
{ u.l)-—ajr;ut éﬁr-dx—‘{ v ( )7()+-a—’( )u(O)] x  (10.104)
Formulas (10.102) and (10.104) are suitable for application to initial value
problems when the function u is prescribed on the lateral boundary of the space-
time cylinder (Fig. 10.2). More general boundary conditions can be treated by

using the Green’s formula of the Laplace operator, associated with the canonical
decomposition defined by (10.76 ¢) and (10.86).

Elasticity
Let the elastic tensor C;;;, be C*(Q), satisfy the usual symmetry conditions [48]

Cijpg= Cpgij= Cjipg (10.105)
and be strongly elliptic; i.e. )

CijpgSin,lpny>0 whenever ¢ #+0,[n]%*0 (10.106)
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(i) Static and Periodic Motions. Let D=H*(Q2)= H*(Q2) ® H*(2)® H*(Q),s= 2.
Define

0
Tij(u)=Ciqu‘£E, on Q (10.107)
9
aT,'j 2
-/’.-(u)=‘a;+9w ui, onQ (10.108)

J

where summation convention is understood. Here the density g, is a function of
position belonging to C*(£2) while w is a constant. The case w = 0, is associated
with elastostatics.

LetP: D — D* be

(Pu,v)=[rv; _£i(u)dx (10.109)
Then, A= P — P* is given by ?
{Auey= [ {v; Ti(u) — u; Ti(u)} dx (10.110)
where i
Ti(u) = 1;;(u) n;. (10.111)
An opcrétor B: D — D* that decomposes A is
(Bu,r>=~a]r;u,- Ti(r) dx (10.112)

There are many more.

(ii) Dynamics. Let D be a suitable linear space of functions defined on Q %[0, T].
Define ’ 3u.
(Pu,r>=fz',-*(g—2'—.f’,~u) dx (10.113)
. 0 or
where the conventions (10.100) and (10.108) (with w = 0) are used. A= P — P* is
given by

(Au,ry= [ {uye T = vix Ty(w)) dx (10.114)
)
Ou; or; or; Ou;
+ {0 -—— +— (0) y; = u;i(0) — i ‘i
ge{z © ST+ 2L O u(T) = 1, 0) 3 (T) = = (O) m}
Many operators that decompose A4 can be constructed. One such operator is

(Bu,v)= [ ujs Ti(t)dx— | u,—(O)ﬁ(T)——‘?‘ﬂ(O) L‘,-(T)} dx  (10.115)
on Q ot . or

10.5 Green’s Formulas in Discontinuous Fields

An advantage of introducing abstract boundary operators is the large class of
problems that can be formulated using them; a very general example is the
problem of connecting or matching [28]. This is an abstract version of problems
formulated in discontinuous fields with prescribed jump conditions.
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Such problems occur in many applications. In potential theory, for example, the
jumps of the Tunction and its normal derivative are usually prescribed, while in
Elasticity the prescribed functions are the jumps of the displacements and the
tractions. Vanational principles for some of these problems were developed by
Prager [49] and Nemat-Nasser [50, 51] presented more recent surveys. Here, general
Green’s formulas for such problems are developed which are applicable irrespec-
tively of the specific operators.

R = 9F

R N\

Y3

Fig. 103.

Consider two neighboring regions R and E (Fig. 10.3), let &R =¢Jd'E be the
common boundary separating them; in addition, 'R and 8”E will be the
remaining parts of the boundaries of R and E, respectively. Let Dg and Dz be two
linear spaces; in the applications to be made their elements will be functions
defined on R and E, respectively. Consider the product space D= Dz ® Dg;
elements i € D are pairs &= jug,ur] where uge Dr while uge Dg. Given
operators Pg: Dg — D} and Pg: Dg — D%, define P. D — D* by

(Pi,¢)y=(Prup.vg) +{Prug,tg) (10.166)

This additive property is usually satisfied when P: D — D* is defined by means
of an integral on the region R U E. From (10.116) it follows that

(Ait, €)= (Apup,tR) + (Apug, rg) (10.117)

The symbol N, will be used for the null subspace of A: D — D — D*. A linear
subspace $ = D will be considered. Elements & = {ug, ug! € S will be said to be
smooth. When & = {ug, ug} is smooth, ug € Dg and wgz € Dr will be said to be
smooth extension of each other.

Let S< D= Dr@ D¢ be a linear subspace. Then $ is said to be a smoothness
relation if every ug € Dy possesses at least one smooth extension ug € Dy and
conversely. A smoothness relation § is said to be regular or completely regular for
P, when as a subspace, it is regular or completely regular for P, respectively.
Therefore, a smoothness relation S is regular when '

a) S> N, (10.1182)
and
b) (Ai,t)=0VieS and i€$ (10.118b)

Similarly, it is completely regular when

(A4, ¢)y={Apup,vp) + (Arug,tg)=0 VieS<ueSl (10.119)
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The mapping 7: D — D defined by 7 & = {ug, — ug}, for every u= {ug, ur) € D
will be used in the following discussion. Given §, let 1 $ be the image of $ under

this mapping. 1.¢. tS={i=1feDli e} (10.120)

Given & = {ug, ug), let be i’ = {u, ur}, where us and ur are smooth extensions
of ug and up. respectively. Define

G=§(+a")=}{ug+ur, ug+ u) (10.121a)
and
[d)=d' — a={ugr — up, ur — ug} (10.121b)
Then
4=i—3[a) (10.122)
and it can be seen that & € S while [¢] € 7 §. Therefore
D=S+1S§ (10.123)

From (10.123), it follows that when $ < D is a regular smoothness condition, then
the pair 7 S, $ is a canonical decomposition of D with respect to £: b — D*.
Application of formula (10.96), shows that the relation

P-Pr=4d=J-J* (10.124)
is a Green’s formula when J: D — D* is defined by
. Ja,6)=—1AMa),¢) 10.125) /&=
This is called jump operator [19. 34] because it characterizes the jumps since
Ji=St=i-t€$ (10.126)

by virtue of the second of equations (10.93).
To apply these results to potential theory and reduced wave equation, given g
and non-zero functions kg and kg, define (Fig. 10.3)

Su=V-kVu+pu (10.127)

(Prug.vpd=lv rude+ | ik — dx — 1o L‘ﬂd.r (10.128)/7,'
B s dn &R cn

e N

and Pg: Dy — D replacing R by E. Integrating by parts it is seen that

2. A\ X . 6uR al'k
<Au’l>—a§1:kk(lk oy YR 6n)

F or
dx+ | ke|op—E —uf—'—f) dx (10.129)
FE on on

Observe that the unit normal vector n is taken pointing outwards from the region
of integration. Equation (10.129) implies that

N,={{up,ur} € D\ug=ug=0urg/on=0ur/dn=0, on 3R} (10.130)

Smoothness conditions can be defined in many alternative manners. One which
is suitable in many applications (in flow through porous media, for example) is

S={t€ Djug=ug, kg Oug/on=kgdug/én, on &R} (10.131)
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Given &= {ug, ug} € D,letbe &’ = {uk, u}, where us and u% are smooth extensions
of ug and ug. respectively. Write

(@)= {[a), [@)e}; @ ={ap, @} (10.132)
Applying definitions (10.121) and (10.131), it is seen that

[#)r=uR— up=ug—ug, on &R (10.133a)

Old)g Our Our kg Ougp Oug '
on  on on kg on  on’ on IR (10.133b)

where the normal derivative is taken pointing outwards from R. When ¢ € §,
equation (10.129) reduces to

(A4, 1‘-=aj; _{k [ﬁ]-g%—v [l}%-“ dx (10.134)

Here, as in what follows, the components (R or E) to be used when carrying out
the integration are indicated by the subindex under the integral sign. Also the

nntatinn e . P
o4 UR
ll& P "3, (10.135)

was introduced. Application of (10.134) in (10.125) yields

PN S PR DL
24J4, ¢ —ayk {z [i: = k p [u]] dx (10.136)

Observe that equations (10.121) imply

[dJp=ug—ug. 2C=vg- g and 2kj "-=k ﬁ.{.]‘k : (10.137)
on on an
In view of equations (10.128) and (10.137), the Green’s formula
’g{z-_/u—ufu}dx=<(1§+j)a,ﬁ)—<(z§+f)f,a (10.138)
is clear. Here o
Biiy= | wk—dx— | vk _ dx (10.139)

a(RuEy On a(RuE) On

In a similar fashion for static and quasi-static elasticity, when the smoothness
criterium consists of continuity of dxsp}acements and tractions, one obtains for the
jump operator 28]

2,8y = | {5 [T;(w)] - 12] T;(v) } dx (10.140)
'R

This yields corresponding Green’s formulas.

The formulation of Greens’s formulas in discontinuous fields here presented is
applicable to arbitrary formally symmetric operators which are linear. Thus, for
example, the biharmonic equation or Stoke’s problem are included. Green’s
formulas for two phases systems have also been derived in this manner [28].
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10.6 T-Complete Systems

With every operator P: D — D*, we can associate a linear subspace Ipc D,
defined by
Ip=Np+ N, (10.141)

this equation implies that every element u € Ip, can be written as
u=uptiuy (10.142)

with up € Np while u, € N, since u, vanishes on the boundary, we see that a
function u belongs to Ip, if and only if, there is a solution up of the homogeneous
partial differential equation such that the boundary values of u and up coincide. As
illustration, in the example éiven previously of the reduced wave equation, a
function ¢ € Ip, if and only if, there is a solution v € D of the homogeneous

0 0
equation such that ¢ = v and a—b = au , on the boundary Q2.
n n

It can be shown {28, 34] that Ip, as defined by (6.1), is always regular. Due to
this fact the concept of T-complete system will be useful. Let Jp < D, be regular,
and # be a subset of Ip, then we say that # c Ip is T-complete for Ip, when for
everyu € D '

Auw)y=0 Vwe@d=>uelp (10.143)

Under very general conditions Np < Ip is T-complete for Ip [19, 28, 34). For the
representation of solutions it is, however, of greater interest to have denumerable
subsets #  Np which are T-complete. Examples of such systems are given in
Tables 10.1 and 10.2. It has interest to mention that for the reduced wave equations
the author has shown that a system of plane waves, which have a very simple
structure, is 7-complete in any bounded and simply connected region [5].

In these tables J,(r) and H(" (r) are Bessel and Hankel functions of the first class
[52. 53]. P§ is the associated Legendre function, while j, and h} are the spherical
Bessel and Hankel functions [52]. We recall, in addition, that the T-complete
systems given in Tables 1 and 2 for Laplace equation in a bounded region are
harmonic polynomials expressed in polar and spherical coordinates. Observe that
the detailed shape of €2 is arbitrary.

Table 10.1 T-complete systems in two dimensions

Bounded Q = exterior of a bounded region
Laplace Equation
{1, 7" cos n 8, rsin n 6} {Lnr"cosn@,r "sinn8}

Reduced Wave Equation Ju + u=0
{Jo(r), J,(r) cos n 6,J,(r) sin n 6} {HM (r), HY (r) cos n 6, HV (r) sin n 6}

n=1,2,.
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Table 10.2 7-complete systems in three dimensions

Bounded 2 £2 = exterior of a bounded region
Laplace Equation

{r" P} (cos 6) e9°} {r="~1 P{ (cos 6) €'*°}

Reduced Wave Equation .

U (r) Pi(cos 6) &9°) {h{) (r) P (cos 6) €9}

n=0,1,2, -nsgs=n

10.7 Hilbert-Space Formulation

Associated with every Green’s formula or equivalently, with every canonical
decomposition. there is a Hilbert-space formulation.

For this purpose, we focus our attention in boundary values; i.e. we identify
functions possessing the same boundary values. More precisely, two functions u
and ¢ of D, are identified whenever u — v € N,. The resulting space & is called the

quotient space; i.e.
g=D/N, (10.144)

Thus, for example
(i) For Laplace and reduced wave equation, £ is made of pairs of functions

a
u, Fu_ , defined on the boundary dR and square integrable there. Indeed
n

e

(ii) Biharmonic equation

u € HO(9R), ';n € HY(R) (10.145)

Au oA

7 7}
9‘=J{u,—u,4u,£l Each one of u, ,du, “—em(am
| on on on on
(iii) Stokes equation
0
g={ wy—-=—pn ueH°(6R),v—-—u—-pneH°(6R)} (10.146)
on on

In each of these examples, one can give to 2, the structure of a Hilbert space.
Possible choices for the corresponding inner products are

g ou Or
G § {u L .‘-} dx (10.147a)
o0 cn L
. ou Or 0Au 0Ar
Gi) § {u t+——+dudv+ }dx (10.147b)
0 on on on wun

@ii) lu-v+(v—--—pn) !v-g—:—qn)} dx (10.147¢)

s \
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With these inner products, the linear space & is isomorphic to the following Hilbert
spaces:

(i) H°(02) ® H°(8Q) (10.1482a)
(i) H%(82) ® H°(6Q) ® H°(62) ® H®(89) (10.148b)
(iii) H°(02) ® H®(0Q) (10.148¢)

Now, given any canonical decomposition {/,, I2} it is possible to chose the
Hilbert-space structure so that the associated operator B: D — D* (equation 10.94)

is given by (Bu,v)=(uy,ry) (10.149)

Thus, for example, when the inner product (10.147a) is used, equation (10.149)
yields the operator B associated with the canonical decomposition given by (10.76a
and b). The same happens if this decomposition is replaced by (10.76a and c).
When one uses the inner product (10.147b), equation (10.149) supplies the
operator B: D — D* associated with any canonical decomposition corresponding to
the biharmonic equation; for example, those given by equations (10.87) or (10.88).
For Stokes problem the inner product can be (10.147c) and a possible canonical
decomposition is defined by (10.89).

10.8 Representation of Solutions

For the formulation of the general boundary value problem to be considered here,
we assume there is a canonical decomposition {/,, I2}, and an operator B: D — D*
such that (10.92) is a Green's formula. Using the representation (10.82), we
formulate the problem as follows; find v € Np, such that

uy=U, (10.150)
where U, is a given element of /.

Let A4 p= Np/N,< & = ¥, be the linear space generated by the boundary values
of solutions of the homogeneous equation. Then every u € 4 'p can be written as

u=u;+ uz (10.151)

where u; € &) = 1,/N, while u; € 3= 1,/N4. Let A4} = s, be the range of values
taken by u;, in (10.151), when u ranges over 4'p. Similarly, let 47 © 7, be the
range of values taken by u,, in (10.151), when u ranges over.4’p.

Given a system of functions & = {w), wa, ...} © Np, write

Wo= Wy} + Wa2 (10.152)
We denote
B = {wyy, war, Wap, ...} ©SI; Ba= (Wi, wa, Wy, .. j Sy (10.153)

Clearly, we will be able to approximate the boundary values of every solution of

(10.150), if and only if span #, =4, (10.1 54)

Here, the bar refers to the closure of 4.
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A result similar to Theorerr 10.1, holds in this more general context. Assume
Ip= Np+ N, is completely reg:lar and # c Np. Then the following statements are
equivalent:

(i) & © A 'p < 3 spans 4p in tte metric of 57
(ii) # <A 'pis T-complete; and
(iii) span #, =.4 | while span #.= 4" (10.155)

Therefore, when # is T-comiplete, it is possible to construct approximating
sequences

uM=3 alw,; N=1,2,... (10.156)

n=1
such that ¥} — U,, whenever U, € 47;; therefore, if the problem (10.150) has a
solution u, then o -y (10.157)

The convergence in (10.157), is in any metric in which the solution of the problem,
depends continuously on the boindary data U, .

When a Green’s formula is available, the results of Section 7, yield an efficient
procedure to compute the complementary boundary data. In this case, for every

¥a € % we have a2, 1) = (Wa2, 1) = (W1, 42) - (0138)

which gives (w4, w3) in terms of the boundary data U,. This gives the approximat-
ing sequence N
uf=> b¥w,, (10.159)

n=1

where the coefficients b% satisfy. for every fixed N, the system of equations.
N
(Wm2- Ur) = 20 0% (W1, W) (10.160)
n=]

This generalizes the results of Se:tion 2.

Observe that the values of u; are approximated by linear combinations of w,.
This implies. for example. that in applications to problems formulated in discon-
tinuous fields, with precribed junp conditions, the averages of the functions across
discontinuities are approximated by the jumps of the basic systems (a specific
application of this kind is given 11 [5]).
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