
9 /

Ismael Herrera

Institute of Geophysics, National University of Mexico, Apdo. Postal 21-524, Deleg. Coyocan,
04000 Mexico, D.F.

Or alternatively

2u=L\u, in g (3')

where g is an open bounded domain of a two-dimensional
Euclidean space satisfying the same restrictions as in Ref.
1. Define P: D-+D*, B: D-+D*, fED* and gED* by

i i ov
(Pu,v)= v2udx, (Bu,v)= ~Youdx (4)

n .0() un

(f,v)= r vfndx and (g,v)= r ~gO()dx (5)
In JO() un

trace operator and the Laplacian is understood in the
sense of distributions. Then (2), or equivalently (1), is
satisfied if and only if

.Pu= fn and you=gOl} (6)

Let n be a partition of 0 into a finite collection of E
subdomains °e, 1,2,..., E(n)1.2. We define De and
P e: De-D:, replacing 0 by °e in previous definitions. In
addition, Be: De -.D: is defined replacing 00 by ann aOe.
Let D be the product space D1 x D2 X ...X DE, DefineP: 15-.15* and B: 15-.15* by .

INTRODUCTION

Usually, by a hybrid method it is understood one in which
continuity requirements are reduced or eliminated
altogether1.2.3.4 by introducing auxiliary dependent
variables. Finite element methods for elliptic equations of
order 2m, are said to be nonconforming when in the
evaluation of the energy, which involves derivatives of
order m, the approximations to derivatives of order m -1
may have simple discontinuities5.6.

In this paper a systematic formulation of hybrid and
nonconforming element methods is briefly explained and
illustrated by applying it to some simple elliptic operators.
The approach here presented is quite general, since it is
applicable to any linear operator. It is based on the
Algebraic Theory of Boundary Value Problems
developed by the author7.8.9.1o and which has just been
published in book form11.

The approach here presented apparently supplies a
useful tool of analysis which can be used not only to
evaluate the error of approximate methods but also gives
insight and orientation to develop more efficient ones. In
the case of ordinary diffet;ential equations it yields systems
which permit computing the exact values of the sought
solutions and its derivatives at a finite number of nodes.
For special choices of the test functions some results
obtained by Rose12.13 are also derived in this manner.
However, the new approach goes beyond, since it supplies
algorithms which permit computing the exact values of
the derivatives at prescribed nodes without computing the
values of the function there.

E

<Pli, Ii) = L <P eUe' ve),
e=l

E

(Bu, 6) = L (Beue, ve) (7)
e=l

Then equations (4) are satisfied by P and E. The operator
P + E is nonsymmetric. However, the restriction of the
bilinear functional «(P+E)u,6) to smooth functions is
symmetric. Using this fact, it can be seen that P + E -j is
symmetric, where

r {[U]~- {~J}dX
Jr on on (8)(iii, v)=

Here, r is the union of all the interelement boundaries
More formally:

FINITE ELEMENT FORMULATION

Generally, boundary value problems can be formulated as
follows11. Let D be a linear space of functions and D* its
dual (space of linear functionals defined on D). Let
P: D -+ D* and B: D -+ D* be operators, such that B is a
boundary operator for P. Given U E D and V ED, let
f= PU and 9 = BV. Then, U E D is a solution of the
boundary val,ue,problem, if and only if

(P+B)u=1 +g (1)
This equation is equivalent to

(Pu, v) + (Bu, v) = (I, v) +(g, v)\f vED

To be specific, let

..Cf'u = Au::!:u, in Q
,

Paper taken from the Proceedings of the 5th Int. Conf. on Finite
Elements in Water Resources, held in Vermont, USA, 18-22 June 1984.

r=U (OOen().QI)
e..1

(9)

In addition(2)

[~J=~-~ (lOa)[U]=Uf-Ue'
(3)

~=l (_OUL+~e.
on 2 0" on (lOb)u=1(UJ+Ue),
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where given any point x E r, it is assumed that .Qe and .Q J
are such that x E O.Qe n a.Q J' Also, the unit normal vector in
(8), must be taken pointing outwards from .Qe into .QJ'
Then, equation

and no condition is imposed on ou'lon. Similarly, in some
hybrid element methods2, it is assumed that PcPa = O.
Hence Sn u' .i' CPa dx = 0 identically and no restrictions are
imposed on the possible values of u' in the region .n.

Observe that equation (16) is also satisfied by the exact
solution U E D. Therefore, by substraction, one gets

(PcPa, U -U') + (B*(u -U""), cPa) -(J*(U -a'), cPa)=O (18)

In view of(18), it is clear that the system of equations (16)
supplies information about the exact solution U. Again the
kind of information depends on the specific family
{cPl' ..., cPN}' of test functions chosen. In particular, if cPa
are required to be continuous, no information about
oul on = oul on, is gotten. Correspondingly, if cPa satisfies
the differential equation locally, then no information
about the function u on .n is obtained. It has interest to
observe, because this may be useful in some applications,
that when the normal derivatives are continuous across
interelement boundaries (i.e. [oCPalon] = 0), then no
information is obtained about u = u. These facts may be
used to focus the information in some aspects of the
solution, depending on the applications. Such procedures
are illustrated in the following Section.

Pu+Bu-Ju=J +.4 (11)

or equivalently

(PIi, v)+ (BIi, v) -(iii, v)= (],v) +(g, 6)VVED (12)

if and only ifli= {Ul, U2,"" UE}, where Ue E Hl(Qe) are the
restrictions to Qe of the solution U E H1(Q) of problem (6).

Observe

(13)

by virtue of(8). Given a ED, the functionals 1a and 1*a are
called the jump and the average values of a, respectively.
Equations (8) and {t3) show that this nomenclature is
appropriate, since Ja defines uniquely the functions [u]
and [au/on] on r, while 1*a defines uniquely the functions
uand au/on. Observe that 1=11+12, where

<J2u,v') 

= -frV[~]dX (14)
EXAMPLES
Let us apply the foregoing discussion for the one
dimensional case, taking g as the open interval (0,1).
Thus, the problems to be considered are

in 0=(0,1) (19a)
d2u

..Cf'U=-=!n
dX2

or alternatively

in 0=(0, 1) (19'a)

subject to

u(O)=go and U(l)=gl (19b)

Let the partition contain E subintervals of equallength
(Xk-l,Xk), with k=1,2,...,E. Thus h=lxk-Xk-ll=l/E.
Assume the system of test functions {q)1' q)2' ..., q)N}
satisfies !l'(Xak=O; k= 1,..., E. Then equations (16) and
(18) are

Clearly 11 ii, 12ii, 11 and 1t, characterize [u], [au/an], li
and ali/ an, respectively.

To obtain an approximate solution u'" E 15, in the finite
element method one replaces (12) by

<Pii', q>~> + (Bu"', q>~> -(1u"', q>~> = (J, q>~> +<,4, q>~>

(X=I,...,N (15)

where {q>1"." q>N} c 15 is a family of 'test functions'.
Usually, one imposes the additional constraint that u'" =

L~=l aBcI>B where {cI>1,...,cI>N} are the basis functions.

However, this latter constraint is alien to the problem,
while equation (15) is necessarily satisfied by the solution
of the problem. Therefore, it has interest to analyse
the restrictions implied by (15), when no assumption is
made on the representation of the solution.

To this end, observe that (15) can also be written as

(Pq>~, ii' > + (B*ii', q>~> -(1*u"', q>~> = (I, q>~> + (,4, q>~>

(X=l,...,N (16)

Taking into account (4) and (13), this imposes conditions
on the possible values taken by

dU' 11 E-I

{~~ -+ L Il'
dx 0 k=1r au'

Jac1 <Po & dx

=

(dU dli' )} =0-[cp,,] ~-dx kThese in turn, can be interpreted as restrictions on the
possible values ofu' in the region Q, cui/on on cQ, u' and
cui/on on r. The kind of such conditions depends of
course on the particular choice of the family of test
functions. Thus, for example, in standard finite element
formulations <,,5« is required to be continuous; i,e. [<,,5«] = o.
Then

(21)
Here IX = 1, ..., N. Also, the dots have been deleted from Uk
and (dujdx)k' since the exact solution u is smooth.
Equations (20) can be interpreted as a system of N
equations for the 2E unknowns u~, (du' jdX)k'
k= 1,..., E -1,(du'jdx)o and (du'jdX)E. IfN =2E,there is a(17)

~dx=O
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possibility this system had a unique solution; in such case
(21) shows that

where we have written b=h, for clarity. Finally, when
!l'=A+l

!aCPl dx-go/b2

(26b)
1 (1

blJ1-b

uN-2uN+
2b fn<PN dX-gl/b2-

uk=ui, (du/dx)k=(du'/dx)k (22)
where k= 1, ..., E -1, for the first equation while
k = 0, 1, ..., E for the second one. Also, when k = 0 or 1, the
dot must be deleted.

A first possibility is to take N =2Ewith {~1'. .., ~2E} in
such a manner that {~1' ~2} is a system of two linear
independent solutions of the homogeneous equation
.P~=O in the interval (XO,Xl) and zero outside. More
generally, the system {~2j-l' ~2j} is a system of two linear
independent solutions of the homogeneous equation in
the interval (Xj-l,Xj). Using general results of the
Algebraic Theoryll, it can be shown that such a system is
T-complete and the system of equations (20) has a unique
solution. Thus, the solution of(20) yields the exact values
of u and its derivatives at all the nodes.

If we are not interested on the derivative, it may be
convenient to eliminate it from the system of equations.
This is achieved by imposing the additional conditions on
the test functions cPa; namely that cPa be continuous and
cPa(O) = cPa( 1) = O. A complete system satisfying these
conditions can be chosen so that, for every a= 1,..., N, cPa
has support on the interval (Xa-l,Xa+l) and N=E-1.
Then the system (20) reduces to

The results just presented, can also be derived applying a
method proposed by Rose12.13 for positive definite self-
adjoint operators on the basis of energy considerations.
However, the methodology here discussed, is applicable
to arbitrary linear operators even if they are non-
symmetric, as will be shown elsewhere.

If we were interested in the values (dujdx}k of the
derivative at all the nodes (k = 0, 1, ..., E), one can impose
the condition that the derivative of the test functions be
continuous (i.e. [dcpjdx] = O). Such families of test
functions are given in Table 2. Substitution of them in
equation (20) yields the following systems of equations.
When .P=A-1

.,(~'
-\dx

cosh b= !nCPa dx4-

IdU

)~ ~+1
Taking the test functions as indicated in Table 1, one

obtains the following systems of difference equations for
the exact values Uk' When !l' = A, then

E (27a)IX=

(~)2u"u«+ u,,-
h2

fllCPa dx-
h2

rxa+J

lxa-,
1X=2, ., N -1 =E-2 (24a) 'dU

),~E

.(~)E

(24b)

f:-

uN-2uN+
h2 fn£PN dX-gl/h2-

h2

Notice 

that these are central differences. When :If' = L\-

fg<p. 

dx

=£-2 (25a)

rb

U2 -2Ul cosh b
!oCPl dx-go/b2:~ ,= ~I

When 2 = A + 1 and 2h # n, 3n, ..., equations (27) remain
valid, if cosh and sinh are replaced by cos and -sin,
respectively. When 2 = Au, the system of test functions
given in Table 2, is not complete because it contains only
E functions. It is necessary to take N =E+ 1, with
CPE+I=X, O<x<1, which clearly has continuous
derivatives and is linearly independent of the family given
in Table 2. Although the system of difference equations
that is obtained for this case is rather trivial, the example
has some theoretical interest because it has the peculiarity
that it is not possible to construct a function of local
support, with continuous derivative and linearly
independent of the system {<Po, <Pl' ..., <PE}'

It may be of greater interest to mention that by
combining the previous constructions, it is possible to
construct finite difference schemes which yields the exact

b JO

(25b)
UN -2UN

2b fn<PN dX-gl/b2=
b2 -b

Table 1. Test functions when Uk is sought (b == h)

.rt' x.-l<X<Xm X« <X <X«+ I

fP« = (X«+ I-X)

fP«=sinh(x~-i-I-x)
fP«=sin(x«+I-x)

L\u
L\u-u
L\u+u

Table 2. rest functions when (du/dx)k is sought (b~h)

Ii' X«-I<X<X« x«<x<x«+i
.

Au lp«=l; a=l,...,E lp«=O
Au-u lp«= -cosh(x-x«-V, a#O lp«=COSh(~+I-X); a#E

lpo=O lpE=O
Au+u lp«= -cos(x-x«-V, a#O lp«=cos(x«+I-x);a#E

lpo=O lpE=O
'." ..." ,

rp.=X-X.-1
rp.=sinh(x-x.-t>
rp.=sin(x-x.-t>
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values of the solution at some nodes and the exact values
of the derivatives at other ones.
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