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ABSTRACT

Applying the method of weighted residuals and then
interpreting the resulting equations by means of
Green's formulas for discontinuous functions a direct
method of analysis 1s constructed. The manner in
which finite elements, boundary methods and finite
differences can be incorporated in this scheme is
explained. This brief article constjtutes a summary
of the theory which soon will appear in full.

INTRODUCTION

Three of the most powerful techniques for the numeri-
cal treatment of partial differential equations are
finite elements, finite differences and boundary ele-
ment methods. The foundations of each one of these
methodologies, 'as originally formulated, appeared to
be unrelated.

More recently, however, it has been recognized that
it is desirable, and it has been suspected possible,
to develop foundations common for all of them.
Indeed, for some specific cases developments of the
sort have been done. Zienkiewicz, for example [1983;
Zienkiewicz, et. al., 1977, 1979; Zielinski and
Zienkiewicz, 1984] has given examples of procedures
which permit coupling finite elements with boundary
methods. Brebbia [1983] on the other hand, stresses
the unifying power of the principle of virtual work.

Regarding finite differences, although it is well
known that some specific algorithms, such as central
differences, can be derived applying the finite ele-
ment formulation, the general theory is based on
Taylor series developments [ Lapidus and Pinder, 1983
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Here a summary of a unifying theory recently devel-
oped by the author is presented [Herrera, 1984al. The
approach is quite general, since it is opplicable to
any linear operator. The procedure consists in apply
ing the method of weighted residuals [FPinlayson, 1977
and then interpreting the resulting equations by
means of general Green's formulas for discontinuous
functions, which have just been obtained by the
author [Herrera, 1984a)l for general non-symmetric
operators. They constitute generalizations of pre-
vious result which have already been published in
book form | Herrera, 1984b}.

The use of CGreen's formulas permits formulating varia
tional principles for arbitrary non-symmetric opera-
tors, thus allowing a very systematic formulation of
the numerical approach. Even more, by their use the
constraint imposed by the weighted residuals on the
differential operator is transformed into a restric-
tion which is imposed explicitly on the possible solu
tions, deriving in this manner the information which
is sought about the actual solution.

Explicit knowledge of the information that is being
derived by each one of the weighting functions 1is
quite valuable, not only as a powerful tool of analy~
sis which can be used to evaluate the erxror, but also
as a guide which yields insight and orientation to
develop more efficient approximate methods.

The unified formulation is presented in Section 3 and
then it is specialized for finite elements, boundary
methods and finite differences in Sections 4, 5 and 6,
respectively. The finite difference schemes presented
in Section 6, yvield exact values of the solution at
the nodes. Such kind of results were first obtrained
by Rose [1964, 1975] for Sturm-Liouville operators.

BOUNDARY VALUE PROBLEMS

Let P:D+D* and B:D»D* be functional valued operators
{Herrera, 1980, 1984b} such that B is a boundary oper
ator for P. Generally, boundary value problems can
be formulated as follows. Given functionals £ €D*
and g €D#%, such that f is in the range of P, while g

is in the range of B, the boundary value problem con-
sists in finding u€D such that

Pu = f while Bu = g ¢))
The theory shows that equations (1) hold, if and only

if [Herrera, 1980]
(P~B)u = f-g (2)
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typical example is Dirichlet problem, which can be
obtained by letting

<Pu,v> = [ vhudx ; <Bu,v> = - [ u%ldx (3a)
Q an 0
and
<f,v> = [ vfgdx and <g,v> = -~ [ By 3V x (3b)
Q ' pp 9 On

where @ is a region, 9§ its boundary, fQ is defined

in £ while gy are the prescribed bouudary values on
an.

Let Q* be formal adjoint of P and

P - B = Q% - C* &)

be a Green's formula. Here, the star refers to the
transposed bilinear functional. Then u€D is solu-
tion of the boundary value problem, if and only if

(Q%* = C*)u = f - ¢ {(5)

The boundary values associated with any function u€D
are characterized by Bu and C¥u. Thus, Bu are the
prescribed boundary values while C*u are the comple-
mentary boundary values which can be evaluated only
after the solution has been obtained. When P and B
are given by (3a), one can take Q=P and C=38 in (4)
to obtain a Green's formula. Hence

<Q*u,v> = [ ulvdx and <C¥u,v> = -~ [ v —dx (6)
Q a8

Thus the prescribed boundary values Bu are associated
with the values of the function u on 90 and the com-
plementary boundary values C*u with the normal deriva
tive on 8Q. For Elasticity, when the displacements
are prescribed on the boundary 8§, the complementary
boundary values are the tractions.

Observe also that Pu is prescribed in the boundary
value problem, while P*u, in view of (6), is associ-
ated with the sought values of the function in the
region Q.

UNIFIED FORMULATION

The unified formulation is based on the application
of weighted residuals and subsequent use of Green's
formulas for problems in which the admissible func-
tions may be discountinuous.
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Let 7 be a partition of @ into a finite collection of
E subdomains 2 , e=1,...,%, [Babuska, et. al., 1977,
19787 . If the space of admissible functions D is
made of functions which are smooth in every one of
the subdomains Q, separvately, then one can still define
P:D>D*, B:D+D*, Q*:bp+D* and C*:D+D*, by mecans of
(3a) and (6), if the dintegrals are interpreted as
sums of the contributions coming from every one of

E
the subdomains (i.e. / = L J and similarly for J).
Q e=1 Qe an
However, equation (4) has to be modified to be

P - B - J = Q% - Ck - K% (7)

Where the "jump" operator J:D»D* is given by [Herreva,
1980]

»

<qu,v> = S{lu] 2 - 915Y ax (8a)
r

while the '"average" operator K#*:D»D¥* is given by

<K*u,v> ='§{{v}%§ - u %%]}dx (8b)

Clearly K*=J*, for this case. Here, I is the union
0oi all interelement boundaries, while

u Buf Sue
e L s Y T (92)
. Ju Ju
< _ 1 Lo 8w 1o f =
w=glugru) 5 50 = 0 ) (90)
at every point x€ 30 N23,. In equations (9), the

unit normal vector is takén pointing outwards from Qe.

Green's formulas (7) for arbitrary formally symmetric
operators in discontinuous fields were published by
the author [ Herrera, 1980} and have just appeared in
book form [Herrera, 1984b}. The extension to non-sym-
metric operators will son appear [ Herrera, 1984al.

For arbitrary linear bouundary value problems with
prescribed jumps, including initial value problems,
since the region f may be space-time, the problem

is formulated by means of the functional equation

(P - B - J)u=Ff~g - j (10)

In general, £, g and j are defined in terms of the
data for the differential operator, the boundary values
and the prescribed jumps in 0, on 3 and on interele-
ment boundaries I', respectively. In this manner Pu,
Bu and Cu are prescribed, while Q%u, C%u and K*u
supply pieces of information about the sought solu-
tion, Indeed, knowing Q%*u is tantamount to know u

okt i
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Taking into account (12), it is clear that equations
(13a) are alsc satisfied by the exact solution u
(recall j=0); i.e. an exact is necessarily an ap-
proximate solution, Therefore, by substraction one
gets

<Q*(U'-*u),wa> - <CH(u' —u),e > - <KE(u' -wd,e > = 0

a = 1,...,N (14)

The system of N equations (l4), shows that all what
is required of an approximate solution is that cer-
tain linear cowbinations of the weighted averages
(defined by <Q*%u',¢ >) of the values in the interior
of the finite elements Qe (e=1,.,.,E), with those of
the complementary boundary values (defined by
<C*u',p >) and with those of the averages on the
interelément boundaries (defined by <K*u',¢ >), be
precisely equal to those associated with theée exact
solution. Thus, 1if these weipghted averages are com-
puted after an approximate solution has been obtained,
the values associated with the exact solution are
derived. Thus, this is information about the exact
solution; indeed, the only information about the
exact solution that one can derive from an approximate
solution. Observe, the solution of system (13) is
non~unique but the information about the exact solu-
tion supplied by an approximate solution u', is the
same independently of the specific approximate solu-
‘tion u' considered.

Keeping Dirichlet problem as illustrative example,
equation (13a) is equivalent to (l14), The latter
states that

313’
P

Ydx; (15a)
n

dyp
Jouthe ax+ fe. S4lay 4 f{ﬁ‘[———% -le. ]
Q o 30 & on r an o

be equal to

du swa 3y
S oubde dx+ Jeg—dx+ [{u|5—| -[¢ lo-}dx (15b)
Q o 30 an T dn a’ 3n

In view of the fact that either one of the equivalent
systems (13), possesses infinitely many solutions, in
the finite element method one usually assumes that u'
is given by N

u'' = ¥ a 9 , (16)
a=1 Q o3

where {¢;,...,0y} CD is an additional family of func-
tions, the base functions. Since the information
{(about the exact solution u) supplied by the approxi-
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in the interior of the subdomain ({finite elements)
Q.3 C*u is associated to the complementary boundary
values on 398, while K*u represents the average values
acress the interclement boundavies. Tor example, in
finite element formulations the sought solution is
usually smooth, so that j= 0., When equations (9)
apply, this implies that the average i across inter-
glement boundaries coincides with the fuuction.
Therefore, knowing K*u is tantamount to know the fung
rion u and 2u/3dn there.

Equation (10) is equivalent to
(Q* - C* - K*)u = f - g~ 3j (11)

by virtue of (7). The advantage of (11) over (10) is
that the latter involves the sought information Q%*u,
C*u and X*u, explicitly. This will be discussed morxce
thoroughly in the next section.

FINITE ELEMENTS

Equation (11) is a functional equation, since f, g,
jJED*; i.e. f, g and j are linear functionals defined
on the space D of admissible funections. Thus, we can
write

<(Q* - C* =~ K*)u,v> = <f-pg-j,v> ¥ vED ~ (12)

instead of equation (11). In what follows it will be
assumed that the sought solution is smooth, so that
ji=0. '

Equation (12) is satisfied, if and only if, the func-
tion u€D is an exact solution. Generally, the dimen
sion of D is infinity and approximate methods are
formulated replacing D by a finite family{@1,.”,¢N}CD
of linearly independent functions; these are called
test or weighting functions. Thus, we say that u’' €D
is an approximate solution when

(P-B-Du',e > = <f-g, p> (13a)
or equivalently
<Q*u’9‘pa> - <C*D';‘Pa> - <K*U's‘pa> = <fa¢a> - <gs'pa> H

o= 1,...,N {(13b)

Observe, the system of N equations (13a), imposes re-
strictions on (i.e. it supplies information on) the
values of the function in the interiocr of the finite
elements g {through Q*u') the complementary boundary
values on 9f (C*u') and the average value of u on the
interelement boundaries ['(K#*u). '
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mate solution is indepcndent of the particular base
system {®,,...,%y} used to represent u', it is cleax
that the base functions {®;,...,0y} only define the
nature of the interpolation used to extend the actual
information available.

Equations (l14) can be used to carry out an analysis
of the errors which 18 independent of the interpo-
lating functions used. This can then be complemented
by the analysis of the error introduced by the inter-
polating functions {&;,...,0y}.

For Laplace operators, by integration by parts it is
seen that the functional <(P-B~J)ju',v> = <(Q*-C*-K¥)u,v>
can also be written as '

. .
(P-B-J)u',v> = ~fVu'Vvdx - f{[u'}%% + {v]%%r}dx
1Y) ¢ T
+ S v %ﬁr + u’%%}dx (17)
0

When conforming elements are used, the functions are
continuous across interelement boundaries so that
[u] = [v] = 0 on I

When in addition, u'=v =0 on the boundary, the func-
tional of equation (17) reduces to the well known
functional [Vu Vv dx. VWhen less restrictive condi-
tions apply’y the functional {(12) has to be used.

BOUNDARY ELEMENT METHODS

o

Observe that
<Qku',p > = <Qp ,u'> (18)

Therefore, if
Qp = 0 s for o = 1,...,N (19)

then the term containing Q*u' in (13b) drops out,
reducing to

<Cku',p >+ <Ktu',p > = <g-f,9 >, a=1,..,N (20)

This is a system of equations involving the comple~-
mentary boundary values C#*u' and the averages across
interelement boundaries K*, Thus, a boundary method.

Using (14) it is seen that this system is equivalent
to

<C* {(u' —u),vu>4'<K*(u' ~u),¢a>m 0; o=1,...,N (21)
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The author has shown |Herrera, 1984L), that when the
system of weiphting functions gy is T-complete, the
system (21) implies that C¥*u' = C*u and K*u' = K¥*y,
Hence, the exact complementary boundary values and
the exact values on intecrconnecting boundaries T,
are obtained in that case by solving (20). For
problems in several dimensions T-~complete systems
not finite and the system (20) yields approximate
values only. However, there is an iwportant case for
which T-complete systems are finite;: these are one~dimensional
problems., Thus, for ordinary differential equations onc gets
exact values and these will be discussed in the next Section,

AYoe

Application of formula (20) allows formulating two
classes of boundary methods. If the test functions
Yo are required to be smooth in § (i.e. Jpy=0),
boundary methods in a restricted sense

are obtained.
In this case

]

Gy ! = t
<Kku',p > <Ky ,u'> 0 (22)
because the theory shows that K¢g =0

if and only if
Jp,=0. Equations (20) reduce to

<C*u',va> <g"‘fs‘pa> s 0=l,...,N (23)

which is Trefftz method for non-symmetric operators
[Herrera, 1984c].

FINITE DIFFERENCES

As an illustration of boundary methods in the extendad
sense, consider the case when P:D*D* is associated
with an ordinary differential eguation. Thus
1
<Pu,v> = S v Lu dx ‘ (24)
0
where £ is an ordinary differential operator which is
linear. The interval [0,1] has been taken for defi-
niteness. Let L£* be the formal adjoint of £. Then
1
<Qu,v> = f v L*y dx (25)
0
The results of the analysige for arbitrary differen-
tial operators will be presented elsewhere [ Herrera,
1984a}. Here, attention is restricted to second

order equations. Thus, we take
d?u du d%y d
= Pravial . * BT e e
Lu dx24~a1 dx4~a2u ; L*y a2 dx(a;u)4~a2u (26)

The operators B and C* depend on the boundary condi-
tions to be prescribed. For definiteness it is here
assumed that u{(0) and u(l) are prescribed, in which

£ . stttk s b+ S P -
A SR,
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‘

case suitable boundary operators are

<Bu,v> = u(0) [%(0) - aw(O)} - u(l)[%(l) - CHV(I)J

{(27a)
and
CChu,v> = u(O)g—ﬁ(O) - v(l)g-;‘:wu) (27b)

consider a partition of the unit interval {0,1], such
that the nodes {xg,%;,...,xpg} satisfy O=x,<x;<... xp=l.

Then
E-1 dvi 90
fJu,v> = ) {[u]i 7;:-‘vi[§£]'~alvi'u i) (28a)
i=1 i
and
E-1 d&i dv .
<Kku,v> = .Z {iv]i Fpa ui[éé]_+-a]ui[v]i} (28b)
i=1 i
where
20, = U(Xi+)4'u(xi—) , [u]im u(xi+)-u(xi-) (29)

and similarly for the derivatives.

Application of the results of Section 5 allows obtain-
ing the exact values of the solution at the nodes.
Indeed, consider the boundary wvalue problem

Ly = ¢ s uw(0) - g , u(l) = g1 (30)

where £ is given by (26),.f is a prescribed function
in (0,1) and gy, 81 are given numbers. If no conti-
‘nuity restriction is imposed at the nodes, then a T-
complete system {wx,-..,WN} is made of 2E functions
{(i.e. N=2E), because the differential operator L is
second order. In view of equations (27b) and (28b),
the system

<C*“"‘oa>+<K*“"pa>=<g"f"‘aa> , a=1,...,2E {31)

invelve 2E unkowns; these are, the values of u at the
E+1 nodes and the values of du/dx at E-1 interior
nodes.

If we are not interested on the derivative, it may

be convenient to eliminate it from the system of
equations, This is achieved by imposing additional
conditions on the test functions. Let us require
C¥u,@. > = <CPy,u>=0 ; di.e. C¢_=0. Hence ¢u{0)=¢,(1)=0,
In addition, let ¥y be continudus. Then a T-complete
system is made E-1 functions, only, and by inspection
it is seen that system (31) involves only the values
of u at the interior nodes.
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In order to illustrate the procedure just explained

we consider three specific cases. These correspond

to the choices a1 =0 with @2 = 0 (Casc 1), dz = ~1
(Case 2) and az; =1 (Case 3). In addition x., . -x.,=h=b
; X . i+l i '
ie independent of i.
TABLE 1
Case xot-»1<X<Xa >c0t<x<:><a_‘"1
S A R T | P~ oy — %)
«PO':= sxnh(x~xu”1) va=sxnh(xa+1~x)
3 SPOL:: 31n(x~xa*1) ﬂpaa“ éln(xoﬂ_l - %)

The system of equations (31), become:

Case 1
Uarl T o1 7%, o1
s =57 / fQ*Padx 7 0=2,,..,N~1=E-2 (32a)
*a-1
u, ~ 2u h u,. ~ 2u 1
N o 2. N TNHL 1 -
T The J £ dx g,/h* 3 e " J £ Py dx
[ 1-h
- g, /n? (32b)
Notice that these are central differences.’
Case 2
u +u —-2u ¢cosh b onrl
atl o~ o 1
17 =17 I stoadx ; =2,...,N~1=E~-2 (33a)
*o-1
u2-2ulcosh b_ML }) foa 2 s uN—ZuN-H .
b2 Th | T@TetF T B T -
1 ! 2

where we have written b=h, for clarity.

Case 3
v ., tu -2u cos b Xkl
o+l -1 a 1
7 =35/ g dx 5 0=2,...,N-1=E~2  (34a)

- s TP S
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u,~2u, cos b b u, - 2u
2 1 =L mo fp? s N ML
e s :’ EPodx ~g,/b" 5 w2 =
, 1
=t7 J Egpdx - gy /b° (34b)
1-b

In a similar fashion one can derive finite difference
schemes which would yield the exact values of the
derivative at prescribed nodes only or as a matter

of fact the exact values of the scolution at some
nodes and the exact values of the derivative at other
ones. TFor illustrations and more thorough discussion
of such construction the reader is referred to

| Herrera, 1984 a,a].
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