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Unified Formulation of Numerical
Methods. I. Green's Formulas for
Operators in Discontinuous Fields

Ismael Herrera
/nstituto de Geofisica, Universidad Naciona/ Autonoma de Mexico,
Apdo. Posta/21-524, 04000 Mexico, D.F:

Applying the method of weighted residuals and then interpreting the resulting equations
by means of Green's formulas for discontinuous functions, a direct method of analysis
is developed. The scheme includes finite differences, finite elements, and boundary
methods. This is the first of a sequence of articles in which the methodology is pre-
sented. A fundamental ingredient of the procedure are general Green's formulas for
operators defined in discontinuous fields. They are developed in this first article.

I. INTRODUCTION

Three of the most powerful numerical methods for partial differential equa-
tions are finite elements, finite differences, and boundary element methods.
The foundations of each one of these methodologies, as originally formulated,
appeared to be unrelated. More recently, however, it has been recognized that it
is desirable to develop foundations common to all of them.

This article is the first of a sequence of articles devoted to presenting a unify-
ing theory recently developed by the author. The approach is quite general,
since it is applicable to any linear operator, symmetric or nonsymmetric, re-
gardless of its type. Thus, for example, the theory is applicable to steady-state
and time-dependent problems.

The starting point fot the theory is a rather simple and, as a matter of fact,
old idea [see, e.g., I]. Let:£ be a differential operator defined in a region such
as n in Figure I, and let:£* be its formal adjoint. Then, when u and v satisfy
suitable boundary conditions, Green's formula

v'£udx = u;£*v dx I)

holds. Equation (1) allows a convenient interpretation of the method of
weighted residuals. Consider the equation

5£u = In, in n (2)

su~ected to homogeneous boundary conditions for which Green's formula (1)
applies. As is usual in the method of weighted residuals [2], one says that a
function u' is an approximate solution of this problem when
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(3)r CPa(~u' -in) dx = Q,
In

Na=

Here, {'PI, ..., 'PN} is a family of "weighting functions." Usually, the sys-
tem (3), which is made of N equations, has many solutions. In order to obtain a
system possessing a unique solution, it is customary to introduce the represen-
tation u' = Iaa<l>a of u' in terms of the system {<PI,... ,<I>N} of base func-
tions. However, this representation is an artifice that bears no relation to the
exact solution u. On the other hand, the system (3) is also satisfied by the exact

solution. Thus,

(4)Lcp,,(,:£u -in} dx = 0 Na-

One may inquire what is the actual information ab?ut the exact solution
contained in an approximate one. To ansv.:er this question, compare Eqs. (3)

and (4), to obtain

r cp,,5£u'dx ='r cp,,5£udx, a =l,...,N. (5)
J!} In

In this form, Eq. (5) is not informative. A more informative form is obtained

by applying Gre~n's formula (I); this yields
~ ,.

J u';£*CPadx = J u;£*CPadx, a = 1,... ,N. (6)
n n

The system (6) can be interpreted in terms of projections on a Hilbert space for
which the inner product of the two functions u and v is given by ~! uvdx. Thus,

the answer to our questions is:

An approximate solution u' is any function whose projection on the subspace
spanned by the system of functions {;£*cP" ..., ;£*CPN} coincides with that of
the exact solution u. Indeed, this projection is "all the information" about the
exact solution contained in an approximate solution. In this light, the repre-
sentation u! = !-aacPa can be interpreted as a procedure for extrapolating the
actual information contained in the approximate solution.
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The very simple and precise result just presented clarifies much of the nature
of approximate solutions, but up to now it has not been possible to apply it, in
a systematic manner, to analyze discrete methods. This is due to the fact that
Eqs. (6) hold only when the "admissible functions" are sufficiently smooth and
satisfy homogeneous boundary conditions. However, in the formulation of
finite-element methods, for example, nonhomogeneous boundary conditions
are considered and the admissible functions are discontinuous across the
"interelement boundaries" which separate the finite elements from each other
(Fig. 1). In many cases the base functions as well as the weighting functions
are required to possess certain degree of smoothness, but in some others such
as in Petrov-Galerkin methods [3], fully discontinubus weighting functions are
considered. Even more, the development of a theory in which the analysis
can be carried out when both the base functions as well as the weighting func-
tions are fully discontinuous, would be useful any way, since satisfying the
required continuity restrictions frequently complicates the numerical treatment
of the problem.

When trying to extend Green's formula (1) to discontinuous functions, it: is
natural to resort to the theory of "distributions" or generalized functions. This I
did, in my first attempts to tackle this problem, but it soon became apparent
that the incorporation of the Hilbert-space structure or even the topological
structure from the beginning gave rise to inconvenient rigidity. In order to
avoid this, a purely algebraic formulation was preferred [4]. This was done by
means of bilinear forms such as (Pu, v), which can also be thought of as
functional-valued operators P:D ~ D *, where D is the linear space of admis-
'sible functions, while D * is the space of linear functionals defined on D

(i.e., D* is the algebraic dual of D). Also, focusing attention on the algebraic
structure is useful to obtain Green's formulas of general validity.

Using this formulation, one is led to replace Eq. {I) by the "general Green's
formula for operators defined in discontinuous fields:"

(Pu,v) -(Bu,v) -(Ju,v) = (Q*u,v) -(C*u,v) -(K*u,v). (7)

Here, the asterisk stands for the transpose of the corresponding bilinear form.
Thus, for example (Q *u, v) = (Qv, u). In Eq. (7), (Pu, v) and (Qv, u) are de-

fined in terms of the differential operators;£ and ;£*, respectively, by means of

(Pu,v) = fnV;£Udx; (Q*u,v) = (Qv,u) = fnU;£*Vdx. (8)

Then Q is a "formal adjoint" of P in an abstract sense introduced in the theory.
Also (Bu, v) and (C *u, v) are "boundary operators" in an abstract sense, while
(Ju, v) and (K*u, v) are the "jump" and "average" operators, respectively.
Generally, when formulating a boundary-value problem one prescribes Pu, Bu,
and Ju; it will be assumed that fE D *, g E D *, and j E D * are the corre-

sponding prescribed values. Throughout this section it wiU also be assumed that
the sought solution u is smooth and therefore ,j = O.

It must be emphasized that the integrals in (8) are understood in an elemen-
tary sense (surfaces of discontinuity, on which the operators ;£ and ;£* are not
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defined, are left out), so that generalized functions or the theory of distributions
are not us~d; In view pf (8), it is clear that Q *u is characterized by the values
of the solution u in the interior of the finite elements. The meaning of the
"complementary boundary values" C *u is illustrated by means of some ex-
amples: For the Dirichlet problem of the Laplace equation, in which u is pre-
scribed on the boundary, the complementary boundary values are the normal
derivatives au/an; {or problems of elasticity, when the displacement is pre-
scribed on the boundary, the complementary boundary values are the tractions.
Generally, while the boundary values Bu are prescribed, the complementary
boundary values C *u can be computed only after the exact solution u has been
obtained. Similarly, the "average values" K*u of the exact solution (which
coincide with the actual values for smooth solutions), on the interele-
ment boundaries of the finite elements, also can only be computed after the
exact solution ha'S been obtained. Thus, while Pu, Bu, and Ju constitute
the "prescribed data" of the problem Q*u, C*u, and K*u will be called the
"sought information. "

The "general Green's formula" (7) yields two variational principles for any
linear boundary-value problem. The first one is

cO

(Pu,v)- (Bu,v) -(Ju,v):;: <J,v)-.(g,v); V v ED. {9)

This equation, in the presence of (7), is equivalent to the second one:

(Q*u,v) -(C*u,v) -(K*u,v) = '(i,v) -(g,v), V v ED. (10)

The variational principles (9) and (10) will be called "direct" and "indirect"
or "derived" variational formulations of the original boundary-value problem,

respectively"
According to the method of weighted residuals, an approximate solution

u' E D will be anyone that satisfies the direct variational formulation (9), and
therefore also the indirect one, for every we-ighting .function of the family
{lpl'... ,lpN} CD. Since the exact solution u ED necessarily satisfies (10), it

is clear that

(Q*u',lpa) -\C*u',lpa) -(K*u',lpa)
= (Q*u;lpa) -(C*u,lpa) -(K*u,lpa), a = 1,...,N. (11)

This is the equation we are looking for; it replaces (6) when the problem is for-
mulated in general discontinuous fields. Clearly, the functionals (Q *u, CPa) -

(C*u,lpa) -(K*u,lpa), (a = 1,. .,' ,N), which are correctly supplied by

any approximate solution, are part of the "sought information." This is indeed
"all the information" that one can extract from an approximate solutionu'. The
representation u' = !aa<l>a supplies a procedure for extrapolating such infor-

mation, but the actual information contained in an approximate solution is inde-
pendent of such an extrapolation process and only depends on the system of
weighting functions {lpl' ..., IpN} chosen. These observations constitute the
conceptual basis of the methodology presented in this sequence of articles.

It must be mentioned that the theory presented here is the outcome of a line
of research initiated by the author more than ten years ago' and that the genesis



UNIFIED FORMULATION OF DISCRETE METHODS. 29

of the basic ideas can be found in many previous publications [4-19]. Most of
the previous work was done for formally symmetric operators and attention had
been focused on boundary methods; more specifically, the Trefftz method. An
integrated presentation of those results has just appeared in book form [20].
However, it was only after the draft of the book had been completed that I ex-
tended the theory to nonsymmetric operators. This was essential for developing
a unified formulation of discrete methods.

This article contains the systematic development of Green's formulas for
nonsymmetric operators. The forthcoming articles will present the general for-
mulation of boundary value problems and its application to the analysis of finite
differences, finite elements, and boundary methods;

II. PRELIMINARY NOTIONS AND NOTATIONS

.Denote by ;9' the field of real or complex numbers. Let D be a linear space
over the field ;9', whose elements will be called scalars [21]. Elements of D will
be denoted by u, v,... ,and will be said to be admissible functions. Write D*
for the linear space of linear functionals defined on D; i.e., D* is the algebraic
dual of D. Hence, any element a E D * is a function a: D -.;9', which is

linear. Given v E D, the value of the function a at 1"I'will be denoted by

a(v) = (a, v) E;9'. (12)

In this work functional-valued operators P:D -.D * will be used extensively.

Given u ED, the valueP(u) E D* is itself a linear functional. According
with Eq. (12), given any v ED, (P(u), v) E ;9' will be the value of this linear
functional at v. When the operator Pis itself linear, (P(u),v) is linear in u
when v is kept fixed. Therefore, as it is customary, we write

(Pu,v) = {P(u), v) E ;9' (13)

for this value. We shall be concerned, exclusively, with functional-valued
operators that are linear.

On the other hand, let D2 = D Ef)D be the space of pairs{u, v} with u E D

and v ED. We may consider functions {3:D2 -.;9'. The value of such a
function on a pair {u,v} E D2will be written as (3(u,v). Such a function is
said to be a bilinear functional if it is linear in u when v E D is kept fixed,
and, conversely, it is linear in v when u is kept fixed. There is a one-to-one cor-
respondence between bilinear Junctionals and functional-valued operators
which are linear. This is given by

= (Pu,v (14)
In what follows, operators P:D ~ D * will be defined by giving the corre-

sponding bilinear functional.
Given P:D ~ D*, let Eq. (14) be satisfied, thenotationP*:D ~ D* will

be used for the operator associated with the transposed bilinear functional; thus

(P*u,v) = f3*(u,v) = f3(v,u) = (Pv,u). (15)
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Here, fJ* is the transpose of fJ and P * : D ~ D * will be called the transpose of
P:D ~ D *. Observe that the transpose operator is well-defined whenever
P:D ~ D*isgiven.

Example 2.1. In applications of the theory, bilinear forms such as (Pu, v)
will be used to characterize boundary-value problems variationally. Thus, if D
is a linear space of functions on a region nand ':£ is a linear differential opera-
tor defined in functions u E D, then one can define P:D -+ D * by

,.
(Pu, v) = J v5£udx {.\6)

n

associating in this manner a functional-valued operator to the original differen-
tial operator 5£.

For any operator P : D ~ D * the null subspace of P will be denoted by

Np. Hence,

N = {u E D I Pu =O }p

Some relationships between the null subspaces of functional-valued operators
will be used in the sequel.

Definition 2.1. One says that the operators P:D -D * and Q:D ~ D * can

be varied independently, if for every U ED and V ED there exists u ED
such that

Pu = PU while Qu = QV. (18)

The notion we have just introduced can be defined in several alternative --~
equivalent-ways. For later use, they are listed now.

Theorem 2.1. Let P:D ~ D* and Q:D ~ D* be given operators. Then,
the following assertions are equivalent:

(i) Pand Q can be varied independently.
(ii) For every U E D, there exists u E D such that

Pu = PU while Qu = O. (19)

(iii) For every V E D, there exists u E D such that

Pu = 0 while Qu = QV.

(iv) D = Np + NQ .(21)

(v) For every u ED there exist Ul ED and U2 ED such that

{a)

bur

(20)

U 

= Ut +U2 (22a)

and

(b.) Pu == PUI while Qu = Quz (22b)

Proof. We omit the proof of this result. A slightly different version of this
theorem is shown in [20].
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IfR = P + Q, it is easy to seethatNR ~ Np n NQ' When, in addition, p*

and Q* can be varied independently, one has

NR = Np n NQ .(23)

Proposition 2.1. Assume p* and Q* can be varied independently. Let R =

P + Q, then Eq. (23) is satisfied.

Proof. This result is also shown in [20].

III. DECOMPOSITION OF OPERATORS:
A REPRESENTATION THEOREM

The unified formulation of discrete methods is based on abstract Green's
formulas which are special cases of the kind of decompositions of operators
discussed in this section.

Definition 3.1. Let R:D -D * be given. The operatorsR; andR2 are said to

decompose R when

(i) R = R, + R2. (24)

(ii) R, and R2 can be varied independently.
(iii) Rt and Rf can be varied independently.

Proposition 3.1. LetR, andR2decompose R. Then

NR = NR, n NR2 while NR* = NR*, n NR*2. (25)

Proof. By virtue of Proposition 2.1.

As mentioned before, the general class of Green's formulas to be used in
this work are special cases of the kind of decompositions introduced in
Definition 3.1. For applications, great flexibility is achieved by characterizing
such decompositions abstractly. This depends on properties of the subspaces
NRI, NR2, NR*" and NR*2.

Remark 3.1. Assume Rl and R2 decompose R. Then

(a) (Ru, v) = 0 V' u E NRI and v E NR*2 (26)

(b) NRt :) NR while NR*2 :) NR* .(27)

(c) D = NR, + NR2 = NR*1 +NR*2. (28)

Proof. Equation (26) is clear because

(Ru,v) = (R,u,v) + (Rfv,u).

Relations (27) follow from Proposition 3.1, while Eqs. (28) are mere restate-
ments of properties (ii) and (iii) in Definition 3.1.

In a similar fashion, it is clear that

(a') (Ru,v) = 0 V' u E NR2 and v ENR*" (26')

(b') NR2 :) NR while NR*, :) NR* .(27')
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The following definitions are motivated by these remarks.

Definition 3.2. Let II CD and Iz C D be two linear subspaces of D. Then,
the pair {II, Iz} is said to be ~\pair of conjugate subspaces for R, when

(i) (Ru,v)=O VuE I. and vEIl. (29)

A pair {II, Iz} of conjugate subspaces for R is said to be regular when in addition

(ii) II :) NR and Iz:) NR*, (30)

In view of these definitions and previous remarks, it is seen that {NRI,NR.z} is
a pair of conjugate subspaces that is regular for R. Another pair with the same
property is {NRz,NR*I}.

Definition 3.3. Lett {/1;,/zz} and {/IZ,/zl} be two pairs of regular conjugate
subspaces for R. The pairs togeth~r are said to be a canonical decomposition of
D with respect to R, if

D = -J II + /12 = /21 + 1.22 .(31)

Clearly, when R] and R2 decomposeR, the pair {NR2,NR*I} and {NRI,NR*2}
constitute a canonical decomposition of D with respect to R. Indeed, when

taking

III = NR2, 122 = NR*I , (32a)

112 = NRI, 121 = NR*2, (32b)

Eqs. (31) are satisfied by virtue of (28). In such a case, there exist elements
"II E Ill, UI2 E 112, U21 E 121 and U22 E 122 such that

U = Ull + Ul2 = U21 + U22 (33)

by virtue of Definitions 3.1 and Theorem 2.1. With this choice

(R1u,v) = (RUll,V21); (R2u,v) = (RUI2,V2J, {34)

where the decomposition (33) has also been applied to v E D.
In the remaining part of this section, we prove that Eqs. (34) supply the de-

sired abstract characterization of operator decompositions.

Theorem 3.1. Let {Ill,I22} and {I[2~I21} be a canonical decomposition of D
with respect to R. Then, there exists a unique pair of operators R1:D -+ D*
and R2:D -+ D * which decompose R and satisfy Eqs. (32). Such operators are

defined by Eqs. (34), where representation (33) is used for U and v.

Proof. It is given in the Appendix.

Definition 3.4. Let {II ~ I2} be a pair of conjugate subspaces, regular for
R. Such a pair is said to be completely regular for R if, in addition, the

implications*

+The manner in which the subindexes are introduced in this definition yields nota-
tional advantages, as will be seen in the sequel.

tIn what follows the arrow => must be read as implies and the double arrow ~ as if
and only if.
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(Ru, v) == 0 V v E /2 => u E./ (35a)

and

(Ru,v) = 0 V U Ell ::}v E I:

hold.

Remark 3.2. It is easy to see that a pair of linear subspaces {I" I 2} is com-
pletely regular for R if and only if the following equivalence relations hold:

(Ru, v) = 0 V v E.l2 ~ u Ell, (36a)

(Ru,v)=O Vu Ell~v EI2". (36b)

Proposition 3.2. When {I.lI,I22} and {II2,I21} is a canonical decomposition of
D with respect to R, one has:

(i) Each one of the pairs {III,I22} and {II2,I21} is completely regular for R.

(ii) NR = III n 112 while NR* = 121 n 122, (37)

Proof. This is also given in the Appendix.

Remark 3.3. Equations (37) imply that in representation (33) the vectors
UII ED and Ul2 E D are unique except for elements belonging to NR- Simi-
larly, U21 E D and U22 E D are unique except for elements belonging to NR*.

IV. BOUNDARY OPERATORS AND GREEN'S FORMULAS

The notions of boundary operators, formal adjoints, and Green's formulas
are introduced in this section.t An abstract characterization of Green's formulas
is also given.

Definition 4.1. B:D ~ D* is a boundary operator for P:D ~ D* if

(Pu, v> = 0 V v E NB* ~ Pu = O. (38)

Example 4.1. Let n be an open region of an n-dimensional Euclidean space
(n ~ I) and an be its boundary (Fig. I). Assume the admissible functions
(i.e., the elements of D) possess second-order continuous derivatives on the
closure of n. Define P:D ~D * and B:D ~ D* by

(Pu,v) = rv~udx
In

and (Bu,v) = r uvdx
Jan

In this case it can be shown [see, e.g., 20] that

NB* = {u ED I u = 0 on aO}. (40)

Using arguments that are standard in calculus of variations, it can be seen that
implication (38) is fulfilled. Thus, B is a boundary operator for P.

Definition 4.2. The operators P: D -D * and Q: D -D * are said to be
formal adjoints when R = P -Q* is a boundary operator for P, while R* is a
boundary operator for Q.

tDefinitions 4.1 and 4.2 modify slightly those presented in [20].
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Remark 4.1. The condition of being formal adjoints defines a symmetric re-
lation among functional-valued operators.

Definition 4.3. An operator P:D -D * is said to be formal.lY symmetric
when P is formal adjoint of itself.

Formally symmetric operators were discussed in [20]. The following result
was shown there.

Proposition 4.1. Given P:D -D*, define A = P -P*. Then P is for-
mally symmetric if and only if

(Pu, v) = 0 V vENA =? Pu = 0.. (41)

Proof. See [20].

The class of Green's formulas .to be considered in this theory is given next.

Definition 4.4. Let p": D -+ D * and Q: D -+ D * be formal adjoints. The

equation

P -B = Q* -C* (42)

is Green's formula when C* is a boundary operator for B, C is a boundary
operator for B *, and, conversely, B is a boundary operator for C *, while B * is
a boundary operator for C. Equation (42) is Green's formula in the strong sense
when Band -C* decompose R = P -Q*.

Example 4.2. Let the linear space of admissible functions D = C '(0),
where n is the region (space-time) illustrated in Figure 2. Consider the differ-
ential operator ;;E, relevant in transport problems, and its formal adjoint (as a
differential operator) ;;E* given by

T

.o.~ .0. x (0)

a~~ if nt+Vnx>O

a~~ if nt+Vnx<O

FIG. 2.
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au -
:P*u ~ -at ~

ax
au,
-,
ax

(43)

Define

(Pu,v) = [v:£udx;(Q*u,v)= (u:£*vdx, (44
In In

where dx = dxdt. Then P:D -D* and Q:D -D* are formal adjoints
Even more, if

(BU'iV) = In,.(O)uvdx + r
Ja~{}

uv(nt 

+ Vnx) dx

and

(C*u, v) = -f uvdx -f, uv(n, + Vnx)dx, (45b)
In.(T) Ja+n

then Eq. (42) is Green's fonnula in the weak sense. Here, a~o' and a.':.o' are
defined as the subset of a'o' where n, + Vnx is greater and less than zero, re-
spectively. In turn, a'o' c ao' is the lateral boundary of 0,.

Remark 4.2. It can be shown that every Green's fonnula in the strong sense
is a Green's fonnula.

Proposition 4.2. When Eq. (42) is Green's formula:

(i) NR = NB n Nc* while NR* = NB* n Nc .(46)

(ii) Band C * are boundary operators for P; while
(iii) C and B * are boundary operators for Q.

Proof. For the case when Eq. (42) is Green's formula in the strong sense,
Eq. (46) follows from Proposition 2.1. The proof of this result for the case
when (42) is only Green's formula is similar to that of Proposition 2.1 but will
not be given here.

In what follows it will be assumed that P and Q are formal adjoints. Also,
the notation R = P -Q * will be used. The reader must observe that the defi-
nitions and notations used in the following are dependent on having given an
ordered pair of operators {P, Q}. Indeed, if the order of {P, Q} is changed, one
obtains -R* instead ofR.

Definition 4.5. The boundary values relevant for P of u E D and v E Dare
said to be equal if and only if Ru = Rv. A subspace I C D is defined by
boundary values relevant for P, when I :J NR. Similarly, I CD is defined by
boundary values relevant for Q when I :JNR*.

Remark 4.3. When (42) is Green's formula, the boundary values relevant for
P are characterized by the pair {Bu, C*u}, because Ru = Rv if and only if
Bu = Bv and C *u = C *V. In addition, assume I C D is characterized by
boundary values and let u E D and v E D have the same boundary values
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(i.e., Ru = Rv); then either u and v belong to lor alternatively neither u nor v

belong to 1.

Definition 4.6. An abstract Green's formula in the strong sense for
P:D ~D* is a canonical decomposition ofD with respect to R.

Remark 4.4. Let {/11,/22}, {/12,/21} be an abstract Green's formula; then
using relation (30), it is seen that I II and 112 are defined by boundary values
relevant for P, while 121 and 122 are defined by boundary values relevant for Q.

Theorem 4.1. There is a one-to-one correspondence between Green's formu-
las in the strict sense and abstract Green's fornlulas in the strict sense. When
Eq. (42) is Green's formula in the strict sense, the abstract Green's formula
{/11,/22}, {/12,/21} is given by

III = Nc*; 122 = NB* (47a)

112 = NB; 121 = Nc. (47b)

Conversely, when the abstract Green's formula {/11,/22}' {/12,/21} is given, then

(Bu, v) = (RUII,V21), (Cu,v) = -(R:VI2,U22)'

Proof. This result is clear by virtue of Theorem 3.1.

Remark 4.5. A 'similar representation holds for Green's formulas that are not
strong in the sense of Definition 4.4, but the formulation of a corresponding
result is beyond the scope of this article.

V. GREEN'S FORMULAS FOR OPERATORS DEFINED IN
DISCONTINUOUS FIELDS

In the systematic analysis of discrete methods (e.g., finite elements, finite
differences, and boundary methods) the use of Green's formulas for operators
defined in discontinuous fields is essential. Such formulas are developed here
for arbitrary linear operators.

Throughout this section, the space of admissible functions will be a product
space D = D) (f) DJI, where DI and DJI are two linear spaces. In applications

the elements ,of D) and DJI will be functions defined on two neighboring regions
0) and 011 (Fig. '3), respectively. Thus, the elements of D are pairs u =
{UI,UJI}, where U) ED) anduJI E DJI. The operatorR:D ~ D*satisfies

a".{l = a'.{l
1 X

i

---
.o.=.o.U.o.1 -

FIG. 3.

II
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(49a'

(Ru, v) = (R,Ul' VI) + (RIIUII, vJ,

where RI:D, ~ Dt and Rn:Di, ~ D~ are given operators.
When (48) is satisfied, it is easy to see that

u = {u" UII} E NR ~ U, E NR, and UII E NRII

and

U = {UI, UII} E NR* ~ UI E NR*I and UII E NR*II. (49b)

Here NR. NRI, and NRII stand for the null'subspaces of R, RI, and RII, respec-
tively. A similar notatation is used for the null subspaces of the transpose of

these operators.
In the following discussion a linear subspace S C D is considered. Elem~nts

U E S will be said to be smooth. When U = {UI,UII} E S (i.e., when u

is smooth), UI E DI and UII E DII will be said to be smooth extensions of

each other.

Definition 5.1. A linear subspace S C D is said to be a smoothness relation,
if every UI E DI possesses at least one smooth extension UII EPII, and con-
versely every UII E DII possesses at least one smooth extension UI E DI.

The mapping T:D ~ D, defined for every U = {UI, UII} ED by

TU = {UI -UII} (50)

will be used in the sequel. Clearly, T is self-inverse (i.e., T2 = 1) and has the

following properties:

(51)(Ru,v) = (RTU,TV)

and
NR = T(NR), NR. = T(NR.) (

Let M C D be the image of Sunder T:D -D; i.e.,

M = T(S) .(
Observe that M is necessarily a smoothness condition when S is also.

Remark 5.1. Even more, when S C D is a smoothness relation, one has

D=S+M. (

Indeed, given u = {u" u,,} ED, take u{ E D, and u{, ED" such that
{u{, un} E Sand {u" u{J E S. Define

(55a)it=

and

[u] = {U; -Uf, U;f -UII}

Then it ~ S, [u] EM, while

u = it -~[u]
2

(56)
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In the general development of the theory pairs {Sf, S'} of smoothness con-
ditions will be considered. Elements u E st will be said to be left-smooth,
while those belonging to S' are right-smooth. Similarly, there will be left- and
right-smooth extensions of elements u[ E D[ or, alternatively, of elements
UII E DII' Also, we write Mt = r(St) and M' = T(S'). Equation (56) yields
two representations:

u = itf -f[uY = it' -f[uY,

where itf E Sf, [U]f EMf, it' E S' and [u]' EM'.

Definition 5.2. A pair {Sf, sr} of smoothn~ss relations will be said to be con-
jugate, regular, or completely regular, respectively, when the pair {Sf,S'} is
conjugate, regular, or completely regular for R, in the sense of Definitions 3.2
and 3.4.

Remark 5.2. If {Sf, S'} is a regular pair of conjugate smoothness relations,
then the pair {Mf, M'} is also a regular pair of conjugate smoothness rela-
tions, as can be verified using Definitions 3.2 and 5.1, together with Eqs. (51)
and (52).

Theorem 5.1. Let P:D -D*, B:D -D*, Q:D -D*, and C:D -D*
be given. Assume

(a) P -B and Q -C are formal adjoints.
(b) R = P -B -(Q -C)*.
(c) The pair {Sf,S'} is a conjugate pair of smoothness conditions, regular

forR.
Then,

(i) The two pairs {Sf, sr}, {Mf,Mr} constitute an abstract Green's formula,
in the strong sense, for P -B.

(ii) The equation

P -B -J = Q*- C* -K* (57)

is Green's formula, in the strong sense, for P -B, ifJ:D ~ D* and
K:D ~ D* are defined by

2(Ju,v) = _(R[U]f,Vr), 2(K*u,v) = (R~f,[vr) (58)

(iii)
f N oS =],

Mf = NK*;

sr = NK,

Mr = NJ*

Proof. It is only necessary to prove (i) because once this has been shown
(ii) and (iii) are a straightforward application of Theorem 4.1. In view of
Remark 5.1, it is clear that

D =sl + Ml = S" + Mr.

Therefore, by virtue of Definitions 3.2, 3.3, and 4.6, it is only necessary to
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prove that the pair {Mf, M'} is regular conjugate for R. Using the fact that the
pair {Sf, S'} has this property, theqesired result follows from (51) and (52).

The following result will be useful when carrying out the actual computa-
tions of the operators J and K*.

Corollary 5.1. Under the assumptions of Theorem 5.1, one has

(Ju, v) = _(RJU]f, VI while (K*u, v) = (R,itf ,[v ]1 (60)

Proof. Using Eqs. (29) and (48), together with the fact that v' E S' while
{[u]f, -[u]f,} E Sf, it is seen that

(R[uY, VI = (R,[U]f, VI + (RII[U]f, VI, (61a)

0 = (R,[U]f, VI -(RII[U]f, VI. (61b)

Here as in what follows the notation is simplified by deleting subindexes
whenever such practice yields unambiguous results. Thus, for example, we
write (R,[u]f,vl) = (R,[U]f,VI.

The first of Eqs. (60) can be obtained from the first one in (58) by means of
Eqs. (61), since the latter imply

(R[u]f, VI = 2(R,[U]f, VI = 2(RII[U]f, vI. (62)

The second of Eqs. (60) is obtained similarly.

VI. APPLICATIONS

Two examples are here given, one relates to time-independent problems and
the other one to time-dependent ones.

A. Elliptic Operators

Let 5£ be a second-order elliptic differential operator which is linear. Any
such operator can be written as the sum of two operators 5£s and 5£. defined by

a ( au )5£su = -aij- + cu (63a)

ax axJ I

and

+ -i(V .b)u

Here, as in what follows, it will be assumed that the coefficients are infinitely
differentiable in the closure of the region n of definition of the functions, un-
less otherwise stated explicitly; also aij = aji.

Take

v.P*udx, (64)and (Qu,v) =(Pu;v) = r v;£udx
n
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where .;E* is the formal adjoint of .;E. Thus, .;E = .;Es + .;Ea while .;E* =
.;Es -.;Ea because .;Es and .;Ea are formally symmetric and antisymmetric differ-
ential operators, respectively. By integration by parts it is seen that

(Pu,v)-(Q*u,v) = ({vT;(u)-UT;(V)+b;uv}n;dx. (65)

Jail

au
(66)T;(u) = aij dXj'

~

while n is the unit normal vector. Assume 00, C(6, '2lJ, and ~ are differential op-
erators defined on an such that

r {v:£(u) -u:£*(v)}dx = r {OOu'2lJv -~uC(6v}dx (67)
Jn Jan

is Green's formula in the sense of Lions and Magenes [22]. Define

(Bu, v) = 1 OOu'2lJvdx and (C*u, v) = r ~uC(6vdx. (68)
an Jan

There are many possible ways of taking the space D of admissible functions. A
possibility is to take D = H1m. However, this is not essential, one can take,
for example, D as the space of functions possessing continuous second-order
derivatives in the closure of n. For these two cases, one has that Eq. (42) is
satisfied and it can be shown that it is Green's formula in the strong sense
(Definition 4.4).

Let us divide the region n into two subregions nl and nil (Fig. 3). The ele-
ments u E D of the space of admissible functions will be pairs u = {UI, UII},
where UI is the restriction to nl of the function belonging to H1m and simi-
larly Uil is the restriction to nil of a function belonging to H2m). Then, func-
tions U E D are in general discontinuous across a'nl = a'QiI. Thus, Eq. (42)
is no longer satisfied but instead

P -B -(Q -C)* = R = R1 + Ril. '--,(69)

(RIu,v) = r {vT;(u) -uTj(v) + b;uv}njdx, (70)
la'fir

while RII is obtained by replacing a'OI with a'oll. In order to make the mean-
ing of integrals like the one Occurring in Eq. (70) more precise, the following
observation is made: "On a'OI = a'oll two unit normals OI and 011 are defined;
they point outward from OI and 011' respectively. Also, the values on a'OI =
a'oll of UI, UII and their derivatives do not coincide." For the evaluation of inte-
grals like the one occurring in Eq. (70), the convention adopted is such that the
normals and values of the functions and their derivatives to be used are those
corresponding to the subindex of the integral sign.
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Next, we define the subspaces st CD and sr C D.
(a) Elements u ESt satisfy the smoothness conditions,

(a) (1) Continuity of the function, i.e.,

U, = Uff, on a/o, = a/oil. (71a)

(a) (2) Continuity of the total flux, i.e.,

{T~(u) + q~(u)}ni = {T~'(u) + q~'(u)}nj, on a/o, = a/Off. (7Ib)

Here, q{(u) = bju. Also, in (7Ib), it is immaterial which normal is used as long
as it is the same in both members of the equation.

(b) Elements v E S' satisfy the smoothness conditions.
(b){l) Continuity of the function, i.e.,

VV) = VI), on a/o) = a/oIl

(b) (2) Continuity of diffusive flux, i.e.,

r1(v)ni = rr(v)n;

Then {Sf,S'} is a regular conjugate pair for R:D -+ D*, as given by (69)
Applying the results ofS~ction Y, it is seen that

~

(Ju,v)=",.. {v[T;(u) + q;(u)] -[u]t;(v)}n;dx

while

q;(u) = f[q:(u) + q:I(U)] and [q;(u)] = q:I(U} -q!(u) (74)

Observe that Sf = sr when the coefficients bi are continuous, i.e., when
bl = blI on iJlnI' However, Eqs. (73) are applicable even if bl ~ blI, and
Sf ~ Sr for that case.

B. Pure Advection (a Hyperbolic Operator)

As mentioned in Example 4.2, in connection with the study of transport
phenomena, one considers the operator

1 { au au }(Pu, v) = v ~ + V- dx, (75)
n at ax

where V is a function of x, dx = dxdt, and the region .0. may be as illustrated
in Figure 2. It will be assumed that V together with its first-order derivative is
continuous. IfB:D ~ D*, Q*:D ~ D*, and C*:D ~ D* are defined by
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Eqs. (44) and (45), then the equation

P -B = Q * -C * (76)

is satisfied when D = C1(Q). Also, (76) is Green's formula. However, if the
definition of the space of admissible functions is modified in such a way that
the admissible functions are allowed to have simple discontinuities across a
given curve such as r in Figure 2, then

P -B -(Q -C)* = R = R[ +RII. (77)

Here

(R,u, v) = } uv(nt + Vnx) dx, (78)
ii"!1,

while RII is defined by replacing 0, with 011 in (78).. The convention followed
in subsection A, on the norlnal vector to be used in the evaluation of integrals
such as (70) or (78), is recalled.

The subspaces Sf C D and S' C D are defined by Sf =S' = S, where ele-
ments u E S satisfy the smoothness condition

u,(nt + Vnx) = uIl(nt + Vnx), on r. (79)

Observe that no condition is imposed uponu at points where nt + Vnx = O.
Applying Eqs. (60), one obtains

[u]v(n,.+ Vnx)dx(Ju. v) (80)

and

u[v](nt + Vnx)dx (81(K*u, v) =

where

{u] = u+ -U while it = (u+ + u

In Eq. (81), n = (nx, n,) is any unit normal vector to r, but the convention is
adopted that u+ is the value of u on the side to which n points to.

APPENDIX

Proof of Theorem 3.1.
result.

The following discussion supplies the proof of this

Under the assumptions of Theorem 3.1, one has

and (Ru,v) = 0 'V" v E /21:;' u E NR

and (Ru, v)= 0 'V" U Elll :;. v E NR*

(Ala)

(Alb)

Lemma 3.1.

(a) u E III

(b) v E 121
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(c) u E 112 and (Ru,v) = 0 'v'v E 122::} u E NR (A2a)

(d) v E 122 and (Ru,v) = 0 'v' u E 112::} u E NR* (A2b)

Proof. We only prove (a). Let wED be arbitrary and write w = W21 + W22
with W21 + W22 with W21 E 121 and W22 E 122. Assume the premise in (Ala)
holds. Then (RU,W2J = 0, because {/11,/22} are conjugated subspaces. Thus,

(Ru,w) = (RU,W21 + W2J = (RU,W21) = o.

This shows u E NR, since wED was arbitrary.

Proof of Proposition 3.2. Clearly III n 112:) NR by virtue of Definition 3.2.
Assume u E III n 112 (i.e., u E III and u E I1J, then the premise in (Ala) is
satisfied. Hence u E NR, i.e., III E 112 C NR. This shows the first ofEqs. (37)
and the proof."of the second is similar. To prove (i), write u = UII + U12 and
observe that (Ru,v) = (RUI2'V) 'v' v E 122. Hence, (Ru,v) 'v' = 0 v E 122 im-
plies (RU12,V) = 0 'v' v E 122, i.e., Ul2 E NR by virtue of implication (Ala).
Thus, u = UII + Ul2 E/II, since III:) NR. This shows that (36a) holds if

II and 12 are replaced by III and 122, respectively. Relation (36b) for these
spaces can be shown in a similar fashion. In this manner it is shown that the
pair {/11,/22} is completely regular. The remaining part of the lemma can be
shown similarly.

Going back to Theorem 3.1, to prove existence, let us define RI:D -+ D*
and R2:D -+ D* by means of Eqs. (34). They are well defined by virtue of
Remark 3.3. Then R = RI + R2 because, using representation (33), it can be

seen that

(Ru, v) = (RUll, V21) + (RUI2, V22). (A3)

In order to see that Eqs. (32) are satisfied observe that U = Ull + Ul2 E NR2 if

and only if

(RUI2,V22) = 0 V V22 E122.

This implies UI2 E .III by Proposition 3.2. Thus, U = UII + UI2 EIll. Hence
III C NR2. From this, it is easy to see that III = NR2. The proof of the other

Eqs. (32) is similar. Once this has been shown, the rest of the proof of
Theorem 3.1, follows.

Observe that part (i) of Proposition 3.2 was established while proving
Theorem 3.1. Regarding pqs. (37), this follow from Proposition 3.1, by virtue
of (32).
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