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This is the second in a series of three papers devoted to the presentation of a direct pro-
cedure of analysis of numerical methods for partial differential equations. The procedure
consists of applying the method of weighted residuals and then interpreting the resulting
equations by means of Green’s formulas for discontinuous functions. Here, the general
Green’s formulas for operators defined in discontinuous fields developed in the first ar-
ticle, are applied to formulate the method of weighted residuals for arbitrary linear op-
erators. Finite elements, boundary methods, and general procedures for coupling finite
elements and boundary methods are discussed.

I. INTRODUCTION

Three of the most powerful numerical methods for partial differential equa-
tions are finite elements, finite differences, and boundary element methods.
The foundations of each one of these as originally formulated, appeared to be
unrelated. More recently, however, it has been recognized that it is desirable to
develop foundations common to all these methodologies.

This article is the second in a sequence of papers devoted to presenting a
direct method of analysis recently developed by the author. The approach is
quite general, since it is applicable to any linear operator, symmetric or non-
symmetric, regardless of its type. In particular, the theory includes steady state
and time dependent problems.

An outline of the theory was given in Part I [1]; it is based on two variational
principles applicable to any linear boundary value problem. The first one is in
terms of the “prescribed data.”

(Pu,v) = (Bu,v) — (Ju,v) = {f,v) — (g, — (j,v), YvED (1)
while the second one is in terms of the “sought information”
{Q*u,v) — (C*u,v} — (K*u,v) = (f,v) —{g, v} — (j,v), YV ED 2

where f € D*, g € D* and j € D* are the prescribed values of the operator
Pu, the boundary operator Bu and the jump operator Ju. If Q) (Fig. 1) is the
region of definition of the problem, one usually defines—— but this is not essen-
tial — the operators P and @* by

(Pu,v) = fnv&‘,’udx and {Q*u,v) = J’ uE*vdx €))
0
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FIG. 1. Region of definition of the problem.

where &£ is a differential operator defined in @ and £* is its formal adjoint.
Then, knowing Q*u is tantamount to knowing the function « in the interior of
Q). The “complementary boundary values” C*u were illustrated by means of
examples; thus, for the Dirichlet problem of the Laplace equation in which u is
prescribed on the boundary 3{}, the complementary boundary values are the
normal derivatives du/dn, there. For problems of elasticity, the prescribed and
complementary boundary values may be the displacements and the tractions,
respectively. The average values of the exact solution across the surface I’
(Fig. 1), where T’ is the surface on which discontinuities of the functions may
occur, constitute the third component of the sought information and are charac-
terized by K*u.

The systematic development of Green's formulas, and, in particular, the
“general Green’s formula for operators defined in discontinuous fields:”

P—B—~J=Q%-C*~K* @

which supply the basis for the variational formulations (1) and (2), was pre-
sented in Part 1. The explicit formulas for the operators J and K*, given in
Section V, were developed for the case in which the region (1 is divided into
two subregions. In order to apply the theory to general numerical methods for
partial differential equations, it is necessary to extend those results to the
case when {) is divided into an arbitrary number of subregions. This is done in
Sections II and IIl. General boundary value problems are formulated
in Section IV, while finite and boundary element methods are discussed in
Sections V through VII. The coupling of finite elements and boundary proce-
dures is presented in Section VIII.

An interesting application of the theory, because the treatment is quite com-
plete, is the solution of ordinary differential equations. The third article of
this series is devoted to finite differences and ordinary differential equations.
Examples of such applications have already been published [2, 3].

The methodology presented here constitutes an extension and generalization
of a theory I recently published in book form [4]. The work by Babuska, Oden,
and Lee [S] on mixed-hybrid finite elements was inspiring for the unified for-

" mulation of numerical methods. Discussions with Professor Zienkiewicz, who
repeatedly [6—10] has pointed out the possibility of having a unifying theory,
prompted my interest on the matter and some of his results [7-10] are special
cases of the general scheme contained here. Finally, I want to express my grati-
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tude to George F. Pinder whose publications [11, 12] and specially, our joint
research. motivated my work.

iI. PRELIMINARY NOTIONS AND NOTATIONS

In this section some concepts and results, complementary to those given in
Part 1, are presented. First, a relation similar—but in a sense to be clarified
soon, weaker —to that of operators that can be varied independently [1] is
introduced.

Definition 2.1. The operators P: D — D* and Q: D — D¥* are disjoint, if
P is a boundary operator for Q while Q is a boundary operator for P.

Proposition 2.1. Assume P and Q can be varied independently, then P* and
g% are disjoint.
Proof. We need to prove

{(Pru,vy =0 Yv ENy>Pxu=0 {(3)

and the implication which is obtained interchanging P and @ in (5). Assuming
that P and @ can be varied independently, let the premise in (5) be satisfied.
Then, given any V € D take v € D such that Qv = 0 while Pv = PV. With
this choice, one has

(P*u, V) = {PV,u) = (Pv,u) = (P*u,v) = 0. (6)

Hence P*u = 0, since V € D was arbitrary. The other part follows by duality.
Theorem 2.1. If B: D — D¥* is a boundary operator for P: D — D*, then
Pu+Bw=0=Pu =0 and Bw =0. {7

Proof. Assume Pu + Bw = 0. Then
0= {Pu + Bw,v) = {(Pu,v) ¥ v E N;.. ®

This implies Pu = 0, which renders the Theorem clear.

Proposition 2.2 Let R = P + B, where B is a boundary operator for
P. Then

NR‘=NP ﬂNB. (9)

Proof. Clearly, N D Np N\ Np. Thus, it remains to prove
{P+Bu=>Pu=0 and Bu =0. (10)

This implication is the special case of (7) for which w = u.
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Coroliary 2.1. Let P and Q be disjoint. Then

@Pu+Qw=02Pu=0 and Qw =0, (i
(b) When R = P + (Q, one has
Nr = Np NNy (12)

Proof. It is clear by virtue of Theorem 2.1 and Proposition 2.2. Observe that
part (b) is a generalization of Proposition 2.1. of Part I.

Definition 2.2. A pair {R,R,} of operators is said to be fully disjoint when
R, and R, are disjoint and simultaneously R¥ and R¥ are disjoint. Let R =
R, + R, and the pair {R,, R,} be fully disjoint, then one says that the operators
R, and R, decompose weakly R.

Remark 2.1. Comparing Definition 2.2 just given, with Definition 4.4. of
Part I, one gets the alternative— but equivalent — definition of Green’s for-
mula: When P and @ are formal adjoints, an equation P — B = Q% — C* is
said to be a Green’s formula if the pair {B, C*} is fully disjoint.

Remark 2.2. Also in view of Definition 3.1 of Part I and Proposition 2.1. of
this Section, it is clear that every decomposition of an operator is a weak
decomposition. However, not every weak decomposition is a (strong) decom-
position. In particular, not every Green’s formula is a strong one, as illustrated
in the following examples:

Example 2.1, Let D = H'(Q)), s > 2, where £ is the unit circle, Assume
9,2 is the upper half of the circumference and 9,( its lower half. Define

(Pu,v) = f vAudx; {(Q*u,v) = j ulvdx. (13)
n 0
Take
(Bu,v) = f v-a—af dx - I u-a—v dx;
a0 on an on
{C*u,v) = f uﬁdx - f v-—a-E dx . (14)
an on a0 on

For every u € D one has y,u € H* "*(3) while y;u € H™ Q).
In this example B = C, so that (see Eq. 47 of Part I):

Iy = Iy = Neo = Npug Iy = Iy = Np = N¢. (15)

*Here 7, and vy, are the trace operators [13]; i.e., v,u = u and y,u = du/an on 31},
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Clearly,

Nee ={u EH’(Q)|yu =0 on 8,2 and yu =0 on 80}, (15
while

Ny ={u EH'Q)]yu =0 on 4,0 and yu =0 on 8,Q}. (I5b)

It is easy fo see that neither /,, + I,; nor I,; + I, yield the whole space D.
Thus, P — B = Q* — C* is not a Green’s formula in the strong sense. How-
ever, this equation is a Green’s formula, because B and C* are disjoint and also
B* and C are disjoint. Indeed, for example, it can be seen that

{Bu,v) =0 VYv EN:=>Bu =0. (16)

Example 2.2. In Example 4.2 of Part I, the operators

{Pu,v) = fﬂv&fudx, {(Q*u, vy = Luﬁf*vdx,

where
ou du dv  aV,
fu=—+V— and *y =
u=g TV m Ev=-a -

were considered. When the region ) is as illustrated in Figure 2, then

{(Bu,v) = —f wdx - j wVdt,
() ala

0
{C*u,v) = -—f uvdx — -j wVde. (17
an aLq

Taking D = C'(Q)), again the equation P — B = Q* — C* is a Green’s for-
mula but not in the strong sense. Indeed, any function belonging to Nz + Ng»

t
Q,m
T A
) Q
N k)
|
L/t L. /L
0 X
2/

FIG. 2. 'The region §} for Example 2.2.
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vanishes at the upper left corner and at the lower right corner of the rectangle
(); thus, not every function of D = C'(Q) belongs to Ny + Nc..

It is of interest to extend some of the relations among operators that have
been introduced thus far, to systems of more than two operators.

Definition 2.3. Let {R,,...,R;} be a system of operators and let R =
SE.,R,. Define forevery 8 = 1,...,E:
E E
N = ﬂ Nga; Ng= ﬂNma (18)
a®3 a%p

Then one says that the system {R,,...,Rzh
(a) Is disjoint, if for every 8 = 1,...,E, one has

(Reu,v) =0 Y v ENj=> Reu = 0 (19)

(b) Can be varied independently, if for every system {U,,..., Uz} C D,
there exists u € D such that

Ru =R, U, , a=1,... ,E. (20)

(¢) Is fully disjoint, if {R,,...,Rg} and also {R¥,...,R¥} are disjoint. In
this case, {R,, ..., Rz} decomposes weakly R.

(d) Decomposes (strongly) R, if {R,,...,Rz} and also {R¥,...,R}}, can be
varied independently.

Proposition 2.3. Assume the system {R,,...,Rz} can be varied indepen-
dently, then {R},...,R{} are disjoint.
Proof. We need to prove that for any given 8 = 1,...,E, one has

(REu,v) =0 Vv ENg>Rju =0 @

where Ny is given by (18). Assuming the premise in (21) is fulfilled, given
V€ Dtakev € D such that Rgy = RgV and R,v = O for ¢ # B; i.e., Rgv =
R3V while v € NB' Then

(REu, V) = (RgV,u) = (Rgv,u) = (R}u,v) = 0. (22)
This shows Rju = 0, since V € D was arbitrary.

Corollary 2.2. If {R,,...,R;} is a (strong) decomposition of R then it is
also a weak decomposition.

Proof. It is clear by Proposition 2.3.

LProposition 2.4. Assume the system {Ry,...,R;} is disjoint and let R =
'S Ra. Then

E
(@ DR =0>Ru,=0 Va=1,... E, (23)

a=1
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®Ru =02>Ru=0 Va=1,...,E, (24)
E

©) Ng = [ Nga. 25)
=

If the system {R,,...,R;} is fully disjoint, then in addition, properties (a) to

(c) hold, when each operator is replaced by its transpose.
Proof, These are straight-forward generalizations of previous results,

Corollary 2.3. When the system {R¥,...,RZ} can be varied independently,
properties (a) to (¢) of Theorem 2.4, hold. If the system {R,,...,Rg} de-
composes (strongly) R, then properties (a) to (¢) hold also when each operator
is replaced by its adjoint.

Proof. By virtue of Proposition 2.3,

Definition 2.4. Assume the system {R,, ..., R} is fully disjoint. For any
fixed 8 = 1,...,E, let the pair {Bg, —Cj} decompose R;. Define

E E
Ng= [(Ng. and Ng= [|Nw. (26)

a®f a*f3
One says that the decomposition {B,z, —Cj} is distributive in the system
{Rlv e )RE}’ if
NB N (Ngﬂ + NC‘ﬁ) = Nﬁ N NBB + N,g M NC'B (2?)
and

N:gn(NB:S"'N{;B) =NéﬂNB.ﬁ+NéﬂNcﬁ (28)

. GREEN’S FORMULAS FOR FINITE ELEMENTS

Let £ be a domain, not necessarily bounded, of an Euclidean space and let
a{} be its boundary. In general, the symbol 7 will stand for a partition of £}
into a collection of E(mr) subdomains €},; ¢ = I, ..., E@r). To get some nota-
tional advantages we will identify (), with the original region £}. In what
follows a fixed partition 7, with the property that £ = E(ir) = 1, will be con-
sidered; the argument 7 will be frequently deleted since it is unnecessary. First,
the following notations and assumptions are adopted (the notation is similar to *
that used by Babuska, Oden and Lee in [S5]).

A. The Partition. (Fig. 1)

E
() a=U%; QN =9¢, e#f (29)
e=1 :
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(i1) The boundarics. Define fore > f:
l_'ef = BQG N 8Qf, f =0. (30)

Observe I',; # ¢ only when (), and §), are contiguous regions.
(iii) The outer boundaries.

E
3.0=T,; a0={]s0 31

e=]
(iv) The interelement boundaries. When f > 0, I',, is a segment of inter-
element boundary.
(v) The total interelement boundary is

E
r=yr,. (32)

e, {70

B. The Function Spaces.

(i) For every e = 1,...,E, there is a linear space, D,. In most appli-
cations elements u, € D, will be functions— possibly vector valued, as in
Elasticity — defined in (},.

() D(m) = D --®D,. Thus, elements of D will be finite sequences; 4 =
{ur,...,uz}, withu, €D, foreache = 1,...,E.

Remark 3.1. In many applications we start with a linear space D, of func-
tions defined in the whole region (2, = (). Then one can take

D, = {u,lalu, € D,}; e=1,...,E 33

where u,|€), stands for the restriction of u, to £),. The natural immersion of D,
into D = DY --®D; is supplied by the mapping which associates with every
u, € D, the sequence of restrictions u,|q., ¢ = 1,...,E.

C. The Operators.

(i) With every ¢ = 1,...,E, there are associated operators P,: D — D*,
Q.:D - D* and R,: D— D*, such that P, and Q. are formal adjoints
satisfying

R, =P, — QF. (34)

(il) With every e # f, e = 1, and f = 0 there are defined operators R,;:
D —> D* such that

E
R, = > R,. (35)

f#e

Generally, R.; # 0 only when {}, and ), are contiguous regions.
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(iii) For every ¢ > fand f = 1, define

ié/o = Rfo; jée/ = Re{ + Rfe. (36)
(ivy Let '
E E
P=3P; Q=230 (37
e=| e=1
E E £ n
R=2R; R =2XR,; R= 2 Ry (38)
e=] e=1 e>f=l
Then
P—-Q0*=R=R,+ Rr. (39)

Remark 3.2. In most applications
{Pu,v) = fnviﬁudx; (Q*u,v) = fna$*vdx (40

while

(P, vo) = f velu. dx;,  (QFu.,ve) = L u v, dx. (41)
le e

(v) The system {ﬁlo, e ,ﬁgo,éz,,. R ﬁga—:} is fully disjoint.

(vi) For every e > f = 1, there is a pair {S.;, 8.} of conjugate smoothness
relations which are regular (see Part I) for R,;.

(vii) Forevery e = 1,.. ., K, there is a pair {B,, —CJ} of operators which
decompose strongly R,,.

(viii) Define

E
B=>B, C=)>C. (42)

1 e=]

(ix) Forevery ¢ > f = 1, let {J,,, —K %} be the pair of operators associated
with the conjugate smoothness relations {S" efs Ser) by means of Theorem 5.1,
Eq. (59) of Part 1. The pair {J,;, —K}, decomposes R,f Define

Mo

&

>l K= 2 K, (43)

e>fl exfz1
(x) Assume every one of the decompositions {B,, ~C *} and {Je ,—K %} is
dlStI’lbutIVC (Definition 2.4) in the system of operators {R,O, .. REO, Ry,...,

REls .o RE £- 1}

Obse;ve, thus far we have introduced the following systems of operators
{R109'~ REO9R2!," RE!&" REE-I} {Bl," BE’JZH" JE!:*- JFE l}
and {C,...,Cs, K31, ..., Key. .., Kg g-1}. Each one of them consists of
EE + 1)/ 2 operators (some of them may be the zero operator) and in order to
simplify a little, the alternative notation {R;, .. RF} {B\,...,Br}, and
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{C,,...,C}, respectively, will be adopted. Here, F = E(E + 1)/2. Also for
every 8= 1,...,F, let be

F F
Ny = Nei  Ni=[VNaa (44)
axfy a#f

where 1\7,3(, and IQR*& are the null subspaces of 13,, and fé;", respectively.

Remark 3.3. If the space of admissible functions D is taken as in Remark 3.1,
the operators P and Q as in Remark 3.2 while

{Bu,v} = fﬂ%u@)vdx and {C*u,v) =j Eubvdx (45)
E o}

are such that P — B = @* — C* is a Green’s formula in the original space
D,, then in finite element applications it is usually convenient to define

{B.u,v) =f Budvdx; (CHu,v) =f Eubvdx. 46)
3,0 3,01

The smoothness relations {S;, S%;} can be taken as
Sir = 1(D0) + Nees Sy = 1(D,) + Ny (47)

where 7: D, — D is the natural immersion (Remark 3.1) of D, into D, When
dealing with partial differential equations, one frequently has Npo,s = Npsos 50
that Si; = S., when (47) applies.

Example 3.1. As an illustration, consider the case for which ) is a circle
(Fig. 3) divided into five subregions {1, (¢ = 1,...,3). Proceed as in Re-
mark 3.3 with D, = H'(Q)),s =22, £ = £* = A and

(Bou,v) = *-f ui}'z dx (48)

while C,: D, — D[ satisfies C, = B,. The operators k\gf are

A Ju dv qu dv
Ry, v) = j —— + f — =~ u—rd 49
Regie.) r,,{v an uaﬂ}dx rf,{van “an} * . “9)

a

FIG. 3. The region {2 for Example 3.1.
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where the sense of the normal unit vector n is indicated by the order of the
subindexes in [. The smoothness relations given by (47) satisfy Si, = S., and
are made up of the functions D = D¥ - - ®Ds which are continuous together
with their normal derivative across I, . It is possible to show that the distribu-
tive assumption x) is fulfilled (see Eqs. 27a,b); however, that proof will not be
given here.

Theorem 3.1. Under the assumptions of this Section the relation
P—-(B+J)=0*-(C +K)* 0

holds and it is a Green's formula. Even more, each one of the systems {B,, ...,
BE"}Zlﬂ e 3JE1’ e yJE.E—l} and {Cl’ . e 9CE!K21> [ )KEl} e ,KE,E—I} is funy
disjoint (Definition 2.3).

Proof. Using the notation introduced previously, let us first prove that
{B1,...,Bs} is fully disjoint; i.e., we prove that each one of the systems
{B:,....B:} and {BY,...,B}} is disjoint. The first one of these properties is
equivalent to the family of implications

E
(Bgu,v) =0 Vv E [|Npe>Bgu=0, B=1,...,F. (51
a®f
Since Ngop 2 ﬂ:’R.,,, it is clear that
E A
(B, ) =0 Vv E [|NowaD Bau,v) =0 ¥YvEN;. (52)
o B

However, there exists u;) € Ne»g such that Bgu = Rguy, because {Bg, —C}}
decompose (strongly) Rg. The desired result is now clear since

(Reiy, V) =0 Vv € Np> Ry, = 0 (53)

because the system of operators {ﬁ’., ceoy i%;} is disjoint. We leave the proof of
the fact that each one of the systems {B,,...,Br} and {C{,...,C?} are fully
disjoint at this point, since the remaining part of the proof is similar.

Once this has been shown, it is seen that

F
Ngagy=Ng NN, = ﬂNBa (54a)
. o=l
F
Ngesssy = Npe N Njo = (| Npeo (54b)
a=1

F ‘
Niswy = Ne N Ng = (| Nea (54c)
a=1
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F
N{C*+K‘) = Ncm M NKx = m NC'C! (54(1)

by virtue of Proposition 2.4, Eq. (25).

In order to prove that (50) is a Green's formula, it is necessary to show
that the system {B + J,C* + K*} is fully disjoint. As a first step we need to
show that C* + K* is a boundary operator for B + J. This is tantamount to
showing that

E(Buv)-o ‘v’vEﬂN@:}BBu——O VB=1,....,F. (55

a=1 o=

To prove (55), we establish first an auxiliary result.

Lemma 3.1. Under the assumptions of Theorem 3.1 for every fixed g =
1,...,F, one has
(a) There exists u;; € N¢ug such that

Bgu = Rguy, (56)
F
(b) 2 Bau,v) = (Rguy;,v) Vv ENp 57
a=]
where u;, is taken as in (a).
{©) (Bau,v) =0 YvEN=>Bu =0 (58)

Proof. Part (a) follows from the fact that the system {Bg, —Cj} decomposes
(strongly) Rs Part (b) can be seen using the fact that Ng., D Ng whenever
« # B. In view of part (a), part (¢) follows from

Uy © chg and (R?{guu,v) =0 Yv& f\}fg :}ﬁﬁu., = {

which is clear because the system {ﬁl, - ,ﬁg} is disjoint. This completes the
proof of the Lemma. A

Observc, for every « = 1,...,F, one has Ncg D Ng«,. Thus r“\;BNCa o
ﬁwﬁNR.(x N,, Hence ﬂ Na, D N¢g N Nj. This implies that

F
E(Bau,v)=0 Vv(-EﬂNCa$ S (Bau,v) =0 VY Neg NNi. (59

a=1 a=} a=1

However,
F
2 (Batt,v) = (Rguy,v) Vv ENggNNgC Ny (60)

for some u;; € Ncep, by virtue of Lemma 3.1. Therefore, implication (55) will

rfollow from part (c) of the Lemma, if we establish that

{BBM,V> = (ﬁgﬁu,&é =0 VYvE Ncﬁ N 1{}; ? (Bgl&,V)O Vv e 1‘{!;;.
(61)
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This latter proposition follows from the distributivity of the decomposition
{Bg, —Cj} in the system {R, ..., R;}. Indeed

Nawg A Nj + Neg N Nj = (Ngeop + Nog) NN = Np (62)

because Ngsg + Ncg = D since B and Cg can be varied independently. Equa-
tion (62) implies that every v € N can be written as v = vy, + vy, where
v2; € Np.g while vo; € N Replacing in (61) one gets

(Bpu,") = <ﬁﬁuzi,v) = <Bel411,V22> = (&3“11&22)

which vanishes when the premise of (61) is satisfied. This completes the proof
of implication (55). The proof that B + J is a boundary operator for (C + K)*
is similar. To show also that (B + J)* and C + K are disjoint, one can use
dual arguments.

IV. BOUNDARY VALUE PROBLEMS

Definition 4.1. Let B: D — D* be a boundary operator for P: D —» D*,
Given U € D and V € D, define

f=PU and g =BV. 63)

The abstract boundary value problem to be considered consists in finding
# € D such that

Pu=f (64a)
and simultaneously

Bu = g. (64b)
Remark 4.1. In view of (63), attention is restricted to problems for which
f € D*and g € D*, are in the range of P: D — D* and B: D — D*, respec-

tively. Clearly, any problem which possesses at least one solution fulfills this
condition,

Theorem 4.1. An element ¥ € D is a solution of the abstract boundary
problem, if and only if

(P-Bu=f-g. , (65)

Even more, if {B;,...,B;} is a weak decomposition of B, and V,, ...,V €
D are such that B,V, = g,, a = 1,...,F. Then

Bu = g,, a=1,...,F. (66)
whenever u € D satisfies (65).

Proof. Equations (64a, b) clearly imply (65). Conversely, using Eq. (63), it
is seen that equation (65) implies
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Pu ~U)~Blu~V)y=0. (67)
By Theorem 2.1, from equation (67) it foliows that
Plu-U)y=0 and B{u - V)=0. (68)

Hence, Egs. (64a,b). The second part of this Theorem follows from Proposi-
tion 2.4.

Theorem 4.2. Let the equation

P —-B =Q*~C* (69)
be a Green’s formula. Then, u € D is a solution of the bondary problem, if
and only if

@*-CHu=f~3g. (70)
Proof. Because (65) is equivalent to (70).

Remark 4.2, LetP — B = Q% — C* be a Green's formulaand R = P —
O*. Then, in view of Remark 4.3 of Part I, the boundary values Ru associated
with P are characterized by the pair {Bu, C*u}. When a boundary value prob-
lem is formulated, one prescribes Bu. C*u can be evaluated only after the solu-
tion u € D of the problem has been obtained.

Definition 4.2. When Eq. (69) is a Green’s formula, Bu and C*u will be
called the prescribed and complementary values of u, respectively.
A result which is stronger than that of Theorem 4.2, is given next.

Proposition 4.1. Let Eq. (69) be a Green’s formula. Then u € D is solu-
tion of the boundary problem, if and only if, there exists v € D such that

O*u —C*y =f — g. an
Even more, when (71) holds, one necessarily has
C*v = C*y, 72)

Proof. When u € D is a solution of the boundary problem, it is clear that
(71) holds, with v = u, by virtue of Theorem 4.2. Conversely, let u € D and
v € D be such that (71) is fulfilled, then

P—-Bu—~CHy -uy=f—g. (73)

Here, (69) has been used. In view of Definition 4.1, this equation can be
written as

Plu —U)+B(V —u) —C*yv —u) =0. 74)
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Let R = P — Q% and recall that Ng. = Nz N N by virtue of the second of
Eqgs. (46) of Part I. Thus
BY —w)—CHyv —uw),w)=0 Vw&ENg =Ny NNC. (75)
Therefore, Eq. (74) implies
Plu —U),wy=0 VYwE&E Np. (76)

Hence P(u — U) = 0, because R is a boundary operator for P. Once this has
been shown, Eq. (94) reduces to

BV ~w) — C¥y —u) =0 an

which implies that Bu = BV = g and C*v = C™*u, by virtue of Corollary 2.1,
since B and C* are disjoint.

Remark 4.3. Proposition 4.1 exhibits the essential difference between Q*
and the boundary operator C*. Let u € D and 1’ € D be any two elements of
D, then

Q*u' = Q*%u = C*u' = C*u.

However, the converse is not true in general.

Remark 4.4. Equation (65) is equivalent to the variational principle

(P —Bu,v)—(f—gvV=0 VveED 78)
while Eq. (70) supplies the alternative variational principle ‘
(Q* - CHu,v) = (f—gv =0 VvED. 9

The first of these principles involves the functionals Pu and Bu which are pre-
scribed; indeed, the prescribed data are f and g, respectively. On the other
hand, the second one of these principles involves the functionals O*u and C*u,
whose values are not prescribed and which can be evaluated only after the
problem has been solved. Indeed, when (40) hold, knowing Q*u is tantamount
to knowing u in the interior of the region {}.

Definition 4.3. When Eq. (69) is a Green’s formula, the complementary
boundary values C*u together with the functional Q*u, will be called the
sought information.

Definition 4.4. The variational principle (78) will be called the variational
principle in terms of data while (79) will be called the variational principle in
terms of sought information.

In conclusion, in this Section we have associated with the abstract bound-
ary value problem two variational formulations: the direct one, involving the
data of the problem; and, the derived or indirect one, involving the sought
information.
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V. FORMULATION AND PRELIMINARY ANALYSIS OF
DISCRETE METHODS

Taking the assumptions about the operators, function spaces, and partition as
in Section IIl., it is required to find « € D such that

P-B-Ju=f-g—j (80)

where f € D*, g € D* and j € D* are three given functionals belonging to
the ranges of P, B and J, respectively. When hypotheses of Theorem 3.1 hold,
Eqg. (80) is equivalent to

Pu=f Bu=g and Ju=j 81

by virtue of Theorem 4.1. If {By,...,By} and {/,,...,Ju} are weak decom-
positions of B and J, respectively (1 and M being any integers), then Eq. (81) is
equivalent to

Pu = f, B = gl = 1,...,1), Jou = jg(B=1,...,M). (82)

In view of Green’s formula (50), Eq. (80) can also be written as

(@*-C*—KYu=f~g ] (83)
Equation (80} yields the direct variational formulation of the problem:
{(P-B—-Juvy=(—-g=-jvw VYVvED. (84)

On the other hand, Eq. (83) yields the indirect or derived variational formula-
tion of the problem:

{Q* = C* —K¥u,vy={f—g —j,v) VvED. (83)

Usually, the operator P: D — D* is related with a linear differential operator
& by means of an equation such as

.
(Pu,v) = Lvﬂfudx = 2[ vPudx. (86)
e=1 7

Recall that the differential operator £ is understood in an elementary sense;
indeed, £ is not defined on surfaces of discontinuity (the interelement bound-
aries) and the integral over { is understood as the sum of integrals over the
subregions {1, where the derivability of the functions u € D, is assumed to be
high enough to have ¥ well-defined. A similar observation applies to the defi-
nition of Q: D —>» D* which is usually such that

E
{O*u,v) = (Qv,u) = j urvdx = 3, J' uSF*vdx 87N
Q e=1 v

where £* is the formal adjoint, in the usual sense applicable to differential
operators, of . Generally, knowing Q*u is tantamount to knowing the func-
~ tion u in the interior of each one of the subregions (..

Recall that the direct variational formuiation (84) involves the functionals
Pu, associated the prescribed value Zu of the differential operator, Bu associ-
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ated with the prescribed “boundary conditions” and Ju associated with the
“prescribed jumps.” On the other hand the indirect variation principle (85) in-
volves the functionals Q*u, associated with the sought values of the function u
in the interior of the “finite elements” (1,, C*u associated with the “comple-
mentary boundary values,” and K*u associated with the “generalized averages.”
In this manner, the sought information has been separated into three distinct
parts: the “values in the interior” of the subregions £1,, the “complementary
boundary values” on 3£} and the “generalized averages” on the interelement
boundaries I'. Usually, one looks for smooth solutions, so that j = 0; i.e., the
jump condition is Ju = 0 which implies
E
ue () S,=5" (88)
e>fl
Applying the method of weighted residuals [14], one chooses a system
{¢',....¢"} of “weighting or test functions” in order to define approximate
solutions.

Definition 5.1. Let the system {¢', ..., "} of “weighting functions” be
given. Then, any function ' € D which satisfies

(P —-B—-Jw,ey={f—g—je a=1..N (89

will be said to be an approximate solution.

Remark 5.1. Clearly, any (exact) solution ¥ € D, is an approximate solution.
In addition, it is customary to impose the “representation constraint”

N
W= ad (90)
a=1}
where {®', ..., ®"} is a system of “base functions.” However, this latter con-
dition is alien to the problem, while the system of Egs. (89) is necessarily satis-
fied by the exact solution, as has already been pointed out in Remark 5.1.
Indeed, condition (90) is a “mathematical artifice” introduced mainly to specify
uniquely the sought approximate solution. Therefore, it is of interest to analyze
the restrictions implied by equations (89) when no other assumption is made.
The system of Egs. (89) satisfied by any approximate solution is not infor-
mative because it was obtained by application of the direct variational formu-
lation (84) which only involves the prescribed functionals. A more informative
form is obtained by applying the indirect variational formulation (85), which
involves only the sought information. This yields

(O*u', % — {C*u’, %) — (K*u',¢") = (f, ") — (g, ¢%,
a=1,...,N. (O

In view of previous discussion, it is clear that Egs. (91) imply restrictions on
the possible values of #' on the interior of the subregions {}., of the comple-
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mentary boundary values on d{} and of the averages across the interclement
boundaries I'. Of course, the particular choice of the family {¢', . .., ¢"} of test
functions determines the specific conditions imposed by Egs. (91).

Since Egs. (91) are also satisfied by the exact solution i, by subtraction
one gets

(Q*u', %) — (CHu', @) ~ (K*u', %) = (Q*u, ¢%) — (C*u, ¢%) — (K*u, 0%,
a=1,...,N. (92)

Equations (92) show that given any approximate solution u’ € D, one can
compute correctly (i.e., exactly) the functionals

(O%u, "y — {C*u, %) — (K*u, ¢, a=1,...,N (93)

independently of the representation (90) chosen. Thus, the N functionals (93)
may be interpreted as all the “information™ contained on an approximate solu-
tion, while representation (90} may be interpreted as a manner of interpolating
this information. Of course, the specific manner in which this in.erpolation is
carried out depends on the specific choice of the system {®', ..., ®"} of base
functions while the information contained in an approximate solution depends
on the family of weighting functions chosen.

VL. FINITE ELEMENTS

In general, one can use the previous results to develop more efficient nu-
merical schemes. In Section V, the information about the sought solution was
separated into three distinct parts: the values in the interior of the finite ele-
ments ()., the complementary boundary values and the generalized averages at
the interelement boundaries I' (usually, these become the values of the solution
u and its derivatives when the sought solution is smooth). By a suitable choice
of the weighting functions {¢', ..., ¢"}, it is possible to eliminate one or more
of these parts of the sought information, thus concentrating the available infor-
mation in the remaining ones,

As a first example, let us apply our theory to a problem recently treated
by Zielinski and Zienkiewicz [10]. Consider the equation of torsion of a pris-
matic bar;

Lu=V- (é‘?u) = -20 in{} (94)
with the boundary conditions
u =g, ond (95a)
and
1 du
. '5 n = g on d,§1. (95b)

Here, 4} = 3, + 3,80, u is stress function, G shear modulus, and § rate
of twist.



UNIFIED FORMULATION OF DISCRETE METHODS. Hl 177
To apply our method to this problem define P: D — D* and 0*: D — D* by
{Pu,v) = J vEudx, {O*u,v) = f u*vdx (96)

0 a

where D is constructed as explained in Section 111, using the procedure of
Remark 3.1 with D, = H’(Q}). Consider first the case when there is no parti-
tion (i.e., E = 1, D = D, = H({})), then
1
(P = Q%u,v) = j «{v——- - u-——}dx. (97)
s G n

Then, in order to accommodate the bounﬂary conditions (95), it is convenient
to define

v ou u av
= ——dx — —— 98
(Bu, v) Ln G andx L.Q G an dx (O8a)
and
by = —| L9 [ u oy 98b
(Cru ) Ln G dn dx 50 G an dx. (98b)

The equation P — B = Q* — C¥* is essentially the Green’s formula estab-
lished in Example 2.1 for the case when ) is a unit circle and G = 1. The
validity of this resuit for more general conditions only requires sufficient regu-
larity of the boundary and the function G, but such restrictions will not be dis-
cussed here.

Consider now the case when E(r) > 1 and apply the results of Section VLA,
of Part I (Egs. 73), to obtain

(Ju,v) = fr{[—g—]% - %[—g—:‘]}dx (99)
and
{(K*u,v) = L{%—] %—Z - %[g}‘—;]}dx (100)

In view of Eqgs. (94)to (96) and (98), it is clear that one must define

(fiv) = —-2f vBdx, {g,v) = f vgadx — f &lézdx. (101
0 50 an G dn

In view of Eqs. (96), (98), and (99), it is clear that the prescribed data are

Zu in  (through Pu), the boundary values on 4,{} and the normal derivatives

on 3,{} (through Bu) and the jumps across I of the stress function # and of its

normal derivative (through Ju). On the other hand, the sought information is

the stress function u in the interior of Q (through Q*u), the complementary

boundary values, du/dn on 9,{) and the function u on 3,0 (through C*u)

and the averages across I' of the stress function and of its normal derivative
(through K*u).
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The direct variational formulation (84) is

| u av v du
V-{=Vuld +f ——d ~—J o e
Lv (G u) * s G on * a0 G on *

v{oul [u]ov f j g 9V
+ 3z =| - —=tdx = -2 vodx + | 22 —dx - wdx,
J;{G [an] G 8:2} o nv * an G an o azﬂga'v *

YvebD. (102)
In addition, the indirect variational formulation (85) is

1 v du u ov
V- [=Vi|d +j ——d wf —
Lu (G v) * a0 G dn * a0 G dn *

ilav] [v]on f f ga OV f
+ == -=—1dx = - + | 2 —dx - dx.
fr{G [aﬁ} G 8:3} * 2 ngdx sa G on dx azngazv x

(103)

A variational principle intermediate between (102) and (103) can be derived
using the relation’

(P —B — Ju,v) = —J’ —]-Vv - Vudx +-f {u v + e au}a’x
oG 3,0

Gon  Gon
[u] av
- == 104
r G dn dx (104)
This is usually applied to functions ¥’ € D which are continuous and satisfy
the boundary conditions on §,Q and with weighting functions {¢', . .., ¢"} also

continuous and vanishing on 4,{), in which case it reduces to

J qu’ - Vetdx = 2J’ o 0dx + J ga2¢% dx; a=1,...,N
G 0 30

(105)
The variational principle (105) is most frequently derived from the standard
maximum or minimum principle for elliptic equations (see for example [13, 15]).
As mentioned in Section V, the direct variational formulation is not informa-
tive—and the same is true of Eq. (105)— about the relation between any ap-
proximate solution ' and the exact one «. However, the more informative vari-
ational principle (103) has remained unnoticed (see for example [13, 15, 16]).
With discontinuous weighting functions, this yields

i " gu’ u' dg”
V| =Veid +J e ] -f — d
,{nu (G @) o an G an * a0 G dn *
u'[ag” {*] 08’ J J' 8o 0"
+ (L) e o poax + | 228y
L{G[an] G dn dx 2 a¥ G an G an *

r "j 8o dx, a=1,...,N (106)
81

"Equation (104) can be derived applying a decomposition of the kind considered in
Sections IV and V of Part I, but the reader can verify it by integration by parts.
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where the approximate solution u’ is assumed to be continuous. The relation
between the exact solution u and the approximate solution u’, implied by (106)
is given by (92):

1 @ du — u’) J’ (u = u') ap°
— W - | —V° + j RS AR PO SR Al
L(u “) (G ¢ )dx ae G an dx an G an dx

w —u)[og®] [elow ~u)) ~
+J;{ G [8:3] G an }dx, a=1,...,N. (107)

Under the conditions for which (105) was derived, this reduces to

W (L ar - [ o w)def
L}(u u')v (Gch)dx Lzﬂ 7 ™ dx

w—u)loe"|, _
+Jr G [aanme. (108)

This exhibits explicitly the information contained in an approximate solution
satisfying (105). However, this is not usually analyzed. Comparing (107) and
(108), it is seen that by taking the weighting functions continuous, all the infor-
mation about the exact solution has been centered on the function u itself and
the derivatives have been eliminated. However, if information about the normal
derivatives on 9,{) or about the normal derivatives on the interelement bound-
aries is desired, the restriction ¢* = 0 on 3,Q or [¢°] = 0 on T, for the weight-
ing functions must be removed, respectively.

To illustrate the application of our methodology to time dependent problems
consider the initial value problem

ou ou_ o

5 T ae Vo Jas in (109)

du
u - vg‘; =g ond' ) =000 +9.00 (110a)
uo=g,, att =0 (110b)

which governs advective convection (see for example [2]). Here, Q is the
rectangle illustrated in Figure 2, of space time.
Define

{Pu,v) = f vEudx; (Q*u,v) = f ud*vdx (It
4] 4]

where

du  Bu 8’u v dv v
gf = e =1 Ry moee| o e g |
“ at ax vax‘ £ (at ax ”axz) (112)

Take

_ du !
(Bu,v) = an(u - v:,;;) dr — fo u(0)w(0) dx (113a)
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1
(C*u, vy = ~vjﬂa§§ dt — f u(TYW(T ) dx (113b)
3’ o

U, v) = L{v((v[%} - [u]) dt — {u}dx) - v[u]j—i dt} (114a)
(KEu,v) = L{u(([v] + {%D dr + [v] dx) - u{v]% dt} (114b)

where the notation for line integrals of elementary calculus has been used.
Then, define

E-1 £-1

J=>1; Kt=Y K} (115)

a=1 a=1
In view of (111), (113b), (114b), and (115), the sought information is made of
the function u in the interior of the elements (through Q*u), the prediction of
the values of « at time 7 and the values of the function at the lateral boundary
9'€2 (through C*u) and the averages of u and its spatial derivative du/dx across
the interelement boundaries I, (through K*u).

It has special interest to consider the case when I'y, ..., Iz, are character-
istic for the advection equation (i.e., n, + n, = 0 on I's). Then
e’ di
K;",B=f‘—-—3~d. 116
(Kau,¢") ¥ J 1% o [‘”ax x (116)

Assume further that Q¢* = 0 (i.e., £*¢* = 0), while 9¢*/dx = Qatx =0
and x = 1, then the indirect variational formulation (91) becomes

fo u(T)e*(T)dx + v ; rﬂ{[“’“]“‘aé% - “[%%]}dx

b
= f ¢ fadx — *f gap dt — f go¢"(0) dx. (117)
O FiE o

Vil. BOUNDARY ELEMENT METHODS

One way in which one can use the variational formulation in terms of sought
information (86) is by eliminating part of it from the equations and concen-
trating all the information in the remaining parts. For example, one can elimi-
nate the function in the interior of the elements by setting (Q*u’, ¢*) = 0. This
is the essence of boundary methods.

Observe (Q*u', %) = (Q¢®, u'), so that if the weighting functions are chosen
so that

Q¢* =0 (118)
the indirect variational principle (85), reduces to

(CHu',®) + (K*u' ) = (g — f,¢%, a=1,...,N. (119)

~
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Here, it has been assumed that the sought solution u is smooth; t.e., j = 0. In
most applications (Q¢%,v) = fﬂvﬁf*go“ dx, in which case Eq. (118) is tanta-
mount to requiring that the weighting functions satisfy the adjoint differential
equations. When (119) holds, the sought information which is involved consists
of the complementary boundary values C*u and the generalized averages, only.
Applying (92), it is seen that

(CHu' — 1), ") + (K*(' — u),¢") =0 (120

This equation exhibits explicitly the information about the exact solution con-
tained in any approximate solution of the boundary procedure. When the sys-
tem of weighting functions {¢', ..., ¢"} is T-complete [4], the author has
shown that the system (119) or equivalently (120), implies C*u’ = C*u and
K*u' = K*u; i.e., the complementary boundary values and the generalized
averages of any approximate solution are the exact ones.

Application of the variational principle (119) allows formulating two classes
of boundary methods; the first one, to be called boundary methods in an
extended sense, only requires that Eq. (118) be satisfied by the weighting func-
tions {¢',...,¢"}. A more restricted class of boundary methods is obtained
when, in addition to Eq. (118), one requires that the terms (K*u', ¢%), a =
I,...,N, vanish. This is granted taking the test functions so that

Ke* =0, a=1...,N. (121)

In view of Theorem 3.1, Eq. (121) are tantamount to requiring that the test
functions be right-smooth (or simply smooth when §™ = § Y. When Egs. (121)
are satisfied, Eqgs. (119) reduce to

(C*u', o) ={g —fo¢"), a=1,...,N (122)
This is Trefftz method [4], for nonsymmetric operators,

y
\ 3.8
y‘i" )
34
\
Y.
¥,

X
0 // X, X, e |
1}

FIG. 4. The region §1.
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As an illustration of boundary methods in an extended sense, let us go back
to the example of Section VI, and in order to be specific, assume the region {}
is a unit square (Fig. 4), 3,{} the lower left comer of the square (x = 0,0 =
y =1,y = 0,0 =x = 1) while 4,{} is the upper-right corner of the square
(x=1,0=y =1,y = 1,0=x = 1). The partition will be made of £ =
E, ' E, elements and we associate one weighting function with each one of the
interior nodes; thus, there will be exactly N = (E, — 1)(E, — 1) such func-
tions. It wiil be assumed further, that Egs. (118) are satisfied; these are

|
v. (va) = 0, a=1,...,N. (123)
For simplicity it will be assumed that C¢®* = @; i.e.,
994
v, =0 ondf); and r =0 on 3,{}. (124)

Also, let G be constant (G = 1) and observe that in this case (123) redvces to
the Laplace equation.

Let {x,,...,xy} be any ordering of the nodes, then ¢“ are chosen as con-
tinuous, satisfying the boundary conditions (124), bilinear on each finite ele-
ment (i.e., linear combination of 1, x, y and xy, there) and satisfying

¢ (Xg) = dup. (125)

It is easy to see that this defines {¢', . . . , ¢"} uniquely and that the only discon-
tinuities of the derivatives of ¢® can occur on the interelement boundaries I
With this choice, the system of Egs. (106), reduces to

g™ *
fu' ¢ dx = -2f o Bdx + J ga,aidx - j gt dx. (126)
r an I a0 an 3200

Observe that all the information about the exact solution has been concentrated
on the interelement boundaries I". Let T, be that part of I on which [8¢%/dn]
does not vanish, then T, is as illustrated in Figure 5. If all the finite elements

he W
L _2 A
b kg | K
"%
A 2. N
h* h? Ih
7 ) i
T H

FIG. 5. The interelement boundary T', and the coefficients ¢, when x, = {(x,,y,) is not
next to the boundary 4§2.
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are squares with sides of length A, then the values [3¢°/dn] are

[%%] = Coll = |x = x,)) on horizontal segments (127a)
d¢* -
[‘a';] =Co(l = |y = ya)  on vertical segments (127b)

The coefficients C, are as indicated in Figure 5.

Finally, to illustrate Trefftz method we impose the conditions Q¢ = 0 and
K¢® = 0. For the example here considered, this means that ¢” is a solution of
the Laplace equation (i.e., harmonic function) and continuous together with its
first derivatives across the interelement boundaries. Equation (122) is

o

du’ d¢” d¢
“———dx—*J ’ dx=f a dx—f dx
J;,n"p in aznu an azﬁqa 82 a,ngm an

+2 f B" dx (128)
Q

by virtue of (98b) and (101). Equation (128) corresponds to the second choice
of weighting functions presented by Zielinski and Zienkiewicz [10], except that
to apply (128) there is no need of breaking the sought solution into two parts as
they did. The information contained in an approximate solution satisfying the
variational principle (128) is exhibited by

du'  du de”
o — - =0, 129
J;.a(p (é‘n an) * a;n(u “) an dx (129)

This refers, of course, to the complementary boundary values, as is frequently
the case when Trefftz method is applied [4]. If the system is T-complete {4], «
u’ 9
=2 ond,Q and W =u ondQ. (130)
an  dn
However, T-complete systems are usually infinite. T-complete systems dis-
cussed by the author [3, 4], and recently applied by Zielinski and Zienkiewicz
{10} are given in Tables I and II.

TABLE 1. T-complete systems in two dimensions.

Bounded O Q) = exterior of a bounded region

Laplace Equations
{1, 7" cos nf, r" sin nb} {inr,r ™" cos n6,r™" sin nfl}

Reduced Wave Equation Au + u = 0
{7,(1,J,(r) cos n9,J,(r) sin n6} {HYR, H(r) cos a8, HM ) sin n8}

ne=1,2,....
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TABLE 1. T-complete systems in three dimensions.

Bounded () {1 = exterior of a bounded region

Laplace Equations
{r"Pi(cos B)e'®} {r™""'Pcos 8)e}

Reduced Wave Equation
{i.(nPi(cos He'™*} (R (Pcos 0)e™?)

n=012,...;,-n=g=n

There is an important case for which T-complete systems are finite. They
will be discussed in Part 3 of this work.

Vill. THE COUPLING OF FINITE ELEMENTS AND
BOUNDARY METHODS

The formulation and analysis of problems in which finite elements and
boundary procedures are coupled is straightforward when the framework of the
theory here presented is used.

Indeed, the discussion of Sections III through VI applies to this case but in
the partition 7 one separates a certain number of spbregions €2, in which the
boundary method is going to be applied. For simplicity we consider the case in
which only one such region —£); to be specific — is singled out (Fig. 6). Then
using the notation of Section 1II, one defines

£-1
Q, = Interior of (U “Q“) Q= Q. (131)
e=|
In applications (1 is usually much larger then the other elements and it is said
to be a macroelement (Fig. 6). Then one defines

§-5.08,

FIG. 6. The coupling of finite elements with boundary methods.
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E-1

P:=2Pe; Py = Pg; Q1=2Qe; On = QO (132a)
e=]

E~1
Bi=>B,: By=Bg C=22C; Cy=C: (I132b)
g=]

e=l—1

E-1
= 2 dys Je= 2y (132¢)
e>fzl f=1

and similarly for K, and K., where the notatioq of Section III has been used
once more. The weighting functions {¢',...,¢",...,¢"} are taken so that Q

Oue® =0, N <a=Ng (133)

while ¢® are taken with support in £); for I < a =< N’. Then, the indirect varia-
tional principle (91) yields

Qfu',¢%) = (CTu', ¢ — (KT, %) — (K&, &) = (f,¢") ~ (g, ¢"),
a=1,...,N' (134a)
and
(Cliu', @) + (KEu',¢%) = (8,¢") = (f,¢"), N <a=N (134D
When the boundary conditions Cpe™ = 0 are satisfied, Eq. (134b) reduces to
(KEu',¢") = (8,9 = (fi¢"), N <a=N (135)

Observe that when Eqs. (134a) and (135) hold, region )y is eliminated from
the analysis.
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