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ABSTRACT

Three of the most powerful numerical procedures for
partial differentiagl equations are finite elements,
finite differences and boundary element methods. 1In
this paper a general variational theory of such
methods is presented. The approach is quite general,
since it is applicable to any linear operator, sym-
metric or non-symmetric, regardless of its type. In
particular, the theory includes steady state and time
dependent problems. In general there are two alter-
natives but equivalent variational principles asso-
ciated with any lincar problem. The first one is in
terms of "prescribed data" while the second one is in
terms of "sought information". The latter variational
principle is quite useful for analyzing the relation
between the exact solutiomn and any approximate one.
The general development of such variational princi-
ples depends on the availability of Green's formulas
for operators defined in discontinuous fields. The
systematic development of Green's formulas for oper-
ators defined in discontinuous fields has been car-
ried out recently by the author.

1. INTRODUCTION

Variational principles for problems formulated in
discontinuous functions are essential for the under-
standing of numerical methods for partial differen-
tial equations., This has been recognized since long
by some authros (see for example [1,2]). However, a
systematic development of this subject has been
lacking.

Recently, the author has presented a unifying theory
of Numerical Methods [3-5], whose fundamental




ingredients are general variatiomnal principles for
problems formulated in discontinwuous functions (or,
more generally, discontinuous fields). This paper is
devoted to present an outline at that theory, which
is completely general, since it is applicable to any
linear boundary value problem, r=gardless of the type
of the operator or of the boundary condition., In
particular, the variational prinziples here given are
applicable to steady state and tZme dependent problems,

2. PRELIMINARY NOTIONS AND NOTATIONS

Denote by F the field of real or complex numbers.

Let Dbe alinear space over the fZeld F, whose ele-
ments will be called scalars. EZements of D will be
denoted by u,v,..., and will be said to be admissible
functions. Write D* for the linear space of linear
functionals defined on D; i.e. D¥ is the algebraic
dual of D. Hence, any element o D% is a function
a:D+F which is linear. Given v £D, the value of the
function o at v will be denoted by

a(v) = <a,v>€F (2.1)

In this work, fumnctional-valued c¢perators P:D > D%
will be extensively used. Given u €D, the value

P(u) €D* is itself a linear functional. According to
(2.1), given any v€&€D, <P(u),v>E&€ F will be the value
of this linear functional at v. When the operator P
is itself linear, <P(u),v> is lirear in u when v is
kept fixed. Therefore, as it is costumary, we write

<Pu,v> = <P(u),v>€EF (2.2)

for this vaJue. We shall be concerned, exclusively,
with functional valued operators that are linear.

On the other hand, let D2 = D®D be the space of
pairs {u,v} with u €D and vED. We may consider
functions B:D? +» F. The value of such function on a
pair {u,v}€D?, will be written zs B(u,v). Such func
tion is said to be a bilinear furmctional if it is o
linear in u when v €D is kept fixed and conversely,
it is linear in v when u is kept fixed. There is a
one~to-one correspondence between bilinear functionals
and functional-valued operators which are linear.
This is given by

B{u,v) = <Pu,v> (2.3)

In what follows, operators P:D~+ D% will be defined by
giving the corresponding bilinear functional.



Given P:D + D%, let equation (2.3) be satisfied, the
notation P*:D > D* will be used for the operator asso-
ciated with the transposed bilinear functional; thus

<P¥ u,v> = B*(u,v) = B(v,u) =.<Pv,u> (2.4)

Here, B#* is the transposed of B and P*:D > D* will be
called transposed of P:D~>D*, Observe that the trans
posed operator is well defined whenever P:D~+ D% ig
given.

3. BOUNDARY VALUE PROBLEMS

Boundary value problems formulated in discontinuous
functions can be formulated by means of three opera~
tors: P:D> D%, B:D~=»D* and J:D» D% associated with
the differential operator £, the boundary conditions
and the prescribed jumps, respectively. "The system~
atic construction of these operators was presented in
[3]. Usually, but this is not essential, P:D -+ D#* is
defined by

<Pu,v> = [ v Lu dx (3.1)
Q ~
Then the boundary value problem with prescribed jumps
is A
Pu=f , Bu=1g, Ju=j (3.2)

where £, g and j are prescribed functionals. VWhen f,
g and j are in the ranges of P, B and J, respectively,
the three equations (3.2) are equivalent to the varia
tional principle

<(P‘-B«J)u,v> = <f ~g~-J,v> ¥ vED (3.3)

4. GREEN'S FORMULAS FOR OPERATORS IN DISCONTINUOUS
FUNCTIONS

In the systematic analysis of discrete methods (e.g.
finite elements, finite differences and boundary
methods) the use of Green's formulas for operators
defined in discontinuous fields, is essential. Such
formulas were developed in [3] for arbitrary linear
operators.

It is convenient to define the space of admissible
functions as the product space D = Dy & D7y, where Dy and Dyy
are two linear spaces. In applications the elements of Dy and
DII will be functions defined on two neighboring regions I and
fi7 (Fig. 1), respectively. Thus, the elements of D are pairs
u = {ug,ury}, where uy €Dy and uyy€Dry. Usually, we start
from a Green's formula P - B = Q* - K* satisfied by smooth func
tions. When discontinuous functions are considered,, this
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relation no longer holds, and one can define
R = P——B-—(Q—-K)*; i.e. the operator R is the residue,.
Generally, the operator R:D > D* satisfies

<Ru,v> = <R1u£,v1> + <R (4.1)

>
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where RI:DI-*Df and Ryp:Dyp > D¥1 are associated with
the values at each one of the sides of the connecting
boundary B'QI = B'QII (Fig. 1).

The notion of jump and its numerical value, is depen-
dent on the smoothness criterium considered. Usually
the set of smooth functions constitutes a linear sub-
space of D, to be denoted by SCD. 1In order to
achieve complete generality, it is necessary to in-
troduce a second smgothness criterium., Thus, two
linear subspaces {8%,8TY} of smooth functions are
considered, associated with each of one of the smooth
ness criteria. Even more, they will be assumed to be
conjugate; by this we mean that

<Ru,v> = 0 VuESF‘ & veEsT (4.2)

Then the jump operator J:D->D* and the generalized
averages K#%:D > D%, are defined by [3 ]:

L er

<Ju,v> = - <R_[ul",v

L > while <K*u,v> = <R.uv,[v]5>

I
(4.3)




Here, the square brackets stand for the jumps and the
dot for the averages. These depend on the smoothness
criteria used.

With these definitions the "General Green's Formula
for Problems in Discontinuous Functions®

P-B~J= Q% - C* - K#* (4.4)
holds.

5. THE VARIATIONAL PRINCIPLES

any linear boundary value problem, whose explicit
expressions are given in this article. The first one
is in terms of the "prescribed data”.

<Pu,v> - <Bu,v> = <Ju,v> = <f ,v> - <g,v> ~ <j,v>

¥y vED (5.1)

while the second one is in terms of the "sought infor
mation"

<Q*u,v> - <C*u,v> ~ <K*%u,v> = <f,v> - <g,v> - <j,v>
¥ vED (5.2)

Here fE€D*, g€ D* and jED* are the prescribed values
of the operator Pu associated with the differential
operator, the boundary operator Bu and the jump oper-
ator Ju. The definition of these operators is given
explicitly by the theory and it is dependent on the
differential operator, the kind of boundary condi-
tions and the smoothness requirerents, considered,
respectively. The equivalence between (5.1) and
(5.2) is granted by the Green's formula (4.4). If Q
(Figure 1) is the region of definition of the problem
one usually defines - but this is not essential - the
operators P and Q% by

<Pu,v> = [ vLudx and <Q*u,v> = [ u L¥vydx (5.3)
Q Q

where £ is a differential operator defined in Q and
£* its formal adjoint. Observe that knowing Q*u is
tantamount to know the function u in the interior of
Q. The "complementary boundary values" C*u are here
illustrated by means of examples; thus, for Dirichlet
problem of Laplace equation in which u is prescribed
on the boundary 3§}, the complementary boundary values
are the normal derivatives du/3n, there. For problenms
of Elasticity, the prescribed and complementary bound
ary values, may be the displacements and the tractioné‘:




respectively., The average values of the exact solu-
tion across the surface I' (Fig. 2), where I' is the
surface on which discontinuities of the functions

may occur, constitute the third component of the
sought information and are characterized by K*u. The
operators J and K* in a region like the one illus-
trated in Figure 2 is constructed by a processes
which generalizes the results of Section 4 and ex-
plained in detail in [4].

Figure 2.

It must be emphasized that the integrals in (5.3) are
understood in an elementary sense; thus, the theory
of distributions is not applied, because in this man-
ner greater generality is achieved. Generally, the
admissible functions may possess as many continuous
derivatives as required by the order of the differen
tial operator £, in the interior of the subregions Qe
in which the region ) is decomposed (Fig. 2). Hence,
the integral vaﬁudx is well defined for every sub-

region §,. Thin, the integral over £ is understood

as the sum over all the subregions and the resulting
theory allows greater generality than the theory of

distributions, in some respects.

In order to illustrate this point, consider the dif-



ferential operator Lu = d?u/dx? which will be applied
to functions defined on the unit interval (0,1). When
these functions are reqired to possess second order
continuous derivatives in the closed interval, the
operator is well-defined. To extend it to functions
with a jump discontinuity at an interior point, the
theory of distributions yields a definition of Lfu
such that flvfudx is well defined only when v is con-
tinuous and possesses a continuous first derivative
at x=1/2. For example if u=x-H(x-1/2), where H is
Heaviside unit step function (Fig. 2), then

Lu= -8'"(x-1/2) where 6' is the darivative of Dirac's
delta function. Then, flvfudx= dv/dx (1/2), when v
has a continuous firstlorder derivative at x=1/2.
However, if v is discontinuous, f'vLudx is not defi-
ned. On the other hand, whenv is’® discontonuous at
x=1/2, élvﬁ' (x-1/2) dx= g vLfudx is not defined.

In the-thebry that has just been published by the
author [3-5], the operator Lu is extended to be P-J,
which is given by

((P-Du,v) = ['v a’u/ax’ ax+(¥ [du/dx}-{u]dx‘;/dx)x__(-“"")
T1/2
Here, the square brackets [ ] and the dots, stand for
the jump and the average of the functions involved,
whose definition depends on the smoothness criterion
adopted. The usual smoothness condition associated
with a second order differential operator requires
that a function and its derivative be continuous at
x=1/2, in order to be smooth. In this case the jump
of a functions is defined as the limit from the right
minus the limit from the left and the average as one
half of the sum of this quantities. Thus, if
u=x-H(x-1/2), then equation (5.4) yields

{((P-J)u,v) =(dv/dx) {(5.5)

x=1/2
This is well defined even if v and its derivative are
discontinuous. Observe that in particular, when v and
its derivative are continuous, this reduces to
dv/dx(1/2) which is the result given by the theory of
distributions.
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