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ABSTRACT 


Three of the most powerful numerical procedures for 

partial differential equations are finite elements, 

finite differences and boundary element methods. In 

this paper a general variational theory of such 

methods is presented. The approach is quite general, 

since it is applicable to any linear operator, sym

metric or non-symmetric, regar~less of its type. In 

particular, the theory includes steady state and time 

dependent problems. In general there are two alter

natives but equivalent variational principIes asso

ciated with any linear problem. The first one is in ,~ 


iterms of "prescribed data" while the second one is in ~. 
Iterms of "sought information". The latter variational 

principIe is quite useful for analyzing the relation 
between the exact solution and any approximate one. 
The general development of such variational princi
pIes depends on the availability of Green's formulas 
for operators defined in discontinuous fields. The 
systcffiatic development of Green's formulas for oper
ators defined "in discontinuous fields has been car
ried out recently by the author. 

1. INTRODUCTION 

Variational principIes for problems formulated in 

discontinuous functions are essential for the under

standing of numerical methods for partial differen

tial equations. This has been reeognized sinee long 

by sorne authros (see for example [1,2 D. However, a 

systematic deveIopment of this subjeet has been 

lacking. 


Recently, the Buthor has presented a unifying ~heory 


of Numerical Methods [3-5], whose fundamental 




ingredients are general variatio~al principIes for 
problems formulated in discontin~ous functions (or, 
more generally, discontinuous fíelds). This paper is 
devoted to present an outline at that theory, which 
is completely general, since it is applicable to any 
linear boundary value problem, regardless of the type 
of the operator or of the boundary condition. In 
particular, the variational prin~iples here given are 
applicable to steady state and t::me dependent problems. 

2. PRELIMINARY NOTIONS AND NOTA7IONS 

Denote by F the field of real or complex numbers. 
Let Dbe alinear space over the f::eld F, whose ele
ments will be called scalars. E~ements oí D will be 
denoted by U,v, ..•• and will be saíd to be admissible 
functions. Write D* for the linEar space of linear 
íunctionals defined on D; i.e. D* is the algebraic 
dual of D. Hence, any element a E D* is a function 
a:D-*F which i8 linear. Given v =D. the value of the 
function a at v will be denoted by 

a(v) = <a,v> E F (2 • 1 ) 

In t.his work, fu.nctional-valu,ed cperators P:D -* D* 
will be extensively used. Given -u E D. the value 
p(u) ED* is itself a linear functional. According to 
(2.1), given any vED. <P(u),v> E F will be the value 
of this linear functional at v. Hnen the operator P 
is itself linear, <P(u),v> is li~ear in u when v is 
kept fixed. Therefore. as it is c08tumary. we write 

<Pu"v> = <P(u),v>EF (2.2) 

for this vaIue. We ~h-all be concerned, exclu8ively, 
with functional valued operators that are linear. 

On the other hand, let D2 = De D be the space of 
pairs {u,v} with uED and vED. He may consider 
functions i3:D 2 +F. The value of such funct·ion on a 
p a ir {u. v} E D 2, W i 11 b e w r i t ten é s B(u , v ) • S u e h f wn e 
tion i8 said to be a bilinear fu~ctional if it is 
1 in e a r in u Wh e n v E D i s k e p t f i 1-: e dan d e o n ver 8 e 1 y , 
it i8 linear in v when u ls kept fixed. There is a 
one-to-one correspondence between bilinear functionals 
and functional-valued operators which are linear. 
This is given by 

i3(u,v) = <Pu,v> (2.3) 

In what follows, operators P:D -* D* will be defined by 
giviryg the corresponding bilinear functional. 



Given P:D + D*, let equation (2.3) be satisfied, the 
notation P*: D + D* will be used for the operator asso
cíated with the transposed bilinear functional; thus 

<P*u,v> = B*(u,v) = B(v,u) = <Pv,u> (2.4) 

Here, S* is the transposed of (3 and P*:D + D* will be 
called transposed of P:D + D*. Observe that the trans 
posed operator ís well defined whenever P:D + D* ís 
given. 

3. 	 BOUNDARY VALUE PROBLEMS 

Boundary value problems formulated in discontinuous 
functions can be formulated by means of three opera
tors: P:D+D*, B:D+D* and J:D+D* associated wíth 
the differential operator t, the boundary conditions 
and the prescribed jumps, respectively.The system
atic construction of these operators was presented in 
[3 J. Usually, but this is not essential, P:D + D* is 
defíned by 

<Pu,v> = f v tu dx 	 (3.1) 
n 

Then the boundary value problem ~ith prescribed jumps 
is 

Pu =: f Bu = g , Ju =: j (3.2) 

where f, g and j are prescribed functionals. When f, 
g and j are in the ranges of P, B and J, respectively, 
the three equations (3.2) are equivalent to the varia 
tional principIe 

«P-B-J)u,v> = <f-g-j,v> r.¡. vED (3.3) 

4. 	 GREEN'S FORMULAS FOR OPERATORS IN DISCONTINUOUS 

FUNCTIONS 


In the systematic analysis of discrete methods (e.g. 
finite elements, finite differences and boundary 
methods) the use of Green's formulas for operators 
defined in discontínuous fields, is essential. Such 
formulas were developed in [3] for arbitrary linear 
operators. 

It is convenient to define the space of admissible 
functions as the product space D = DI 6 DII' where DI and DII 
are two linear spaces. In applícations the elements of DI and 
D will be functíons defined on two neighhoríng regions ~21 and
nii 	(Fig. 1), respectively. Thus, the elements of D are paírs 
u =: {Ur,uII}' where uIEDI and uIIEDII- Usually, we start 
from 	a Green's formula P - B = Q* - K* satisfied by smooth fun~ 
tions. '\Then discontinuous functi:ons are considered" this 



Figure 1. 

relation no longer holds, and one can define 
R = P - B - (Q - K)*; Le. the operator R is the residue. 
Generally, the operator R:D -+ D* satisfies 

(4.1) 

where RI:Dr -+ Dt and Rlr:Drr -+ Dtr are associated with 
the values at each one of the sirles of the connecting 
boundary 3'nr = d'f2 rI (Fig. 1). 

The notíon of jump and its numer~cal value, is depen
dent on the smoothness criterium considered. Usually 
the set of smooth functions constitutes a linear sub
space of D, to be denoted by S e D. In order to 
achieve complete generality, it is necessary to in
troduce a second sm~othness criterium. Thus, two 
linear subspaces {S ,Sr} of smooth functions are 
considered, associated with each of one of the smooth 
ness criteria. Even more, they will be assumed to be 
conjugate; by this we mean that 

(4.2) 

Then the jump operator J:D-+ D* and the generalized 
averages K*: D + D*, are defined by [3 J: 

,t -r -,t r
<Ju,v> = - <Rr[U] ,v > while. <K*u,v> = <Rru ,[v] > 

(4.3) 




Here, the square brackets stand for the jumps and the 
dot for the averages. These depend on the smoothness 
criteria used. 

With these definitions the "General Green's Formula 
for Problems in Discontinuous Functions l1 

P - B - J:: Q* - C* - K* 	 (4.4) 

holds. 

5. THE VARIATIONAL PRINCIPLES 

There are Q ~ª¡iª~igRª¡ R¡~R~iRlg§ applicable to 
any linear boundary value problem, whose explicit 
expressions are given in this article. The first one 
is in terms of the "prescribed data". 

<Pu,v> -	 <Bu,v> - <Ju,v> = <f,v> - <g,v> - <j,v> 

lJ vED (.5.1) 

while the second one is in terms of the "sought infor 
matíon" 

<Q*u,v> - <C*u,v> - <K*u,v> <f,v> - <g,v> - <j,v> 

lJ v E D (5.2) 

Here f E D*, g E D* and j E D* are the prescribed values 
of the operator Pu associated with the differential 
operator, the boundary operator Bu and the jump oper
ator Ju. The definitíon of these operators is given 
explicitly by the theory and it is dependent on the 
differential operator, the kind of boundary condi
tions and the smoothness requireEents, considered, 
respectively. The equivalence between (5.1) and 
(5.2) is granted by the Green's formula (4.4). If n 
(Figure 1) is the regíon of definition of the problem 
one usually defines - but this ís not essential - the 
operators P and Q* by 

<Pu,v> 	 J v.c udx and <Q*u,v>; J u .c*vdx (5.3) 
Q Q 

where .c is a differential operator defined in n and 
.c* its formal adjoint. Observe that knowing Q*u is 
tantamount to know the function u in the interior of 
n. The "complementary boundary values l1 C*u are here 
íllustrated by means of examples; thus, for Dirichlet 
problem of Laplace equation in which u is prescribed 
on the boundary en, the complementary boundary values 
are the normal derivatives aufan, there. For problems 
of Elasticity, the prescribed and complementary bound 
ary values, may be the displacements and the tractions, 



respectively. The average values of the exact solu
tíon across the surface r (Fíg. 2), where r is the 
surface on which discontinuities of the functions 
may occur, constitute the third component of the 
sought information and are characterized by K*u. The 
operators J and K* in a region like the one illus
trated in Figure 2 is constructed by a processes 
which generalizes the results of Section 4 and ex
plained in detail in [4]. 

r 

Figure 2. 

It must be emphasized that the integrals in (5.3) are 
understood in an elementary sense; thus, the theory 
of distributions is not applied, because in this man
ner greater generality is achieved. Generally, the 
admissible functions may possess as many continuous 
derivatives as required by the order of the differen 
tial operator l, in the interior of the subregions ne 
in which the region n is decomposed (Fig. 2). Hence, 
the integral ~vludx is well defined for every sub

e 
regíon neo Then t the integral over n is understood 
as the sum over all the subregions and the resulting 
theory allows greater generality than the theory of 
distributions, in sorne respects. 

In order to illustrate this point, consider the dif



ferential operator lu = d 2 u/dx 2 ~hich will be applied 
to functions defined on the unit interval (0,1). When 
these functions are reqired to possess second order 
continuous derivatives in the closed interval, the 
operator is well-defined. To extend it to functions 
with a jump discontinuity at an interior point, the 
theory of distributions yields a definitíon of ~u 
such that Jlv~udx is we11 defined on1y when v is con
tinuous an~ possesses a continuo~s first derivative 
at x-I/2. For examp1e if u=x-H(x-1/2), where H is 
Heaviside unit step function (Fig. 2), then 
lu= -6'(x-l/2) where 6' is the darivative of Dirac's 
delta function. Then, Jlv~udx= dv/dx (1/2), when v 
has a continuous firstOorder derivative at x-1/2. 
However, if v is discontinuous, J1vludx is not defi 
ned. On the other hand, whenv is!l discontonuous at 
x=I/2, J1V01 (x-I/2) dx= JI v~udx is not defined. 

° ° 
In the-theb~y that has just been ~ublished by the 
author [3-5], the operator lu is extended to be P-J, 
which is given by 

«P-J)u,v) = JI v d 2 u/dx 2 dx+(v [du/dx]-[u] dv/dx) (5.4) 
o x=I/2 

Here, the square brackets [ and the dots, stand for 
the jump and the average of the functions involved, 
whose definition depends on the smoothness criterion 
adopted. The usual smoothness condition associated 
with a second order differential operator requires 
that a function and its derivative be continuous at 
x=I/2, in order to be smooth. In this case the jump 
of a functions is defined as the limit from the right 
minus the 1imit from the left and the average as one 
half of the sum of this quantities. Thus, if 
u=x-H(x-I/2), then equation (5.4) yields 

{(P-J)u,v) =(dv/dx)x=1/2 (5.5) 

This is well defined even if v and its derivative are 
discontinuous. Observe that in particular, when v and 
its derivative are continuous, this reduces to 
dv/dx(I/2) which is the result given by the theory of 
distributions. 
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