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ABSTRACT

According to the abstract theory of boundary value
problems developed by the author, the method of
weighted residuals admits two alternative (but equiva
lent) variational formulations. The first one is the
standard formulation in terms of data of the problem,
while the second one is in terms of the "sought infor
mation". This latter formulation is quite useful be-
cause it allows analyzing the information about the
exact solution contained in any approximate one. By
choosing conveniently the weighting functions one can
focus the informtion supplied by the corresponding
approximate solution. Generalized boundary methods
corresponds to the case for which the information is
concentrated on the boundaries (external and internal).
To illustrate the procedure, an exhaustive analysis
is carried out of finite difference algorithms which
yield exact values at the nodes, for ordinary differ-
ential equations.’ ’

INTRODUCTION

Boundary methods use previously known solutions to
construct the sought solutions of boundary value prob
lems. There are two ways in which previously known -
solutions can be used to carry out such construction.
The first one consists in adding them up to represent
the desired solution. The second one is less direct
and consists in using reciprocity relations to derive
information about the sought.solution [Herrera, 1984 ]

¢
Recently, the author has derived reciprocity relations
of complete generality which are applicable to any
problem which is linear [ Herrera, 1985a,b; Herrera,
et al., 1985]; they include Green's formulas for




<Pu,v> = f vLudx and <Q*u,::> = [ u L¥vadx (2.3)
Q Lo Q .

where £ is a differential operator defined in an ele-
mentary sense, in £ and £L* is its formal adjoint.
Then, knowing Q*u is tantamount to know the function
u in the interior of . The "complementary boundary
values" C#*u are illustrated by means of examples;
thus, for Dirichlet problem of Laplace equation in
which.- u is prescribed on the boundary 9}, the comple
mentary boundary values are the normal derivatives
du/3n, there., For problems of Elasticity, the pre-
scribed and complementary boundary values, may be
the displacements and the tractions, respectively.
The average values of the exact solution across the
surface T' (Fig. 1), where ' is the surface on which
discontinuities of the functions may occur, consti-
tute the third component of the sought information
and are characterized by K*u,

Fig. 1. The region 9 and its subdomains.

The equivalence between the variational principles
(2.1) and (2.2), is granted when

P-B - J = Q% - C* - K% .(2,4),

is a Green's formula, in the sense of the theory. The
systematic construction of such formulas in a manner
which is applicable to fully discontinuous functions,
has been given eisewhere JHerrara. 1985al.

Accordingvto_the,method of weighted residuals [Herrera,
1985b; Finlayson, 1972}, an approximate solution

u' €D, satisfies

<(P-B-J)u',p'> = <f-g-3,0% , a =1,...,N (2.5)




v
i

where {¢;,...,¢F}C:D'is«d system of weighting func-
tions. Clearly, any exact solution also satisfiles
(2.5). A more informative form of (2.5) is obtained
by applying the variational formulation in terms of
the sought information (2.2). This yields

<Q*u',p%> —<ccrut, % - <kxu' 0% = <£,0% - <5,0%

i

O 1,.0.,N E (2-6)

One also has

o 0
<Q*u,p > - <C*u,p >

<Qru’,p> - <CHu',p%> ~ <kxu’,p%>
-<K#u,¢a> ;3 a=1,...,N, (2.7)

because the exact solution u€ D, also satisfies (2.6).
Thus, the N functionals <Q*u',p®> - <C*u' ¢a>-<K*u'ﬂﬂb‘
can be interpreted as "all the 1nformat10n contained
1n an approx1mate solutlan.

BOUNDARY ELEMENT METHODS

One way in which one can use the variational formula-
tion in terms of the sought information is. by elimina
ting ‘'part of it from the equations and concentrating
all the information in the remaining parts. For
example, one can eliminate the function in the inte-
rior of the élements by choosing_the.weighting func-- -
tions so that <Q*u',y s = 0. This is the essence of
boundary methods.

-

: . a
Observe <Q*u',¢a> = <Qp ,u'>; thus, when

Qv =0 o " (3.1)

equations (2.6) become

<c*u',tp°‘>+<1<*u',cp“> = <g-f,sp°.‘> , a=1,...,8 (3.2)
Here, it has been assumed that the sought solutlon u
is smooth; i.e. j=0. In most applmcat1ons <Qp®,v>

= fovL* p%dx, in ‘which case (3.1) is £*p% =0, when
(3.2) holds, the sought information which is involved
consists of the complementary boundary values and the
generalized averages, only. Applying (2.7), it is
seen that : ) .

b ) A
<Cx(u' - u),e%> + <Ri(u' ~u),9%> = 0 (3.3)
e ass -, .
This equation exhibits explicitly the information

about the exact solution contained in any approximate
solution of the boundary procedure.




By a T-complete system, we -mean a system {wa} such
that :

<(C*+ K*)u',p% = <g-£f,9p%> ¥ a=C*u' = C*u & K*u' = K*u
' (3.4)

When the existence of solution of the adjoint bound-
ary value problem is satisfied, the existence of such
system is granted [Herrera, 1985c].

Application of the variational principle (3.2) allows
formulating several classes of boundary methods; the
first one, to be called boundary methods in an ex-
tended sense, only requires that equation (3.1) be -
satisfied by the weighting functions. {¢*,...,pN}, A
more restricted class of boundary methods is obtained
when, in addition to equation (3.1), one requires
that the. terms <K*u',¢%>, a=1,...,N, vanish. This
is granted taking the test functions so that

ke =0 , a=1,...,N ‘ (3.5)

Equations (3.5) are tantamount to require that the
test functions be right-smooth [Herrera, 1985b] (or
simply smooth when ST =5%). When equations (3.5) are
satisfied, equations (3.2) reduce to

<C*u‘,¢a> = <g:-f,¢a> > o=1,...,;N A(3.6)

This is Trefftz method [ Herxera,; 1984], for non-sym-
metric operators. :

In the following sections we illustrate these proce~-
dures by applying them to ordinary differential equa
tions, in which case the analysis can be carried out
exhaustively.

GREEN'S FORMULAS FOR ORDINARY DIFFERENTIAL OPERATORS
Let Q be the unit interval and introduce a partition

of @ into E subintervals Q,= (xg_1,%g), ¢=1,...,E:
Here, X = 0 while x_=1. Define

E
. , .
M k M d a, v ,
tuz 1 o £¥ . r*= po(-nF K (4.1)
k=0 dx | k=0, : dx
with the operators P and Q* given by (2.3). ‘Then
E-1 M-1 E-1 . M-1
J= £ J,= % 3 ;5 xx= I K = I (xD* (4.2)
. o
a:l J=0 Q=

1 i=0




Here, we have written

M~-1 i < M-1 Jok
gt ol ke 1)) (4.32)
j=0 j=0
and
. E-1 e E=l L .
A= 4 ; (xkH*= 1 (®) (4.3b)
o . o
a=1 a=1
with
j . ady
< > — Pt .
S<J U, qM-j~1(v)a o ; |
' ‘J" (4.4)
dla N
<(k7)*u,v> = [é e (V{} ,
M-j~1 de
In turn
: i dka v
q.(v) = T (-1)F e A I L JRRN B (4.5)
J k=0 - dx

and the subindex o implies that the corresponding
quantity must be evaluated at the node Xy

If the operators B and C* are conveniently chosen,
then the equation P-B~J=Q% - C*-K* is satisfied
and it is the desired Green's formula for functions
with arbitrary jump discontinuities at the interior
nodes [Herrera, 1985b; Herrera, et al., 1985].
Observe that the representations in terms of J, and
K§ for J and K*, respectively, supplied in Eqs. (4.2),
decompose these operators in terms of the contribu~
tions at each.one of the interior nodes. On the
other hand, J¥ and (x3) decompose the jumps and the
averages 1in their components corresponding to the
derivatives of order j.

*DIFFERENTIAL EQUATIONS OF ARBITRARY ORDER
Consider the boundary value problem (initial value
problems are included as a special case) which con-
sists in finding u€ D (continuous togethér with its
first derivative), such that

Lu = fQ in Qj=(0,1) _ (5.1)
and satisfying suitable boundary conditions.

By a convenient choice of the operators B:D - D% ahd



Cx:D+D*, and of the functional g €D*, the varia-
tional formulations (2.1) and (2.2) are applicable,
with <f V>—-f vi.,dx. The method of weighted residu-
als, ylelds equaglons (3.2) when it is assumed that
Qp®*=0, i.e. L*p%* =0, cClearly, in equations (3.2)
the information about the sought solution is concen=-
trated in the generallzed averages (K*u) and the
complementary values (c* u)

It must be observed that the generalized averages
<K*u,p > of the exact solution coincide with the
values at the nodes when the sought solution is
smooth. Recalling equations (4.2) to (4.5), it is
seen that the information ‘about the derlvatlve of
order j at node Xoy is given by (K]) a. Thus. by
suitably choosing the weighting finctions {el,...,¢ }
one can focus the sought information even more.

For example, if the only desired information is
about the function itself (i.e. about the zero order
derlvatlve), we must choose the weighting functions
{ol,...,¢"} so that

<k *u,p% = <kIp%u>=0, j=1,...,M-1 (5.2)
This is granted if KJo®=0, for j=1,...,M=1. 1In
view of equations (4.4), this latter condition re-
quires that

qucv“>18=o, a=1,...,8 3 B=1,...,E-1;

Y = 0,...,M=-2 T : (5.3)

When the coefficients {a,,...,a,} are continuocus to-
gether with their derivatives, equations (5.3) are
tantamount to require .that the weighting functions
and their derivatives up to order M-2 be continuous;
i.e. discontinuities 'of the derivatives of order M-l
are the only admissible ones. This is precisely the
condition for the method to be conforming.

When the system {@l,...,wN} of weighting functions is
T-complete (relation 3.4), one has C*u' = C*u and
K*u' = K*u, so that the complementary boundary values
and generalized . . averages are predicted correctly.

For ordinary differential equations the application
of this procedure yields finite difference algorithms
which supply the de31red 1qformat1on exactly, because
<C*u',p*> and <K*u',y %> involve nodal values only and
the corre5pond1ng I'-complete systems are finite. The
finite difference algorithms derived in this manner
yield the exact values of the solution and its deriva
tives at the nodes. If some of the contanulty require
ments KJp% = 0 are satisfied for some j's, then some




‘of the values of the derivatives are eliminated from
the sought information about the solution, 1In this

manner many alternative algorithms, are constructed,.
An exhaustive analysis of them has been carried out

in [Herrera, 1985b]. '

SECOND ORDER DIFFERENTIAL EQUATIORS

-

In this section attention is restricted to the dif-
ferential operator

Lu = 2 + 2a e + (b + dx)u . ‘ (6.1)
dx
whose formal adjoint is .
2
xy 4V _ dv _d_a
L*y dx2 2a ax + (b dx)u (6.2)

The coefficients a and b may have jump discontinui-
ties nodes. The operator P and Q* are defined by
(2.3). In the most general boundary value problem
which is linear, one prescribes

) o du. _ B

e1u+ez :1"")"- = gao ét x = 0 (6.38)
1 1 du _ . ’ "\
elu-i-ez ‘a‘;{' 831 at x 1 (6,.3b)

where the palr§ e ,egéé)B¥ O;i, can be taken normal

ized (i.e. 1 ) + ( = 1), TFor the boundary

value problem, it is convenlent to decompose each

one of the operators B and C* into two parts, thus,

we write . ' i :
’Y:l . -'Y: x . N

B = L B, ; C*= I C (6.4)
y=0 B Y=

where o

<BYU’V> (-1)Y (e —;4—eyﬁ)y {eY av | (2ae) + eNv}

1 1 dx 1 2 Y
vy = 0,1 (6.5a)

and .
* Y xdu YA sy dv oy oy .
<CYu,v> (-1) Feldx ezng {e2 dx4~(e1 2:14.22)\3'},Y H

vy = 0,1 ° (6.5b)

For this case equations (4.4) are




o . . . 1 e _ 3 (8u, |
<Jau,v> ~q(v)a[u]a s <Jau,v> va[dx o
a = 1,...,E~1 (6.6a)
<K% *u,v>=a La(] ; <xbry*u,v> = [v] [i‘.ig ;
u,v gt d a ? a’ ? o dx '*
o =1,...,E-1 . (6.6b)
where ‘
. dv A
q(v) 2av - 9% | (6.7)
In addition, the decompositions (4.2)'and (4.3) are
available. The test functions satisfy Qp® = 0 ; i.e.
2 o o ,
d¥ 2292 4 (p-93,%C 0, a=1,...,8 (6.8)
dx 2 dx dx

at every interior point of the subintervals Qe
(e = 1,...,E).

Four algorithms will be considered. All of them
yield the exact values of the sought information at
the nodes, because the system of weighting functions
to be used will be chosen to be T-complete [Herrera,
1985b]. The components of the sought information on
which each algorithm focusses, differs for each one
of themn.

Algorithm 1.~ . The value of the.function and its
derivative,

Eq. (6.8) is the only constraint imposed on the
weighting functions; thus, they_are fully discontinu-
ous. At every subinterval {,= (x 1,xa) there are
.two linearly independent solutions (¢% and wg)
which are taken to be identically zero outside “Q
(Fig. 2a). The system {wé,...,@é (B=1,2), so
defined, posesses 2E linearly independent functions
and can be shown to.be.T-complete. .. Equations (3.2)
reduce to an EXE system: : :

—— ahen B

Fig. 2a. Weighting functions for algorithm 1.




oo o o ]
Y = 1,2 ' N (6.9) .
1 1 1 1 |
<C0‘P‘Y , u‘>+<Kl¢Y’u’>=<g0-"p'}’>—<f"p'¥'> 3 i
Yy = 1,2 (6.10a) .
and g
E T E 1 E E
> > = < > - >3
<CI‘PY s U +<KE_150.Y » u gl :‘pY <f :SO.Y s
Yy = 1,2 ) (6.10b)
Carrying out the computatlons in these equations - ; ;
yvields . : 8
du du T ' v
oy oY ly a-1 ly - a, b
ka—9a~l + ka uu+ka~ dx +ka dx <f"’o‘y ’ ' B
o= 2,...,E-1 ; y=1,2 ;o (6.11) ' ,;‘
du. ’ :
cYut oy ly. 1. 1, _ 1y, . o=
c, 04—1(l u1‘+ lcl T <go,sp_Y <f,(pY ; y=1,2
. ) du . (6.12a)
Yu oY Iy ""E~1 _ ES E, |,
¢ +k up kgl T T BT m<Ee >
Y = 1,2 (6.12b) ;
where ' ¢
dp® : L 0% i
oY . a___ Y . oYy _ a ___1 :
ka‘ [ZaupY ix ]u—l 3 ka | [ZawY e ]u 56.13a) ;
1y _ . 1y _ @ | *
ko= Wyla._ ook o= el ~ (6.13D)
and .
Y o dw; o o 1 d¢E
o = &2 (gxlo ¥ (ep - 2ae)), 7(0) ‘<°1 “{ez dx)
i E T ’:‘ '
+, (e --2ae2)1 0y (1)} . (6.1:.) e
c _ o du o . c _ 1 du 1 I o TLE
u_ = (e1 ax ‘ezu)o and ug (e 1 d elu)x= . (6.15) | o j%
Here, the dots were eliminated because the sought solu- . ia
tion 1is continuous. As 1llustrat10n, the results for . ) UE
the constant coéfgic1entscase are summarized in Tables I, s

i

Algorithm 2. The value of the function only.

In order to obtain a system of equations involving the
function only, the test functions are required to




TABLE.I. SOUGHT iNFORMﬁTION: THE FUNCTION AND ITS DERIVATIVE , ?
| TABLE I.1 ’
Coax-x_ ) S .
o o1 . N
- p,(x) = e 81nA(x~xu“1) ;3 0=1,...,E
e : a(x-x_ .) '
o O .
¢2(X) = e 1 sinA(x-xa~1+6) s o= 1,,..,E
01 oz' : aha
. kol = -4 : kg = {E e “sinA(§-h)
0‘2 ‘ 02 R aha ' . . ’ ‘i,
ka- = 0 4 ka = —@ s1n6ha ~ a
11 11 aha :
ka_ = ka = -Vb e sinbhy ;
ah_ - %
K2 = ;é: K2 = —e %sinA(6+h) :
b . , §
c; = Vb eg sinld , cﬁ = eg sinA$
ahE . .
c; = e {e; Yb sinA(hE~6) - ei‘sinAhE}

cf = e E{e; /b ginAhE - ei sinA(hE+6)}

Here tg A8 = A/a.

TABLE 1.2 . .
a(x-x,_)) TR
wa(x) = @ a-1 sinhA(x-x_ ) ;3 ‘a=1,...,E
1 -1 . o
e o a(x—xa_l) | . o * ‘
" | p,(x) = e {351nhA(x~xa”1)4-Acosh&(x-xa“1) ;s a=1,...E
V . aha‘ ‘ N ﬁ
k'l = -A k®! = ¢ “{AcoshAh_ - asinhAh_} L
a- - a o ‘ a .
: ah \ N
k’2 =0 k’% = ~e “sinhAh g
O . ‘ o o |
' ‘ ahG
k!! =0 k!l = ‘be. “sinhAh
a- a ~ S a {
. . aha 1
k'Z2 = A : k!? = —e “{AcoshAh_ + asinhdh } :
O o o Cﬁ - »é:
1 _ .0 . 22 o a0 f
c, = e, A 3 ¢, e A %
ahE . ‘ - . o
1 _ 1 . - S S 4
ey eah {e2(351nhAhE.' QcoshAhE) e 51§hAhE} [
E . ! - 'y & :z
ci = g {e; b51nhAhE - e; (aslnhAhE + écoshAhE)}‘ .




TABLE 1.3

ah, '

a(x-x_ ,)
‘ o-1
w?(x) = (x-xa_l) e 3 oas= t,...,E
alx-x_ .) :
o-~1
03 (x) = {a(x-nxa‘ Pt 1} e : ;o= 1,...,E
- *
o aha
or _ 01 _ —ah
kol o= -1 ky = (1-ah) e
aha,
02 _ 02 . _
ka_ = () ka ha e
aha
11 _ ‘ 11 .2
kd~ 0 »ka a hu e
i ah .
12 _ 12 o _(ah + 1
k® =1 k. (ah ’ ) et
— , . 2;.0\;?._“:
<, e, ¢ ‘fél : |
T _ 1 _ E_ 1 ‘ . 2 _ 1.2 _al + '
e, = ez(ahE 1)e elhEe P c) e,a hEe el(ahE 1l)e

. a 1 a . :
satisfy C¢~ = 0 and K'¢ = 0, Such functions are
illustrated inm Fig. 2b. It must be mentioned that
there are exceptional cases for which the donstruc-
tion illustrated in Fig. 2b . may fail.

\PCZ
Xo - - Xé
L i |
0 X {
{

Fig. 2b., Wedighting functions for algorithm 2.
Carrying out the .computations one gets [Herrera, et
al., 1985}: ' :

o _ (¢ B .
pa-‘%bdf g}hug+l— 2ua = uaf ;oo = 2,...?E~2 (6.163)
b u.-2u, = p (£ - g% e (6.16b)
14 2. 771 , l. T : -
. o At o . E,._l E ’
p(Ev1)~ UE“Z 2uE~1 UE~1(f g) ‘ (6.16¢c)

’y




where

(o] a -
292~ 2ap ] 2[SE- - 22
dx a-1 ax o1
o = - . - ;P — (6-173)
2]y Vo = 22 14
. 1 "
i 2 o o dp” o oy.,1
Mo =~ 38 = ey G~ (aey i+ )07}, 4 8y
dy a
[75;"23W]
(6.17b)
xOL+1 . E-1
o _ o1 E_ ldp” = 1 1, E-1
f = . f f‘P dx » g {el dx (zael+ ez)‘p }x=1 881
a-1 ' ‘

(6.17c3

and it is assumed that,[dpa/dx-Zawa]a# 0. The
manner of writing Eqs. (6.16) is suitable for com-
parison with central differences. However, there

is "up winding" because p,, and p, are different to
1 when a#0. The results Ffor the constant coeffi-
cients case are summarized in Tables II.

Algorithm 3. The value of the derivative only.

The weighting functions satisfy Kowa = 0 and C¢a= 0.
The algorithm is

dua—l dua+1 'dua a
Po- Tax T Pat+ “dax  ~ 2dx LY £ . (6.18a)
du, - du
2 1 _ 1 o, - ‘-
Pre Tx " %ax " wWmE - g (6.18b)
du - du )
. E-2 E-1 E-1 E
PE-1)- dx  ~ % ax Hg-1 (£ -8 ) (6.18¢)

Here, it is assumed that [wa]a'¥ 0. Then

[ %] , [¢°]
p = -2 — 0=l o0 5 T okl (6.19a)
* [#%] o* [o%]
a - . a
_ .2 : . '
My = —‘F—ET_ . . (6.19b)
v 1.
: e <o 2 :
It must be mentioned that aperator Lu = d g is excep

tional for this algorithm. - ‘ : . dx
. . [ . :




‘T

TABLE II. SOUGHT INFORMATION: THE FUNCTION
TABLE II.1  ° S
For a = 2,...,E-2
( (2
T alxex ) A
(’x .l e 31nAha+31nA(x~xa_12 I <x< X
L@ ()= a(x-xa)
~-e s;nAhasnnA(x-x(Hl) poxy <x¥< Xot1
r  al(x-x,) . ‘ ‘ ' o R
. e 31n£\hzsu}A(x+£Q) 3 0<x< X o
¢ (x)= 1 a(x-x1) Tk
—r - N LY i - ‘. ) "
& e s:mA(eO+h1, sinA(x ‘ x2) ;oXxy <x< x24 :
alx=xp )) , . b
‘PE-I x)=1{ ¢© s:mA(e:1 - I'LE)smA(x - xE-2) 3 Xp g < X< Xp
a(x-xEnl) « '
- 1 { - . <x< K
‘ e . s:mAhE_lsmA(x xE+ el) 3 X <X 1 o
FOI’G”‘Z,...,E-*Z
~ah ' ah :
2e  “sindh_, 2 "“'sinAha
Poe = T3 Py =
o SlnA(ha+l+ha) ot 51nA(ha+ha+l)
Yo = AsinA(h_ +h_). -
ah o atl ) -
. ) 2e sinA(hI + E:o) Z - 9 E '
I+ sin (hy +hy+_€) 1 &Sinact?;,f_ hy+ € .

~ah v
E~-1 .~
2e 51n£\(;€1 - hE)

2
Preo1y- = =3 - = o 1 = 733 - -
(E-1) sz.nA(*al hE»l k hE‘) E-1 ASJ.nA(E:l hE-1 hE)

Here tghe = ——i | : _— N
555y | - |

o "
. e



TABLE I11.2

For @ = 2,...,E-2

a(x—x )
i i - . <x<
wa(x) ) e 31nhAha+l sinhA(x xa_l} 3ox_Sx<xy
a(x-x) | | N
| -e 51nhAha 31nhA(x»xa+i) H xa<x<xa+l
([ alx-x)) o o ' o .
1 e sinhéhz((aez-el)sinhAx4~Ae2coshAx); O<x<x1
e = a(xﬁxl) ] o o
t—e _((aez-§1}51?hﬁhliiAe2 coshAhl)91nhA(x-x2);
, N SR
abexg ) 1
e ((aez-e1)51nhAhE-Ae2 coshAh )31nhé(x XE 2),
“ly={ ’ Xg_p < X<Xp )
alxxg ) 1 1 1
~e 91nhAhE~1((aez—el)31nhA(x~xE)+AezcoshA(x—xE»;
<x<
‘ xE_1 b's }
For a = 2,....,E-2
~ah ‘ ah A
Z2e a31nhAh o1 : Z2e a+1sinhAha
P, = =3 H p., ===
o 31nh&(ha+1i-ha) ot SlnbA(ha+l+ha)
poo= 2 :
o A31nhA(ha+14~ha) ‘ e
ah

2 o. o, . -, 0
2e ((aez-el)91nhAh14-AezcoshAh1)

p = -
1+ A((ae)-e?) sinhA(h +h,)+edAcoshA(h, +h,)) -
- 2
L} o O, . 0
A((ae2~el)s1nhA(h1+h2)+e26coshﬁ(hl+h2))
~ah_ .. .. ‘
2e E—l((ae§4ei)siﬁhAhﬁ-AelcoshAh )
Prp-1)-
(E-1) (ae - )81nhA(hE l+h ) AelcoshA(h hE)
- 5 -
He_1

T T, o oy ol
“((aez e1(81nhé(§E“1+hE) é@zcoshA(§Eq1+hE)).
- , B »




is 0 if the derivative is sought at xg and g=1 if
the function is sought at Xg- Choose {y! ...,¢E"l}
satisfying

Kgswa = 0 and C@a =0 3 a,B = 1,...,E~1 (6.20)

Using a construction similar to the previous two
algorithms, one gets

—ao ' == . —
ka_ o 1+k u +k +ua+1-f-;,. a=2,,..,E-2 (6.21a)
gl 0. | , _ _E-1 E
kpuytkyup=fi-gm 5 kg gy Ug_otkp g = f -8
' o . (6.21b)
where
kB = —[q(¢q)}B : when.YB = 0 (6:22a)
o .
= - ; = .22b
kg [e ]B ; when yg = 1 (6 )
Here, B‘= a-, a, o+ and Yai is identified with Yail'

As has been mentioned previously Tables I and II,
refer to the constant coefficient case. The nota-
tion is A= |/a2-b |. Three cases are. dlStlngUlshed'
a2 -b<0 (case 1), a2-b>0 (case 2) and a - b=

(case 3). We have also written ha==hu-ha_1
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