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ABSTRACT 

According to the abstract theory of boundary value 
problems developed by the author, the method of 
weighted residuals admits two alternative (but equiv~ 
lent) variational formulations. The first one is the 
standard formulation in terms of data of the problem, 
while the second one is interms of the "sought infó.!. 
mation". This latterformulation is quite useful be­
~atise it allows"analyzing the information about the 
exact solution contained in any approximate one. By 
choosing conv~niently the weighting functions one can 
focus th~ informtion supplied by the corresponding 
appro~imate solution. Generaliz~d bounda~y methods 
corresponds to the case for which the information is 
concentrated on the boundaríes (external and internal). 
To illustrate the procedure. an exhaustiv~ analysis 
is carried out of finite differenee algorithms which 
yield exaet values at the nodes, for ordinary differ­
ential equations.' 

• I 

INTRODUCTION 

Boundary methods use previously known solutions to 
construct the sou~ht solutions of boundary value prob 
lems. There are two ways in which previously known ­
solution~ can be used to carry out su eh eonstruetiQn. 
The first one consists in adding them up to represent 
the desired solution. The second qne is less direet 
and consists in using recip~ocity' relations to derive 
ínformation about,the sougñt. solution [Herrera, ,1984 l. 

I 

Reeently, the autIlor has derived reeiprocity relations 
of complete generality whieh are applicable to any 
problem whieh is linear [Herrera, 1985a,b; Herrera, 
et al., 1985]; they include Green's formulas for 



<Pu,v> = 	J v.f. udx and <Q*u,v> = J u .f.*vdx (2.3) 
n n 

where .f. is • differential operator defined In an ele­
mentary sense, ,in n and .f.* ls lts formal adjolnt. ' 
Then. knowing 'Q*u ~s tantamount to know the functlon 
u in the interior of n. The IIcomplementary boundary 
values" C*u are illustrated by means of examples; 
thus, for Dirichlet problem of Laplace equation in 
which· u ls prescribed on the boundaiy an, the comple 
mentary boundary values áre the normal derivatives ­
dU/an, there. For problems of Elasticity, the pre­
scribed and complementary boundary values, may be 
the displacements and the tractions, respectively. 
The average values of the exact solution across the 
s~rface r (Fig. 1), where r is the surface on which 
discontinuities of the functions may occur, consti ­
tute the tbird component of the sought informati~n 
and are characterized by K*u. 

an 

The region n and its subtlomains. 

The equival'ence betw.en the variational principIes 
(2.1) and (2.2), is ~ranied when 

P - B - J = Q* - C* - K* 	 (2.4) 
is a Greenls formula, in the sense of the theory. The 
systematic construction of such formulas in a manner 
which is applicable to fully d~~continuous functions, 
has been given elsewher~' lHerrera, 1985a]., 	 , 

According to, the ,'method of weighted residuals [Herrera, 
1985b; Finlayson. 1972], an approximate solution 
u' ED, satisfies 

a 	 a
«P-B-J)u','P> = <f-g-j,cp > • a = 1 ..... N (2.5) 

. ;; 
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{ 1 N}C ' •where I~' ... '~' D 'ia a system of weighting' func­
tions. Clearly, any exact solution al~o satisfies 
(2.5). A more informative form of (2.5) ia obtained 
by applying the variation~l formulation in terms of 
the sought information (2.2). This yields 
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One also has 
.<X = 1, ••• , N (2.6) 

<Q*u ' ,~<X> _ <C*u t ,I{J<X> _ <K*u ',I{J<X> == <Q*u ,l{Jo.> _ <C*u ,I{J<X> 

., (2.7) 

because the exact solution uED., al'so satisfies (2.6). 
Thus, the N functionals <Q*u' ,l{Jo.> - <C*u' ,l{Jo.> - <K*u',ipo.>· 
can be interpreted as "all the info'rmation" contained 
in an approximate solution. 

BOUNDARY ELEMENT METRODS 

Oneway in which one can use the variational formula­
tion in terms óf the sought information is, by. elimina 
ting'part of it from the equations and concentrating­
all the information in the remaining parts. For 
example, one can eliminate the function in the inte­
rior of the élements by choosing-the weighting·func­
tions so that '<Q*u' ,l{Jo.>, = O. This is tpe essence of 
boundary methoda. 

Observe <Q*u',l{Jo.>' == <Ql{Jo.,u'>¡ thus, when 

QI{J<X == O (3.1) 

equations {2.6} become 
) 

. 
I 
l. 

<C*u 1 ,l{Jo.> + <K*u' ,I{J<X> == <g-f ,I{J~> , <X = 1 J" • ,N 
1 

Rere, it has been assumed that the sought solution u 
is smooth; i.e. j -= O. In most applications. <Q~o.,v> 
== J. v.t.* l{J<Xdx, inwhich case (3.1)' is .t.*l{Jo.:;: O. Wh'en 
(3.~) holds, the sought inform~tion which is involved 
consists of the'complementary boundary values and the 
generalized averages, only. Applying (2.7), it is 
seen that '.' -.' 

<C*(u'. 
a. 

- u),1{J > 
1'" " <X+ <;K*(u' -'u),~ >. == O (3.3) 

This equation exhibits explicitly the 
about the exact solution contained in 
solution of the boundary procedure. 

information 
any approximate 



• a 
By a T-complete system, wemean a system {~ } such 
that 

< (c* + K*)u' ,~o.> = <g-f ,,,,a> 'JI a=? C*u f =; C*u & K*u' :; K*u 

(3.4) 

When the exi~tence of ~olution of the adjoint bound­
ary vaIue ~roblem is satisfied, the existence of such 
s y s t em i s g r a n t e d [H e r r e r a, 1985 el . 

AppIication of the variational principIe (3.2) aIlows 
formulating several cIasses of boundary methods; the 
first one, to be caIIed boundary methods in an ex­
tended sense, only requires that equation (3.1) be . 
satisfied by the weighting functions. {~1,·••• ,~N}. A 
more restricted cIass of boundary methods is obtained 
when, in addition to equation (3.1), one requires 
that the terms <K*Uf,~(l>, a= 1, ••• ,N, vanish. This 
is granted taking the test funétions so that 

a=1, •.• ,N (3.5) 

Equations (3.5) are tantamount .to require that the 
test functions be right-smooth [Herrera, 1985b] (or 
simply smootb wben Sr = S1). Wben equations (3.5) are 
satisfied, equations (3.2) reduce to 

a a . 
<C*Uf, ~ > = <g :- f , '" > J. a = 1,. • • ; N (3.6) 

T h i s i s T r e f f t z m e t b o d [He r r e r a; 1 9 84], f o r non - s ym­
metric operators. 

In the following sections we illustrate these proce­
dures by applying tbem ~a ordinary differential equa 
tions, in wbich case the anaIysis can be carried out 
exhaustiveIy. " 

GREEN'S FORMULAS FOR ORDINARY DIFFERENTIAL OPERATORS 

Let n be the unit int~rval and introduce a partition 
of Q into E su.blntervals 'Qa = (xa-l ,x o. )' 0.= l, ••• ,E'. 
Here, X = O wbiIe. x :; 1. Define 

o E 

kM M d akvdku 
.cu ; .c* - L (_1)k (4.1)== L a ----¡{ v = 

k=O k dx k=O¡ (l'x k . 
"" 

witb the operators P and Q* given by (2.3). Tben 
I 

E-1 M-l 
J = L J = L Jj ·K* = (4.2)a

0.=1 j=O 



llere, we have written 

M-l M-l 

J = r Jj K* = r (K j )* (4.3a)


a a a • O aj=O J= 

and 

E-I '. E-l. 

Jj = L Jj (icJ ) * = r (KJ ) * (4.3b)
ex . ex

ex=1 a=1 

with 


(4.4) 

• 

In turn 
k 


j k d aM+K_jv

q.(v) = E (-1) - j=O .... ,M-l (4.5) 


J k=O dx k 


and the subindex ex implies that the corresponding 

quantity must be evaluated at the node x •
ex 
If the operators B .and 'C*are conveniently chosen, 

t h en t h e e q u a t i on P - B - J == Q* - C* - K* i s s a t i s f i e d 

and it is the desired Gree~'s formula f~r functions· 

with arbítrary jump discontinuities'at the interior 

nodes [Herrera, 1985bj Herrera, et al., 1985]. 

Observe that the representations in terms of and
J ex
K~ for J and K*, respectively, supplied in Eqs. (4.2), 

decompose these operators in terms of the contribu­

tions at each.one of th* interior nodes. On the 

other hand, JJ and (KJ) decompose the jumps and the 

averages in their components corresponding to the 

derivatives of order j. 


'DIFFERENTIAL EQUATIONS OF ARBITRARY ORDER 

Consider the boundary value problem (initial value 

problems are included as a ~pecial case) which con­

sists in firtding u E D (continuous together with its 

first derivative), suchthat 


tu = f inn=(O,I) (5.1)n 
and satisfying suítable boundary condítions. 

By a convenient choice of the operators B:D .... D* and 



. . 
C*: D -+ D*, and of the functional g E D*, the varia­
tional formulations (2.1) and (2.2) are applicable, 
with <f,v> ~f vfndx. The method of weighted residu­
a18, yields equafions (3.2) wheri it is assumed that 
Q~a=Ot i.e • .c*~a=O. Clearly, in equations (3.2) 
the information about the sought solution is concen­
trated in the generalized averag~s (K*u) and the 
complementary values (C*u). 

It must be observed that the generalized averages 
<K*u,~a> of the exact ~olution coincide with the 
values at the nodes when the sought solution is 
sm o o t h. Re e a 11 in g e q u a t ion s ( 4'. 2) t o ( 4 • 5), i t i s 
seen that the information 'about the derivative of 
ord~r j at node xa i5 given by, (K~)*U. Thus. by N 
suitably choosing the weighting functions {~l, •.. ,~ }, 
one can focus the sought information even more. 
For example, if the only de5ired information is 
'abou~the function itself (i.e. about the zero order 
derivative), we must choose the weighting functions

1 N ' {~ , ••• ,~ } so that 

«Kj)*u,~a>=<Kj~a,u>=O, j='l, •.. ,M-l (5.2) 

T h i 5 i s g r a n t e d i f K j ~a= O, f o r j = 1, ••• , M -1 • In 

view of equations (4.4), this latter condition re­

quires that 


a
[.qy(~ )]13= O, a,,,,·l, ••• ,N j 13== 1, ••• ,E-l; 

Y = 0, ••• ,M-2 

When the coefficient8 {a 1 , ••• ,aM} are continuaus to­

gether with their derivatives, equations (5.3) are 

tantamountto require that the weighting functions 

and their derivatives up to order M-2 be continuous; 

i.e. discontinuities 'of the derivatives of order M-l 

are the only admissible ones. This is· ptecisely the 

condition for the method to be conforming. 


.,l ' N}'
When the system {~ , •.. ,~ of weighting functions is 
T-complete (relation 3.4), one has C*u' ::; C*u and 
K*u' ;: K*u, so that the complementary boundary values ­
and generalized,averages'are'predicted correctly. 
For ordinary differential equations the application 
of this procedure yields finite'ditference algorithms 
which supply the desired i~formatión exactly, because 
<C*u I ,~o.> and <K*u 1 ,~a> iñvolve nodal values' orily and 
the corresponding ~-complete systems are finite. The 
finite differince algorithms derived in this manner 
yield the exact values of the solution and its deriva . 

tives a~ the nodes. If some of the continuity require 
ments KJ~a = O are satisfied for some j 1 s, then some ­
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of the values of the derivatives are eliminated troro 
the sought information about the solution. In this 
manner many alternative algorithms, are constructed. 
An exhaustive analysis of them has been carried out 
in [Herrera, 19~5b]. 

SECOND ORDER DIFFERENTIAL EQUATIONS 

In this section attention is restricted to the dif­
ferentíal operator 

2 
.c u == ~ 

dx2 
'+ 2 a d u 

dx 
+ (b + da) u 

dx 
(6.1) 

whose formal adjoint :$,.s 

.c*v d 
2 v 

dx
2 

_ 2a dv 
dx 

+ (b da)u
dx 

(6.2) 

The coefficients a and b may have jump discontinui­
ties nodes. The operator P and Q* are d.efined by 
(2.3). In the most general boundary value problem 
which is linear, one p;escribes 

at x = O (6.3a) 

at x = 1 (6.3b) 

where the pair~' {e~,e~l e'~ o,-i, can be taken norma.! 
ized (Le. (ef ) '+, (e~2) = 1). For the boun~ary 
value problem, it is convenient to decompose e.eh 
one of the operators B and C*, into two parts, thus, 
we write 

' o"~' •. 
"y=1 y=1 

"B = r B C* = E c* (6.4) !y yy=O y=O 

where 

(6.5a) 

and 
',' 

<c*u,v> 
y 

y = 0,1 (6.5b) 

For this case equations (4.4) are 



'. 

'.; ,.' 

1 . 
<J u,v> :; 

a 

a == 1, ••• ,E-l 	 (6.6a) 

'. 1 * 	 d~a 
< (K') u, v> == [v] [ -d-]

a 	 a x 

a == 1, ... ,E-l (6.6b) 
where 

dvq(v) == 2av -	 (6.7)
dx 

In addition, the decompositions (4.2) and (4.3) are 
avai1ab1e. The test functions satisfy Q~a = O ; i.e. 

a= 1, ••• ,N (6.8) 

at' every interior pointof the subinterva1s n 

(e == l, ..• ,E). 

e 


Four a1gorithms wi11 be considered. A11 of them 
yie1d the exact va1ues of the sought information at 
thenodes, because t~e system ofweighting functions 
to be used wi11 be chosen to be T-comp1ete '[ Herrera, 
1985b]. The components of the sought information on 
which each algorithm fpcusses, differs for each one 
of them. 

Algorithm l.~ 	 The va1ue of the,f~nction and its 

deriva tive. 


Eq. (6.8) is the on1y constraint imposed on the 
weighting functions; thus, they-are fully discontinu­
ous. At every subinterval na == (x 1 ,XQ) there are 

.two linear1y independent so1utioni- (~~ and ~~) 
which are taken to' be identica11j zero outside n 
(Fig. 2a). The system {~B""'tp (a= 1,2), so a 
defined, posesses 2E 1inearly in ependent functions 
and can ,be showq to"bé_T-complete~., Equations (3.2) 
reduce to an E x E system: 

t 

.' ~." 

.' 

, Xo 

rige 2a. Wei"ghting functions for ,a1gorithm 1. , 

... ¡ 



#' 

<K 'Pa • u'> + <K rpa, Ul> == -<f ,'Pa > al: 2, ••• ,E-l ;
a-l y, a y y 


y= 1,2 " .. (6.9) 


1
u'>=<g ,IP >_<f,tpl>
o, y y 

y = 1,2 (6.10a) '. 

and 

E E E E
<C IP u l > + <K l lP , u'> = <g ,IP > - <f,tp >;1 Y E- Y 1 Y Y 


Y == 1,2 (6.10b) 


Carrying out the computations in these'eqtiations 
yields 

+ k 1y - 1 + k 1ykOYu + kOY u dUda dU a == _ <f ,IP a > ; 
a- ,a-l a a a- x a dx y 

a == 2, ... ,E-l y == 1,2 (6.11) 

y == 1,2 

y = 1,2 (6.12b) 

where 

k 
1y 
a­

(6.l3b) 

and 
l dtpEdIP o ' o 1 yY . Ye == <-i!) o + ,(el - 2ae 2 )o 'Pl(O) , e == -{ e 2 (dx)l.o .Y , 1 . ,,.

' 

' , 1 1+ (el - 2ae 2 ) 1 ~~(l) } (6.14) 

c o du o - Ie (l du 1) (6.15)'u o == (el -dx - 'e 2,u) 
O 

"and == el dx - el u x=xu E 
E 

Here, the" dots were eliminated béea1,1se the sought solu­
tion is continuous. As i~lustra~ion, the results for 
the constant coeffieients'case are sumrnarizea in Tables l. 

Algoríthm 2. The value of the function only. 

In order to obtain a system of ~quation~ involvíng the 
function only, the test functions are required to 



TABLE 1. SOOGBT INFORMATION: TIlE FUNCTION AND ITS DERIVATIVE 


TABLE 1.1 


a (x-;x _ ) ..(l a 1 .'P1 (x) = e sin6(x-x 1) , a = 1, ••• ,Ea-
a (x-x _ )(l a 1

'P2 (x) = e sin6(x-x(l_1+&) 
ah 

= lb e a sín6(ó-h )a
aha 

= -e sin6h a 
aha 

11) e sin6ha 
ah o

6 
:::-- = -e (lsin6(o+h.), alb 


, 
 c~::: lb e~ sin60 

.. 
Here tg 60 = 6/a. 

TABLE 1.2 

a (x-x(l_l) 
, I~ ::: .
'l"(x) e , 'a =. 1, ••• ,E

1 

(l a(x-x(l-1) ,) 
-~-" e .,.O! ¡p2 (x) == {asinh6.<x-x 1) + 6coshó(x-x 1') a 1, ••• E 

a- a­

k 01 a 
::: -6 kO l ::: e 

ah 
{6cosh6h - asinh6h }a- a a a 


ah 

k0 2 ::: O k0 2 -e (lsinh6h'

a- . a a 


ah 

k ll k Il = O ::: ~be. asinh6h 
a- a (l 

aha 
12 k 12

k = 6 ° ::: -e {6cosh6h + asinh6h }
a- a (l a 



;, ~ :'", 

TABLE 1.3 

a (x-x _ ) 
~~(X) = (x-x _ ) e 

a 1 a=r, ... ,E 
a 1

a(x-x 1)a­~~(x) = {a(x-xa-' 1) + l} e . ,. a :: 1, ••• ,, E' 

aha 
kO l kD 1-1 = (l-ah ) e= (l- (l ,a I 

ah I(l'k0 2 = (j k0 2 = -h e
(l- a (l 

ah· 
k 11 k 11 _a2 = O = h e a 
(l- a a 


ah
 
k 12 k 12
= 1 = -(ah + 1) e. 

a 
(la- a 

. ,',' '.' 

eO,.·el = eO 2e = . '1o 2 ° ah'ahE a~ a~ .E2el =. e! (ahE -1)e _e 1h e ! e = e~a2~e -ei(a~+I)e
11 1 E 

satisfy C~(l = O and Kl~a = O. Sueh functions ar~ 
illustrated in Fig. 2b. lt must be mentioned that 
there are exceptional cases for which the construe­
tion illustrated in Fig. 2bmay fail. 

x .
E 

o 

Fíg. 2b. Weighting funetíons for algorithm 2. 

Carrying out the.comput~tions one gets [Herrera, et 
aL, 1985}: 

2, ... ,E-2 (6.16a) 

. l' o 
~. -.'P 1 + u 2 .- 2u 1 = 11 1 (f - g ) (6.16b) 

" .'.) 

. • . ' E-l E 
P (E-l) _. u E- - 2u E _ := 'lJ E- 1 (f· - g ) (6.16c)

17 



where 

a . 
2[ dI{) 2 a]-a;¡- - al{) (1+1 

:: ­ P =­ (6.17a)
a+ a 

[ dI{) _ 2al/'] ! : 

dx C\ 

2 ' ° dl{)l 
ll(l = - g° = {e -- (2ae° 

1 .+ e ° 
2 )1{J l}x=O gao(l 1 dx'

[ dI{) 
dx 2a'P

a ] 
(6.17b) 

a+l 
1 dl{)E-lx 

(l E 1 1 E-1fa = J fl{) dx g = -{e (2ae1·+ e 2 )1{) }x=1 gdl1 dx 
x _ ,

a 1 (6.17c) 

and it is assumed that [dl{)a/ dx - 2 al{) a] a:f O. The 
manner of writing Eqs. (6.16) is suitable for com­
parison with central differences. However, there 
is "up winding" because Pa-r and P - are different to 
1 when a:f o. The results tor the

a 
constant coeffi­

cients case are summarized in Tables 11. 

AIgorithm 3. The value of the derivative onl>:_ 

.. 
_ l .'-, ~f! ". 
~,?I.·,'r.. '. 

.'. 

aThe weighting functions satisfy K°l{)a = O ~nd el{) = O_ 
The algorithm is 

du du dua-l a+l+ - 2~ fa (6.18a)Pa- dx Pa+ dx dx = lla 

(6.18b) 

dU _
E 2 dU E_1 E-l E 

P (E-l) -- dx 2 dx :: llE-1 (f - g ) (6.18c) 

Here, it is assumed that [I{)a]a'#- O. Then 

(6.19a) ,i 
I 

2 
(6.19b) 

[ 1{) a] a 

It must be mention.ec;l that ~~enito~·'··~·u exce,R 
ti~nal for this algorithm~ 



I t ,j; 
\ 

L, ' 

TABLE 11. SOUGHT INFORMATION: THE FUNCTION 
. . 


l'ABLE 11.1 

For a = 2, .. ;,E-2 

a : { ea (x-x
a

) sinAha+sinA(x-xa_l~ xa- l' <x<xa 
~ (x): a(x-x) 


-e a sinAh sinA(x-x +1) x <x<x 1 
a a, a a+ 

ea(X-Xl)sinAh2~i~A(X+Eo) ,; O<x<x ; 
, II1 

tp (x)= a(x-x1) . ' . .{ -e s~nA(EO+hl)s~nA(x~x2) ; xl <x<x2 

a(x-xE_1) . . ' 

e Sl.n6(E -~) smA(x - x _ ) ; x < x < x _
~E-l(X)= E

_
1 E 2 2 E 1 


a(x-x )

E

_
1

-e sinAhE_1sinA(x-xE+E1) ; xE_l<x:<~ 

For a =2, .•• ,E-2 

-ah ah + 
2e asinAha+l 2e el sinAh 


P == a 

a- sinA(h + l + ha} Pa+ = -s..i-nA....(:;:h-a--:+--:h~a+-'-'-l...) 

a 

2' , , 

}l = -;---:--;,.-r.-~-:--"'""""T" 


a AsinA(h + h 1)'
a a+ah2

Ze sinA(h + Eo)
1 


sin (h1 + h2 + _ Eo) 


2=~~77--~----~-
AsinA(E1 - ~-1 - \:) 

Here tgAEy = 

• ~ 10._,.. ., ~ .. 
) 

'" 
• 
I 

'\ ,¡ [ 

,,,r 



TABLE 11.2 

For a 2 •...• E-2 

.'.. ' 

1
1{) (x) 

,1 ' 

a(x-xE_l~ , 1 1', ' 1 -1 
e «ae e )smh6h - 6e cosh6hE)sinh6(x-xE_ );

2 
-

1 E 2 2

E-l x < x < x _
E

_
1{) (x)= 2 E 1 

a(x-xE_1) . 1 1 1 
-e sinh6~_1 «aeZ-e1) sinh6(x-xE)+6,e2coshñ(x-xE»; 

x <x <.1
E

_
1 

For a = 2, •...•E-2 

aha+l ' 
2e sinh6h aP = . ; Pa+ = a-

Pl+ = o o , o ' 
6«ae2-el)s~nh6(hl+h2)+e26cosh6(hl+h2» 

2 
III = 

6«ae~-e~)sinh6~hl+h2)\e~6cosh6(hl+h2» 
, 

, i 

2 .' ~. 

" 

::: 

" . x < x < x
1 ' 2 

P(E-l)­ = 



i5 O if the derivative 18 sought at xB and CS = 1 if 

the function 15 sought at X ' Choose {t,ol, ... ,.pE-1}


Ssntiofying 

a.,S == 1, ••. ,E-l (6.20) 

Using a construction similar to the previous two 

algorithms, one geta 


a = 2, • • '. , E - 2 (6.21a) 

E-1 E 
== f -g 

(6.21b) 

where 

kS = -[ q (.po.) J 8 when. y O (6.22a)s = 

k == _[ .po.] ,. when y == 1 (6.22b) 'S 8 8 ,. 
:' 

Here, 8 == 0.-, a, 0.+ and y + ls identified with y +1' a.- 0. ­

As has been mentioned previously Tables 1 and 11, 

refer to the constant coefficient case. The nota­

tion 15 A == I/a 2-b l. Three cases are.distinguished: , 
 1\.' 

a 2 ..- b < O (case 1), a 2 - b> O (case 2) and ~2 - b == O 

(case 3). We have also written h == h - h l'
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