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TREFFTZ METHOD: FITTING BOUNDARY CONDITIONS

A. P. ZIELINSKI. AND I. HERRERA

In.~/j/uIO de aeojlslca, UNAM, Mexico CIty, Apdo. Posla/21-524. U4()()() Mexico. D.F.

SUMMARY

The paper presents various ways of fitting the boundary conditions in the T -complete functions method.
The authors point out the distinct advantages of the orthogonal collocation in comparison to the equidistant
collocation and the integral fit. The convergence of the Collatz error measures and the conditioning of the
solution matrices are investigated in detail.

1. INTRODUCTION

There are two main approaches for the formulation of boundary methods; one is based on
boundary integral equations (boundary element methods, as well as the boundary series
method 1-3) and the other is based on the use of complete systems of solutions (TrefTtz method4-6).
This article is concerned with the latter approach.

Complete systems of shape functions can be constructed in many alternative ways. Several
aspects of such questions, such as completeness and convergence of integral least squares fitting
of boundary conditions have been extensively studied by one of the authors.4.s.7-11 Construction
of finite elements with this kind of shape function has also been investigated.12

To fit the boundary conditions one can use a direct or, alternatively, an indirect approach.s
To be more spccilic, consider the Dirichlet problem for thc Laplacc equation on a region (), with
boundary r. In this case the boundary condition is u = Ii on r, where u is a prescribed function.
Let" = au/an be the unknown complementary boundary values. To solve such a problem by
TrefTtz method, one has available aT-complete system of functions {U I' U 2'."}' Then, in
the direct approach one constructs a linear combination ~ = Lf = I 0. U I which approximatcs the
prescribed boundary valucs Ii, whereas in the indirect approach u is required to be such that
au/an approximates the unknown normal derivative ", on the boundary. The indirect procedure
has been used in previous works and has been called boundary fitting using opposite weights. I 2

However, it had not been realized that such a procedure is tantamount to approximating the
unknown boundary derivatives. To see that this is indeed so, recall the well-known reciprocity
relation

J ov r ua;;dx = au
v-dx

an (1)

which holds for harmonic functions in Q. If we impose the condition
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(2),N~-~ ) U,dX=O, i=
on on

it will be granted that the projection of au/an on the subspace spanned by the functions
{Ut,...,UN} is exact; i.e. it is the same as the projection of au/an. In view of equation (I), it

is clear that

f ( iJ/1 iJU ) f iJU, f au, Ujdx= (/1-u)~dx= (/1-a)~dx

r on on r on r on

Hence, equation (2) becomes

(3)

f u~dx = f u~dx (4)
r an r an

2. RELATION BETWEEN COLLOCATION AND
THE INTEGRAL FIT

To be specific we shall consider problems associated with the Laplace operator, Rlthough similar
considerations apply to other elliptic equations. The boundary of the region Q will be, as before
r, and r l' r 2 will be a decomposition of r. If a function u is harmonic in Q (i.e. it fulfils Laplace's
equation in Q), then is clear that u is the solution of the problem

(5a)

(5b)

L\u = 0, in Q

r 1u = f(x), on

r2 (5c)

(6)dx
au
an -g(x)

f r2

vanishes (i.e. it is minimized).
An approximate solution II to this problem can be obtained by replacing the integrals in (6)

by their numerical approximation. Thus

IJ' v'

1J~1 WIJ[II(xlJ)-f(xlJ)]2+ 1J=~+1 WIJ[II'(XIJ)-g(XIJ)]2=O (7)

where the W IJ are weighting constants of integration. Equation (7) is equivalent to the collocation

equations

(8a)

(8b)

U(XIJ) = f(xlJ)' /l = 1,2,.. ., /l*-for r 1

U'(X,,) = g(x,,), /l=/l*+ t,...,v*-

If the system of shape functions U j(x) is used, one can write

for r 2

which is fitting the boundary values with opposite weights.
This article studies the behaviour of so)utions obtained using alternative ways of fitting the

boundary conditions. Section 2 and 3 study the relation between collocation and integral fit;
special attention is given to orthogonal collocation which is quite efficient. In the remaining
part of the article the results of numerical experiments are presented and some improvements
that can be achieved by multi-step fitting are discussed. Finally, questions related to conditioning

of solution matrices are also analysed.



v'
U(x) = L UjU j(X)

.1=1
(9)

In this case equations (8) become

v'
LajUj(x!,)=f(x!,), ,u=t,..."u* (tOa)

j~l

v.
L ajUj(x!')=g(.x!'), ,u=,u* + t,...,\'* (lOb)

j~1

where the prime stands for the normal derivative. Hence, it is seen that the numerical
approximation of the integral fitting leads to simple collocation on the control points used for
the integration.

Similar conclusions are obtained if the number' of control points is greater than the number
of Trefftz functions. Indeed, assume that J is the number of Trefftz functions and that v* > J.
Then equation (7) can not be fulfilled exactly and one has to be satisfied with

v'

/l=~+

/l-L W1,[u(x/l)- !(X/l)] 2 +
/l=1

Wp[U'(Xp) -g(Xp)]2 = min (II)

this leads to

IJ" v"

I WIJUk(XIJ)[u(xlJ)-f(xlJ)] + ~ I
IJ=\ IJ=IJ +1

and, more explicitly,

J [ IJ.' v.

.j~laj IJ~I WIJUkIJUjlJ+IJ=~+1 WIJU~IJUjlJ

v'
+ L' WIJU~lJg(XIJ); k= 1,...,J

IJ=IJ+I

where U klJ = U k(XIJ) and U~IJ = U~(xlJ)'

After the introduction of the following rectangular matrices and vectors:
BII '" .I -~ iW1B\\ W\B\2 ...

B21 ...I "V2B21 W2B22 '"

W/lU~(X/l)[u'(X/l)-g(X/l)]=O; k= , J (12)

(13)

812Il22 IJ I.J

82,J

W.B..J

W2B2.J

B=B= (14)

Bv*,1

B"*,2 BII-oJ

W..B.., 

1

W 

v.Bv',2 W".B".

a=
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where
B,. = U .(x,), X,E r l' for r ~ J1*

B,. = U~(x,), X,E r 2' for J1* > r ~ v*

equation (13) can be written as

R'ull nTC ( 15)

We could have considered, instead, the overdetermined collocation problem
J

L ajUj(xp) = !(Xp), Jl:= 1,...,Jl* (16a)
j=1

J

L ajUj(xp)=g(xp), Jl=Jl*+I,...,v* (16b)
j=1

with J > v*. Since equations (16) do not have, in general, a solution, one has to be satisfied with
p" v"
L WpR; + 4 WpR~2 = min (17)

p=1 p=p +1

where
J

La}U}(x,.)-f(x,.)=R,., ,u=1,..."u* (18a)
}=1

J
L a}Uj(x,.) -g(x,.) = R~, ,u =,u* + 1,. ..,v* (18b)

}=1

Condition (17) leads precisely to equations (13) again. Thus, least squares integral fitting is seen
to be equivalent to least squares collocation. In what follows we investigate the influence of the
distribution of control points x,. and the weighting constants W,..

3. ORTHOGONAL COLLOCATION AND INTEGRAL FIT WITH
GAUSSIAN INTEGRATION

Using T -complete systems of functions, the solution of a boundary value problem only requires
the construction of an accurate approximation of the given boundary data f(x), g(x) by the
specific series of functions U j(r I)' u;(r 2) which are the values of the shape functions on the
boundary r. This series may have a very complex form, as it depends not only on the T -complete
system applied, but also on the shape of the contour r.

A related problem which can give hints about the efficiency of alternative distributions of
collocation points is the approximation of functions by polynomials. As we know, equidistant
points are not very convenient in this case, because such a procedure can be divergent (this is
called the 'Runge phenomenon'J3). However, if the control points are located at the zeros of
Legendre polynomials of degree v. (where v. is the number of control points), then the residue

w(x) = u(x) -u(x) (19)

is the orthogonal to all polynomials of degree smaller than v. and the process is necessarily
convergent. This will be called Gauss-Legendre integral approximation.

As an extension of this procedure, the idea of using orthogonal collocation inside (} has been
broadly used for solving differential equations.14-16 Various types of equations are solved with
the help of splin~s as shape functions and estimates of the accuracy of the solutions are
available.17.18 In our case the orthol!onal collocation is aoolied on r. An estimate for the error
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inside the region Q can be made in the following way. For simplicity, consider the case of a
Dirichlet problem (i.e. rz= 4». Assume that orthogonal collocation of degree n is used inside
each of the equal segments r a of the contour r, where

N L

r=aV1ra, N=,h (20)

Here L is the length of the contour and II is the lellgth of each of the segments r «. For
this case the error w(x) is given by (19), with : '

(21)
J

u(x) = L ajU j(x)
j=l

The error function w(x) inside .0 is given in terms of its values on the boundary by

w(x) =, f r K(x, ~)w(~)d~ = mt1 f r. K(x, ~)w(~)d~ (22)

where K (x, ~) is the appropriate influence function for the Dirichlet problem in.o. On the boundary
r, ~ can be expressed in parametric form, in terms of the arc lengths. Then, for each (X = 1,., , , N,
there are n zeros {si,si,..,;s:} of the function w[~(s)] which correspond to n
collocation points {~(si),..,,~(s:)} inside the segment r m'

Apply now equation (22) at any interior points x of.o. At any fixed interval r m write

(23)K [x, ~(s)] w[~(s)] =: q(s) n (s -sr)
1= 1

which is clearly possible. Even more, the function 07= 1 (s -sr) is orthogonal to any polynomial
in s of degree less than n. When q(s) is C", by Taylor's theorem one has'

q(s) = polynomial of degree (n -1) + O(h") (24)

Therefore

(25)f K [x, ~(s)]w[~(s)] d~(s) =

r.
going back to (22) we obtain

O(h") n (5 si)ds = O(h2"+f r.

IV
W(x) = L O(h2"+ I) = O(h2")

~=1
(26)

because N = L/h.
We have shown in Section 2 that the integral fit, using the same number of control points for the

numerical integration as shape functions, is equivalent to collocation at the control points. Thus, in
this case, the error estimate we have just obtained is also applicable to integral fit when Gauss-
Legendre numerical integration is used.

It must be noticed that although the procedure just explained shows that the error is O(h2") for
any interior point x, this fact is less significant when the boundary r is approached because the
function K(x,~) is singular on r, so the approximation is slowly convergent. Indeed, equation (26)
means that for every iX, there exists a positive number M such that

Iw(x)I<Mh2" (27)

However, M depend,s on x and may grow indefinitely when the boundary is approached.
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In the case of the least squares fit the system of weights W" (equation (15» considerably
influences the final result of the fit. For Gauss-Legendre integral fit this system by the formula

W"=~A,, (28)
2

where t I' t2 are the lower and upper limits of the integral and A" are Gaussian weights. The
automatic association of weights with the range!; of integration (whcn the !;cgmcnt!; r ~ have
different lengths) is not always profitable. More reasonable seems often to be the direct choice of the
Gaussian weights in orthogonal collocation (W" = A,,), which corresponds to the sum of average
values of the integrals over the segments r~. A comparison of the numerical results when applying
various systems of weights W" is presented in the following sections.

4. ERROR CRITERIA

Generally, the error norm must be carefully chosen in order to reflect those aspects of the error
most relevant from the engineering viewpoint. Taking w(x) as in (19), the integral error norms

En= f Iw(x)IPdx (29a)
n

or

(29b)Iw(x)IPdxEr=

are in a certain sense representative, as they estimate the solution in the global way. However, the
integrals smooth out the local concentrations of the error, which can sometimes be unacceptable
from the engineering viewpoint. Hence, in the two-step solution addilional weighting functions
should be introduced, for example

F.r = f r IWi (x)lklw(x)IP ~x (30a)

~

or

En = f Iw,(x)lklw(x)IPdx (30b)
n

where w 1 (x) is the error associated with the first-step solution of the problem and the exponents p, k
are positive numbers which control the influence of the particular factors.

As has already been mentioned, for elliptic problems the maximum error occurs on the
boundary. 19 Hence, we have introduced the error norms (Figure 1):

E. = max Iw(x)l, Eb = max w -minw (31)
xer xer xer

The first one is called the extreme error of the fit and the second one, the width of the error band. We
consider. these measures as sufficiently representative for the problems discussed and applied them
in our numerical investigation of the ways of fitting the boundary conditions.

..i5. BEHAVIOUR OF SOLUTIONS: NUMERICAL EXAMPLES

Two ~ -complete families of shape functions were used: harmonic polynomials
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s along r4

Figure I. Definition of the Collatz error norms on the boundary r

a) b)

U~I+l=Im(z"), n=I,2" (32)vb = I Vb = Re(z")0 , 2" ,

and singular logarithmic functions

Uo= 1, U,,= logr", n= 1,2,... (33)

Here r; = (x -X,,)2 + (y -y,,)2 and the singular point (x"' y,,) lies outside the region n.
These functions identically satisfy the Laplace equation inside n. We investigated their

behaviour when fitting Dirichlet boundary conditions:

J(x, y) = (Xl + y2)/2, on r (34)

on two different contours-the rectangle nc and the rectangle with rounded corners nr(Figure 2).
Because of the symmetry we applied

h -" ---~U,,-Re(z), n-O,2,4... I..

in the case of the harmonic polynomials, and

(35)
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Figure 3. Error IwrlrnB' on the boundary of the square, a = b = 1.0; N,( = 6) is the number of the shape functions
applied, N. is the number of control points on each side of the rectangle: I-equidistant collocation insidc the segments;
II-equidistant collocation including thc corncr; 111---orlhogonal collocalion; IV-orlhogonal collocalion with lhc

additional conlrol point in the corner; V -integral fit with the Gaussian integration

VI =

2
U2 = L logr;

1=1

6

U3= L logr;
1=3

10

U4= L logr;
1=7

36)

for the singular logarithmic functions. To investigate the convergence of the solutions and the
conditioning of the matrices we also applied 10 additional singular functions (Figure 2(a)) in the
latter case. Becausc of the symmetry they formed three independent shape functions.

In Figures 3 and 4 we can see the results of the calculations for the harmonic polynomials
and the rectangles of different shapes. As the number of shape functions applied was Ns = 6
(U~ for n = 0, 2,...,10), the point N e = 3 (the number of control points on each side of the
rectangle) means the direct fit of the boundary conditions and N e > 3 means the least squares
solution. In the case of the control point located in the corner, the solution for N e = 3 could
not be calculated, as this point was the same for both sides of the rectangle and the solution
was singular.

All the calculations showed the evident superiority of the least squares fit over the direct fit
of the boundary conditions. In most cases the error decreases rapidly after the application of 1

I
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Figure 4. Error IWI orthogonal collocation

5

Figure 5. Error function wr on the boundary r., a = 2-0, b = 0'5, N, = 6. The segment 0 ~ x ~ 2-0; y = 0-5: I-equidistant
.~?r?,~~!~~~t the,P?\~}~J",21 a9\d3r)II~~~uid.~~~\lt col~~~tio~;~f ,pei~int~, ~",S'.~ land 7 (le~stsquares)

or 2 additional control points and the error function changes its form considerably (see Figure 5).
However,'a further, i~crease,pf tJte nu~ber of the coritrol points doesnqt seem to ge prpfitable,
as the results (especially when applying the orthogonal type of collocation) become more stable.
, In the case of th~ square, the, corner was the point of the most, significant errors~ Hence it

appeared profitable to pillce,and additional control point at it. This was difficult {or the typical
integral fit with Ga~ssian integration. However, when we changed to orthogonal. collocation,
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Figure 6. Error function wr on the boundary of the square a = b = 1'0; N. = 6. The segment 0 ~ x ~ 1'0; y = 1,0:
I-equidistant collocation in the points I, 2, 3 and 4; II-orthogonal collocation in the points 9, 10, II and 4:
III-orthogonal collocation in the points 12,13, 14 and IS; IV-equidistant collocation in the points 5,6,7, and 8

,

I 

~ r'::;1

0.0402, 
(Nc=2)

/1 

m0.021 m
~

~ ~.,...«
--0--00--0

31:...

\
0.011 \ ~ '!ZIn

\,~ ...

\~-:::_~ :2][

, 0' 1 I I I 1-

':c .". 2 .~ 4. 5 6 N' i .., .,;, f" " I.. i ;. ': C

; ,', ;

Figure 7. Error Iwrlm.. on the boundary r r (Figure 2(b)), a = 2'0, b = 1.0, r = 0-5. N. is the number of the control points on
each of the three segments of the boundary: I -equidistant collocation inside the segments; N, = 4; II-equidistant
collocation including the ends of the segments, N, == 4; III -orthogonal collocation, N, =' 4; IV -integral fit with the
Gaussian integration, N. = 4; V ~orthogonal collocation with the Gaussian weights, N, = 4; VI -equidistant collocation
incl~~!ng th~,e~~~\?f~.h~ segml e.n!s~ N, = 6; V. II- Gorth~gonal. ChollocNation6' N~ = 6; VII~iort~ogonal collocation with the

'. "r-" ,'" ausslanwelgts,,= .! .

this additional point! did not disturb the procedure, and its introduction was very easy- In
Figure 6 'we 'Can see the influence of the choice of control points on the error function w(x) in
thiscase~ J\it",r-;11(. "1' !. .-., '.' ',. -,

For the smdoth contour (Figure 2(b» we could observe the superiority of the orthogonal
collocation with the Gaussian weights, which is clearly visible in Figures 7 and 8. The typical
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Figure 9. Error function wr on the boundary r" a = 2'0, b = 1'0, r = 0-5; N e = 3: I-equidistant collocation in the
points inside tre segment, N. = 4; II -equidistant collocation including the ends of the segments, N. = 6; III -orthogonal

, collocation, N.= 6 ,;': ..

distributions of the error functions in this case are presented in Figure 9. The width of the error
band on the boundary r (Eb = W~ax -W~in) behaved, for both shapes of the area n, very
similarly to Ee, though the differences between the particular' procedures were a little smaller.
We can see this in Figures 10 and 11, which can be compared to Figures 3 and 7, respectively.

Changing the shape functions to logarithmic type (36) did not introduce basic changes in the
behaviour of the solution when applying the different procedures for fitting the boundary
conditions. Figures 12 and 13 show the most characteristic results in this case. The rapid decrease
of the error after the application of the first additional control point (in comparison to the direct
fit) and the stability of the solution with further increase of N c are evident.

The authors also calculated for all the cases the integral fit with opposite weights, which is
often convenienti2 and does not disturbe the symmetry of the main matrices. However, the
results were similar to those of the least squares integral fit (Figure 14).
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Figure 13. E. and Eb on the boundary r "a = 2'O,b '= 1'0,' '= 0.5. Logarithmic shape functions". = 3'0,'2 = 2.0: I-VI as in
Figure 12; VII-equidistant collocation including the ends of the segments (N. = 7); VIII-orthogonal collocation

(N. = 7); IX-orthogonal collocation with the Gaussian weights (N. '= 7)

!! 1---'
5 6 N

..'I, C
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where AA and Ab are the computational errors (e.g. rounding error) of the matrix A and the vector

b, respectively. For a symmetric matrix, we define
" "

II A II = max L lajjl = max L lajjl (38)
l~j~"I=l l~i~"j=l

and th~ condition numt?er '):' is given by20.21 : '.i ~"i "",~.f: !"
j,'! i ; ( : 'I , " i;~! ~,.;,', it; ! 1

I ,,"i...:-i' ".y(A)=IIAIlIIA-111..:';:i~::,",:i;~1 (39)
, ":1 ' ,!

The purpose of our numerical experiments was to determine the influence of the different
characteristics involved in y and II ~x II. For harmonic polynomials such characteristics were
the number of shape functions, the number of control points and the shape of the region Q. An
additional characteristic, for singular logarithmic functions, was the distance of the singularities
to the boundary r iThe~ncrease of the number of control points (least squares solutions) caused,
as a rule, a certain decrease of the error estimate, but the condition number remained relatively
unchanged when the different procedures for fitting the boundary conditions were applied.

.Tabl~ I shows th~sults that were obtained for harmonic polynomials, The most conspicuous
increase of y and IIL\x II can be observed with the changes of the contour shape (increase of the
ratio a/b) and the number of the shape functions N., For the singular logarithmic functions
the problem of the conditioning of the matrices is more complicated since the distance
of the lsingularities from the region Q plays an additional important role. In Figure 15 we
can see the results of the calculations for the area r r' It becomes obvious that the optimi-
zation of the distances rl and r2 must include not only the error yalues (as was proposed
by Mathon and Johnston22) but also the conditioning number y. i

Since increasing the number of shape functions that are used in a given boundary value
problem produces an increase in II L\x II and y, in general it is not possible to enlarge the system of
shape functions that is used, beyond certain limits, Thus, when such limits are reached all that can
be done to improve the $;olution is to use multi-step !!!.!ing (section 7), or ,to divide the region Q into
elements. However, i~ust qe noticed that using II L\x II and ytodetermine such limits may be too
conservative, since II L\xll is only a bound of the actual error IIL\x II. Table II displays some of the
results for the condition numbery, which may be of interest in a~tual engineering calculations.

We introduced into the matrix A additional disturbances of the order 10- 8 situated incidentally

inside the matrix [in the example this was introduced by the instruction IF«(I + J). EQ. 4. OR.
(I + J). EQ. 6) A(I,J) = A(I,J) + I.E-' 8]. The reaction for these disturbances is compared with
the estimators of the result error (with the assumed data error of the same order <5. = 10-8).
We can see the considerable difference between this estimation and the real error of the roots.
Additionally it is visible that even the great error of the roots can result in relatively small
changes of the field functions. All these facts must be taken into account while limiting the
solution factors, i

, Additionally, it should be noted that the order of the final solution error did not increase
during the test when changing the places of the matrix disturbances. Hence the test described
above can be considered as the image of the real sensitivity of the solution on the matrix errors
and the authors suggest it as a helpful tool in the determination of the limiting values of the

solution factors a/b, N.,r1 and r2'

7. MULTI-STEP FITTING

An important adva~tage of the boundary method is the fact that the, error of the approximate
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...(

-1°,1+-19/

Figure IS. Influence of the distance of the singularities on the results of the example. Logarithmic functions: area
r,-.,a".2'0, b=:I'O, r=Q'S,.N.=4, N.=40n each s~ent; orthogonal collpcation..", i " , I -'.

solution is introduced only through the boundary. I-~or elliptic equations the maximum error
occurs just on the boundary.19 Also. in previous discussions this has !Je~n_re~ated to the errorin the interior of th~ region no' "I. ",,' ! ,.!; ,'r i i' \ ' ,.. ! ""

In solutions withT -complete systems of,fui,1ctions. the boundary error js directly observed as
the difference betwe~n the prescribed and calculated boundary functions. Observe that the same
is not possible w~en using boundary integral equations. This allow$ using multi-step fitting of
boundary conditions, le;, applying prq~edures for su~cessive correction of boundary errors.

Secondary collocatiqn a~ the points of extreme boundary error in the first-step solution is one
of the obvious methgds forflt improvement. In Figure 16 we can see the result of the application
of three additional control points with weigQts proportional to the values of the error in the
first-step solution. Repeating this procedure Vfe could obtain the optimal fit for a given number
of shape functions. This can be especially important when increasing the number of the shape
functions is difficult because of conditioning reasons (see section 6).

Treating the boundary error wr from the first-step solution (which is known exactly) as a
new boundary condition_is another possibility for imp~oving the result. Since the exact solution
is ~i '" ~,,;.;' ! .i i

(40)u(X) = U(X) -WI (X)

it is required to find an accurate approximation of WI (x). The function WI (x) should however,
be, calculated in a different way to the first-step solution. For example, one can use different
T -complete systems of functi,bns or a different division of r into segments. In Figure 17 we can
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-O.O2r

ij~I.;i;r

~+-~

, ,. '" ..

Figure 16. Two-step litting of the boundary conditions on t ,. harmonic polynomials; orthogonal collocation, N. = 4.
Nc,= 4. a"; 2'0, b = 1'0. r = 0-5: I-lirst-ste,p solution; I~-improved solution with the three additional control points

Figure 17. Improvement of fitting the boundary conditions on r;. Logarithmic shape .functions. Ortht;>gonal collocation;
a = 2-0, b = 1'0, r = 0'5, r. = 3'0, rz = 2-0: I~one-step solution, N.;" 4, N. = 4, Y = 1.53 X lOB; II~one-step solution,

N.,;=7. N.~4; r'~14'70~jOII,;\qIi.t,V(;q:-s~Pi&0Iution"N.)T4.,fV.I=,4, N~z=3, !,!oz,c,6, YI=I;53xIOB,
12 = 4,89 x 10 " ';J 'I

see the two-step procedure when applying the singular logarithmic shape functions. The
diminishing of the error can also be done in the one-step solution with the greater number of
shape fun~~io~~ (cu~v~n) b,\l,! in t~is ca~e the,j;;ondition number of the solution matrix would
increase. I .

The multi-step fitting can also be useful in typical engineering calculation which can be
considerably improved by application of additional control points il:\ the regions where the
greatest values of the inve,stigated field functions occur.
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Cz .1. ~3 .1
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Figure 16. Two-step fitting of the boundary conditions on t" harmonic polynomials; orthogonal collocation, N. = 4,
No, = 4, a = 2'0, b= 1'0, r = 0'5: I-first-ste,p solution; I~-improved solution with the three additional control points

Figure 17. Improvement of fitting the boundary ~onditions on r;. Logarithmic shape functions. Orth\>gonal collocation;
a = 2'0, b = 1'0, r = 0'5, rl = 3.0, r2 = 2,0: I-one-step solution, N. ~ 4, N. = 4, Y = 1.53 X lOB; II~one-step solution,

N.,:=7. N.,,:,4; Y'~f 4.7Q~IQI\,;,I'I-:-t\V,q:-st~PI~olution,,!f'IT4.,(V.\=4, N~2:=3. l;l.2.~,6, y\ =1,.53 x lOB,.." "h=4'S9x102 I ;,j' '"

see the two-step procedure when applying the singular logarithmic shape functions. The
diminishing of the error can also be done in the one-step solution with the greater number of
shape fun~~iop~ (cu~y~Jl) bM,! in this ca~e the,~ondition number of the solution matrix would
increase. r .

The multi-step fitting can also be useful in typical engineering calculation which can be
considerably improved by application of additional control points in the regions where the
greatest values of the inve~tigated field functions occur.
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8. ~ONCLUSIONS io".V

This paper has proved the identity of integral fit and collocation. It has also showed the distinct
superiority of least squares fit over direct collocation on the boundary.

The advantages of orthogonal collocation are clearly shown. It results, as a rule, in a better
fit of the boundary conditions than equi~istant collocation and uses the unique control points
inside the segments. In comparison to t¥ integral fit, the orthogonal collocation has no additional
weights connected with the length of the se:gments (see section 3) and ~Iso allows for easy adding
of the control points, which is sometiJnes profitable. !

The Collatz measure of the boundary error ,(~hich is applied in the work) seems to be a good
estimate of the fit, as it does not allow for propagation of big errors. This is especially important
when forming elements with T -complete systems of shape functions. 12 ,

The conditioning of the solution matrices has been investigated in detail. The paper points
out the danger of the unconscious application of certain solution faGtors beyond the accessiblelimits and supplies some guide for avoiding ill-conditioned matrices. 0'

On the positive side the reader can see the simplicity of the T -complete function method, the
easy estimation of the solution error and the possibility of reducing it by multi-step fitting the
bound~ryconditions. The main solution gives here directly the coefficients of the shape functions,
which allows avoidance of the 'postprocessing' which is a characteristic disadvantage of other
boundary methods. However, the conditioning of the solution matrices remains as the main
limitation of the method discussed;

0, ') ,;, ')'!'? ~ 0,;" ~,

, .ACKNOWLEDGEMENTS ! "
Co i

This work was completed during the stay of A. P. Zielinski at UNAM. The financial support
of CONACYT is gratefully acknowledged. The authors also acknowledge Mrs. Selma Camposfor making the drawings for: the paper. I '; ,

, \

REFERENCES

1. A. P. Zielinski, 'On curvilinear distributions expressed by double Fourier series',J. Appl. Math. Phys. (ZAM P), 31 (6),
717-729 (1980).

2. A. P. Zielinski, 'A contour series method applied to shells', Thin-Walled Str., 3(3), 217-229 (1985).
3. A. P. Zielinski and M. Zyczkowski, 'The trigonometric contour series method in application to clamped plates of an

arbitrary contour', Bull. Polish Ac. Sc., 29(9-10),159-167 (1981).
4. I. Herrera, 'TrelTtzmethod', in C.. A. B~ebbia (ed.), Topics in Boundary EJement Research Vol. I, Springer Verlag, Berlin,

1984. ..' ,
5. I. Herrera, Boundary Methods: an Algebraic Theory, Pitman Adv. Publ. Prog. Boston, London, 1984.
6. E. TrelTtz, 'Ein Gegenstiick zum Ritz'schen Verfahren', Proc. I//nl. Congo Appl. Mech., Zurich, 1926.

,!: H. Gourgeon and I. Herrera, 'Bounda~y Methods. C~co~plete systems for the biharmo~i~,equation', in~. A. Brebbia
(ed.), Boundary E;lement Method", SpnngerVerlag, Berlin, 1981, pp. 431-441. I, .

8: I. Herrera, 'Boundary methods: a criterion for completeness',' Proc. NaIl. Acad. Sc. liSA, 77(81, 4395-4398 (19801.
9. I. Herrera, 'Boundary methods for fluids', in R. H:, Gallagh~r, H. D. Norrie, T.J. Oden, O. C. Zienkiewicz (eds), FiniteElement,~ in Fluids, Wiley, New York, 1982. '

10. I. Herrera and H. Gourgeon, 'Boundary methods. C-complete systems for Stokes problems', Compo Meth. Appl. Mech.
!'Eng.,JO,225-'244(1982)..'i,,:Ji:"'(': '" ", i ," .

11. I. Herrera and F. J. Sabina, ~Connectivity as an alternative to boundary integral equ~tions: construction of bases', PrQc.
, Natl. Aclld. Sc. USA, 75(5), 2059-2063 (1978). ., ,
i2. c A. P. 'Zielinski 'and 0: ~. Zienkiewicz, 'Generalized finite element analysis with T -complete boundary solutions

functions', Int. j. numer. methods eng., 21 (3),509-528 (1985).
13. C. Lanczos, Applied Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1956.. t
14, W. F.Ames, Numerical Methods for Partial Differential Equations, Academic Press, New York, 1977.
15. J. F. Botha and G. F. Pinder, Fundamental Concepts in the Numerical Solution of Differential Equations, Wiley, New

York 1983 I .,:i, .;.. "c' .i, ., .



'\

891

TREFFTZ METHOD: FITTING BOUNDARY CONDITIONS

16. L. Lapidus and G. F. Pinder, Numerical Solutioll of Partial Differelltial Equatiolls ill Sciellce alld Ellgilleerillg, Wiley,
New York, 1982.

17. C. de Boor and B. Swartz, 'Collocation at Gaussian points', SIAM J. Numer. Allal., 10(4), 582-606 (1973).
18. B. M. Herbst, 'Collocation methods and the solution of conduction-convection problems', lnt.j. lIumer. methods ellg.,

17, 1093-1101 (1981).
19. L. Collatz, The Numerical Treatmellt of Differelltial Equatiolls, Springer Verlag, Berlin, 1960.
20. E. K. Blum, Numerical Allalysis alld Computatioll-Theory alld Practice, Addison-Wesley, London, 1972.
21. G. M. Philips and P. J. Taylor, Theory alld ApplicatiollS of Numerical Allaly.~is, Academic Press, London, New York,

1973.
22. R. Mathon and R. L. Johnston, 'The approximate solution of elliptic boundary-value problems by fundamental

solutions', SIAM J. Numer. Allal., 14(4), (1977).


