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This article reports further developments of Herrera’s algebraic theory approach to the
numerical treatment of differential equations. A new solution procedure for ordinary dif-
ferential equations is presented. Finite difference algorithms of 0(h"), for arbitrary “r”
are developed. The method consists in constructing local approximate solutions and us-
ing them to extract information about the sought solution. Only nodal information is
derived. The local approximate solutions are constructed by collocation, using polyno-
mials of degree G. When “n” collocation points are used at each subinterval, G = n + 1
and the order of accuracy is 0(2**"'). The procedure here presented is very easy to im-
plement. A program in which n can be chosen arbitrarily, was constructed and applied to
selected examples.

I. INTRODUCTION

In previous articles [1-5], it has been shown that Herrera’s algebraic theory
of boundary value problems (including initial value problems) for arbitrary dif-
ferential equations, has great potential as a tool of analysis of numerical meth-
ods for partial differential equations.

Standard approaches to the finite element method which are based on the the-
ory of distributions do not permit the use of discontinuous trial and test func-
tions simultaneously [6, 7]. This limitation is overcome by the unified theory of
numerical methods developed by the author. In particular, the results which
supply the theoretical foundations for the formulation of the finite element
method with discontinuous trial and test functions are given in [2, 3, 5]. They
are completely general Green’s formulas which are applicable to arbitrary (sym-
metric or non-symmetric) linear operators -for which both the trial and the test
functions can be fully discontinuous.

Among the results which the theory yields, there are two variational prin-
ciples applicable to any boundary value problem: the first one in terms of the
“prescribed data” and the second one in terms of the “sought information.” The
general version of the finite element method mentioned above is obtained when
the method of weighted residuals is applied, using these variational formula-
tions (see [3, 4]).
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Any approximate solution to a boundary value problem possesses some
amount of information about the exact one. As a matter of fact, its usefulness
depends essentially on it. In previous articles [3, 4], as an application of the
general theory, a procedure for analyzing such information has been presented.
It has been shown that, in some sense which is made precise there, the informa-
tion about the exact solution contained in an approximate one is independent of
the trial functions used and depends solely on the test functions that are ap-
plied. In this context, the trial functions supply means for interpolating (or ex-
trapolating), more or less effectively, the actual information.

Usually that information is incorporated into the approximate solution by as-
suming a specific set of basis functions, in terms of which it is represented.
However, it is also possible, at least in some cases, to extract that information
without assuming any representation. For ordinary differential equations, this
leads to finite difference methods [4, 8].

The theory shows that the information supplied by an approximate solution
can be decomposed into three parts: the weighted averages of the solution in the
interior of the elements, the complementary boundary values (i.e., that part of
the “relevant” boundary values which is not prescribed as data of problem), and
the values and derivatives of the solution at the partition nodes. The informa-
tion can be concentrated in any one of these three parts by suitably choosing the
weighting functions. Finite difference approximations are obtained when the in-
formation is concentrated in the nodes. This was done in [4] obtaining al-
gorithms which yield the exact values of the function and its derivative at the
nodes. Such procedure, however, requires constructing test functions which ex-
actly satisfy the adjoint differential equation in the interior of the subintervals
of the partition. Thus, this restricts the applicability of the procedure to simple
equations, such as those with constant coefficients. v

The versatility of the method is very much enhanced when the condition
that the adjoint differential equation be satisfied by the test functions is relaxed.
Two procedures for achieving this goal are being investigated which lead to
finite difference algorithms yielding the values of the solution and its derivative
at any degree of accuracy. In a first article [8], the operator £ was approxi-
mated by one for which the exact solutions of the adjoint equation are easily
computed. The second procedure, which is treated here, consists in construct-
ing test functions which approximately satisfy the adjoint equation. In this ar-
ticle, this is done using collocation. The numerical efficiency of the method is
tested applying it to specific examples, obtaining very satisfactory results.

Polynomial approximations are used to construct the test functions and they
are required to satisfy the adjoint differential equation at n collocation points at
each subinterval of the partition. The degree of accuracy of the resulting
algorithm is 0(k**"'), where “h” is a norm of the partition. Since n is arbitrary
and the procedure was easily programmed, very accurate and efficient
algorithms are constructed in this manner.

Numerical simulation of the advective-diffusive transport equation is a prob-
lem of extreme inportance and also one of great difficulty. When the diffusive
process dominates the advective process, the equation is relatively easy to solve
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by virtually any standard numerical scheme. However, when the problem is ad-
vection-dominated, the standard numerical approximations become problem-
atic. Either nonphysical oscillations appear in the vicinity of sharp fronts, or
excessive numerical diffusion is introduced and the ability to capture a sharp
front is precluded.

When a transport problem shifts from being diffusion-dominated to being ad-
vection-dominated, the fundamental nature of the equation changes. A numer-
ical approximation that fails to appropriately incorporate the changing character
of the equation has little chance of success. This is precisely the case for most
standard numerical approximations. On the contrary, in Herrera’s approach this
is incorporated through the test functions that are used.

Because of its difficulty and importance, the numerical treatment of advec-
tion dominated flows has been the subject of considerable research. The main
approaches have been using finite differences [9, 10], approximate symmetriza-
tion (Morton’s approach [11]) and Petrov-Galerkin methods (Hughes’ approach
(12]). The numerical results of the new method have been compared with other
methods in [13], including steady and non-steady state problems, and its con-
siderable superiority has been exhibited there.

il. PRELIMINARY REMARKS

The method is based on two variational principles applicable to any linear
boundary value problem [2—4]. The first one is in terms of the “prescribed
data”

(Pu, ) = Bu,¥) — Ju,¥) = (£, ) — (&) — (), VY ED,
D

while the second one is in terms of the “sought information”

Q*u,¥) = (C*u, ) — (K*u, ) = (f,¥) — &) — G.¥), VYED.
@

Here D is the space of admissible functions (a linear space), D* is its algebraic
dual, and f € D*, g € D*, and j € D* are the prescribed values of the opera-
tor Pu, the boundary operator Bu, and the jump operator Ju. In addition, K*u,
C*u, and Q*u are the generalized averages, the complementary boundary val-
ues, and the sought solution at interior points. The equivalence between these
variational principles is granted when

P-B-—J=Q*—-C*-K* €)

is a Green’s formula in the sense of the theory {2, 4]. Green’s formulas of com-
pletely general validity, which apply to any (possibly) non-symmetric operators
defined in fully discontinuous trial and test functions have been given in [2] for
the case when the trial and test function spaces are the same. Such formulas
have been extended in [S] to the case when the trial and test functions spaces
are different.



202 HERRERA

" Using the author’s approach, which is applicable to equations of arbitrary
order, finite difference formulas have been given for second-order differential
equations with variable coefficients, in terms of the corresponding test func-
tions [4]. Thus, for the purposes of the present article, it would be sufficient to
take the results presented in Section 6 of {4] and derive in this manner the finite
differences algorithms that will be discussed. However, in order to make the
paper more accessible, such formulas will be derived using an elementary
approach, ‘but in the sequel the relation between this procedure and the more
systematic abstract method which is based on Herrera’s algebraic theory [1-5]
will be pointed out. Only second-order equations will be considered, although
the same procedure is applicable to equations of arbitrary order (see [4]).

lil. SECOND-ORDER EQUATIONS

-For convenience, the differential equation will be written as

du du da
fguEE(Ddx)-f-ZaZx'-i-(b-f- )u——fn(x) O0=x=1,

@
u(0) = g,0; u(l) = g, (&)

where the coefficients are not required to be constant. The notation g,, and g,
is used to represent the prescribed values of u at 0 and /, respectively. First-type
boundary conditions are given for convenience only; the treatment of general
boundary conditions was given in [4].

The author’s procedure evolves as follows. First, the domain [0,] is parti-
tioned into E subintervals with E + 1 node points {x,}:_, used to delineate the
subintervals. Next, a weak form statement is written for Eq (4) as

E

21 " (Lupp dx = 21 " o) ds. (6

e=1 x| e=1 Yx,
The reason for using a weak statement in the form of Eq. (6) is that in this
manner it is applicable even when u is fully discontinuous at the nodes, as
long as it is ¢ within each subinterval. Even more, if such function u satisfies
Eq. (6) for every ¥ which is ¢ within each subinterval (but is fully discontinu-
ous at the nodes), then Eq. (4) is fulfilled at the interior of each subinterval,
separately. Thus, in what follows, the admissible functions will be ¢ within
every subinterval separately, but they may be fully discontinuous at the nodes.

A variational statement for the boundary conditions can also be given. This

can be done in many different ways; one possibility is

u(Dg(W), — u@q(W)o = (W) = 85,9, M

where the notation
a®) = D2 — 20y ®

has been adopted. It is easy to see that a function « satisfies the boundary condi-
tions (5), if and only if, Eq. (7) is fulfilled for every admissible function ¢.
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Usually, for a second-order differential equation such as (4), the sought solu-
tion together with its derivative are required to be continuous. At the nodes, not
every admissible function satisfies this condition and it is necessary to impose
this requirement in some manner. There are many alternative ways of imposing
this condition variationally. The following variational statement is one of them

3 {q(lp)x,[[ullxe - (b-/:),ql[%]] } - 0. ©

Here, the double bracket notation and the dot denote the jump and the average,
respectively, of the cotresponding function at the designated point; i.e.

[['ILC = (.)x,"' _ (.)"e-; ‘(:)Xg = %{(')xev'f' (')xe_} . (10)

Adding Egs. (6), (7), and (9), it is obtained

S| (upn) dx + uDqw), ~ u0)g),

=1 x,;l_ / L
> {W)xﬂuk - (D@x,[[%ﬂ } =2 | Adr g = gg.

(1)

It is easy to see that Eq. (11) is satisfied for every admissible function ¢, if and
only if, the same is true of Egs. (6), (7), and (9). Thus, in conclusion, given an
admissible function u, the variational statement (11) holds for every admissible
function ¥, if and only if, u satisfies (4) at every interior point of the subinter-
vals, fulfills the boundary conditions (5), and it is continuous, together with its
derivative, at every one of the interior nodes. ‘ ' ‘ :_

This is the author’s variational principle in terms of the data of the problem
[3, 4] for the boundary value problem defined by (4) and (7), and corresponds
to Eq. (1), as is further explained later. 5 , ’ :

If the differential operator & is defined as per Eq. (4), then application of inte-
gration by parts produces . ,

E Xe E Xe‘.
2 | W - uryldx = ) [Dw% - uq(w)] ()

e=1 Jx,_y Xe—1

where &* is the formal adjoint of &, given by

=4 (pd) _,, ¥, (,_da
g*w—dx(Ddx) .Z“dx+< dx)"’

and notation (8) has been used. By an algebraic manipulation, it can be seen
that : ' f

2 du e du !
Z [Dwz - uq(w)]x‘_‘ = [M; - uq(w)]-0
+3 {ﬂq(w)nxeu, - DU + 400, Jul - (D&),,[[%ﬂ,,}
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Substitution of (14) into (12) and further rearrangement yields

S vuds + ugls - 3 {qw),,llullx, - <D'P>»I[%]]x=}

e=1 Yxo_y e=1

E [ du|l & . du,
=2 | uErpdc+ (Dy—| + 3 {lqWli, — Dyl (15
e=1 Jx,_; dx Jo e=1 dx
Equation (15) is a particular case of the author’s Green formula for operators in
discontinuous trial and test functions [2, 4, 5], and corresponds to Eq. (3).
Using (15), it is clear that the variational principle (11) is equivalent to

E Xe d 1 E d
3| weyd + [Dtp;ﬁ]o +3 {{[q(w)]lxeux, - [{anlx,;’;—'}
E
-3
=1

€

j ‘ fbdx + g,q(); — g2 qW)o.  (16)

This is the author’s [4, 5] variational principle in terms of the sought information.

By inspection of Eqs. (11) and (16), the motivation for this terminology is
apparent; the left-hand side of Eq. (11) involves only quantities (or functions)
which have been prescribed as data of the problem; namely, $u, the boundary
values of u which have been prescribed and the jumps of u and its derivative at
the interior nodes; these latter jumps are required to be zero when the sought
solution is smooth. On the other hand, on the left-hand side of Eq. (16) there
are only properties of the solution which are not known beforehand. Observe
that the sought information appearing on the left-hand side of Eq. (16) can be
divided into three parts: the complementary boundary values (i.e., the deriva-
tives at 0 and [); the averages of « and its derivative at interior nodes (which for
a smooth solution coincide with their values), and the values of the function at
the interior of the subintervals of the partition.

Finally, one can write these two variational principles in the form (1) and (2)
if the operators and functionals are suitably defined. Indeed, define

E X,

Pud) =3 | wud Q@) =3 | utwa, a1

(B ¥) = ugW)o — uDa@i (%) = DYOZ(0) - DY) W),

) = g{(vli:),,[[‘f;“]' - i;(w),,[[u]L,};

E

K ) = 3 {[{Dwn,,% - [[qw)n,,ux,},

e=1

G =3[ favds  (@w) = sgWlo — ga@li () =0

e=1 Yx,
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Then, Eq. (2) becomes (11), while (2) is (16). Even more, Eq. (3) means that
(15) is valid for every admissible u# and .
As pointed out in [4], one can write

J=J"+J'" and K* = (KO)* + (K")* 1

E=1 E-1 E-1
=3I I=3; &K*=JFEY (&Y= (K
e=1 e=1

(22)
Jou, ) = —q(), Jul.,; Jeu,§) = (blll)x,II%ll (232)
K0 = MW Kipu) = DL, e @)

The interest of this representation is that (K%)*u and (K!)*u give information
about the function u and its derivative at node e, respectively.

Recall that the variational principles in terms of the prescribed data (11) and
in terms of the sought information (3.13), were derived using an elementary
approach. Thus, the introduction of the variational conditions (7) and especially
(9), in an ad hoc manner, may seem to be rather artificial. The beauty of the
author’s algebraic theory [1-5] is due, in part, to the fact that it supplies
explicit formulas for the operators P, B, J, @*, C*, K* and the functionals f,
8, and j, which can be applied automatically, once a differential equation and
corresponding boundary conditions are given.

IV. HIGHLY ACCURATE FINITE DIFFERENCES

The next step will be to eliminate the function at the interior of the subinter-
vals of the partition from the variational principle (16) in terms of the sought

information. To the end, a family of test functions {¢,}, « = 1,...,N, each of
which satisfies the homogeneous adjoint equation
Pro =0 4

within each one of the subintervals, is applied in (16). In this manner, all the
information is concentrated in the nodes and (16) reduces to

R

Xe

E
=2 | fe.dx + 240l — 8xa(ede  (25)

e=1 Yx,

As explained by Herrera and co-workers [4], a variety of choices exists con-
cerning the smoothness of the test functions ¢ (x). These additional conditions
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further concentrate the information. Thus, for example, if the test functions ¢,
are continuous at a given node “e,” then [D¢.l,, vanishes (when the coefficient
D is continuous there), and from (23b) and (25), it is clear that the information
about the derivative at that node is eliminated. .

In [4], four algorithms were considéred. Each algorithm is characterized by
the components of the sought information on which the algorithm focuses.
Only information at the nodes is sought. The sought information is, for

Algorithm 1 — The value of the function and its derivative;

Algorithm 2— The value of the function only;

Algorithm 3—The value of the derivative only;

Algorithm 4 — The function at some nodes and the derivative at some others.

The smoothness conditions satisfied by the test functions were

K'¢*=0; for Algorithm 2; (26a)
K%®=0; for Algorithm 3; (26b)
Kipp*=0,8=1,...,E —1;  for Algorithm 4. " (260)

Here, 85, = 0 if the derivative is sought at xg and & p=.1 if the function is
sought at xg. _ . S v

For Algorithm 1, the functions ¢ are fully discontinuous at interior nodes.
At every subinterval Q, = (x,_1,%,) there are two linearly independent solu-
tions {2, ¢} of L*¢* = 0, which are taken to be identically zero outside Q..
This yields 2E test functions; i.e., N = 2E for this case (Fig. 1a). For the other
three algorithms, there is one continuity condition to B_e satisfied at each one of
the interior nodes, and due to this fact, each test function ¢ has support in the
interval (x,_;, X.+;) and vanishes elsewhere as depicted. Figures 1a and 1b cor-
respond to Algorithms 1 and 2, respectively. If, in addition, the ‘boundary
conditions ¢%(0) = ¢*(l) = 0 are satisfied, then there are E — 1 linearly inde-
pendent tcst"fungtibns Ge,a=1,...,E - 1. The system so constructed is
T-complete [1,3, 5] and the finite difference algorithms derived in this manner
yield exact values of the sought information at interior nodes only (due to the
boundary conditions satisfied by the test functions).

- However, T-complete systems are difficult to construct because the condition
£L*p® = 0 can be satisfied exactly for simple equations only. Thus, the
approach developed in this paper is based on relaxing that condition and con-
structing approximations to T-complete systems. In general, the system {¢“} of
test functions will be taken so that £*¢* = 0 at a finite number of collocation
points. In this case (see Section VI) ' S

E Xe .
> | uEretdx =0(k), 1))
e=1"Yxe—1
where “h” is the norm of the partition and r >0 is some integer. The
algorithms constructed in this manner do not yield exact values at the nodes any:
longer, but they can be made to be of any desired order of accuracy.
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xo /\ XE
F : L] L] ‘1'
0 X, Xqo,  Xq |
\Pa
1.b.

Xo Xg
R 1 ]
I T 13 1 e »
o X, Xq - Xq Xa +

\ra
Xo Xe
— : | ' —
° X Xa- Xq Xa 44 !

Nt

The test functions. For Algorithms 1, 2, and 3 correspond to a, b, and c,
respectively. ' ‘ '

For this case

du,
dx

a=2...,E-1:

Ko+ K, + k2 2ot g g Be —p oy o0,

—y:

A procedure for constructing weighting functions which satisfy (27) for arbi-
trary r will be discussed in Section V and the relation between r and the order
of accuracy of the algorithm will be explained in Section VI.

When these weighting functions are applied in (16), one gets modified ver-
sions of Eq. (25). Indeed, the results reported by Herrera and co-workers [4]

are applicable with minor changes. Depending on the algorithm considered,
they are as follows: :

Algorithm 1—The Value of the Function and Its Derivative

2
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d 1
B+ KPS = (g ) = o) + 0% y=12, (%

dug_
kgl ug_, + k}!—f = (g, ¢5) — (fohy + O0); v =12,
where
K = ~[q@.-; ko = —lalel
K =Dl K= Ll

Algorithm 2— The Value of the Function Only

e=a+l rx,
Pa-Ua-1 + P o+lat1 + Polbe = 2 f fﬂ¢adx + O(hr) (31)

e=a e—1

x2
Py ¥ Py = j fop®dx — (8,‘P]) + 0k,
0

1
PE-n-Us—2 t+ Pe-1lg-1 = j SapSdx — (g, ¢*") + 0(h")
Here

Pae = —14@Na-s;  Par = lal@ans (33a)
po = —lale)- (33b)

The results for Algorithms 3 and 4 are not given here, but they are essen-
tially the same as those presented in [4].

V. CONSTRUCTION OF WEIGHTING FUNCTIONS

The weighting functions were constructed satisfying the adjoint equation at col-
location points. There were n collocation points at each subinterval (x,-,, x,) of
the partition. Thus, for every & = 1,...,E, by construction they satisfy

Fre* =0, at Xu,... %o (34)

The accuracy of the resulting algorithm is enhanced if the collocation points are
Gaussian at each subinterval, and this will be assumed in what follows. Polyno-
mials of sufficiently high degree were used in order to accommodate all the
conditions to be satisfied.

Algorithm 1

For each @ = 1, ... ,E, two linearly independent functions {¢%, ¢35}, associ-
ated with every subinterval (x,-;, x,), must be constructed. They satisfy
Eq. (34). This can be achieved using polynomials of degree G = n + 1.
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The actual construction is quite simple. For ¢7, which vanishes identically
outside the interval (x,_,, x,), impose the additional condition

¢i(xa-1) = 0, (35)
taking p7 = 1, write

G
o) = X p¢ (36)
j=1

where ¢ = x — x,_,. Then (Here, to simplify the presentation, D is taken to be
identically 1.):

G
P*pt = D {j(j — 1) + ¢jE + dEWEp - @37
j=1

where ¢ = —2a and d = b — da/dx. Applying Eq. (24) at the collocation
points and using p7 = 1, it is obtained

G
2 — 1) + cje + dEDEpf = —c€ — d€%  at n collocation points.
J=2

(38)
The system of equations defined by (38) is n X n and can be solved for the n
coefficients p3,...,pg, since G = n + 1.
A similar construction applies to ¢3, for which one can take
G
030 =0, @5(0) = Xpj¢’ (39)
j=1

with ¢ = x — x,. Once the system {go‘,",cp‘z’} has been constructed for every
a = 1,...E, one can apply formulas (28) and (29) to obtain the desired finite
difference algorithms.

Algorithms 2—4

Foreacha =1,...,E — 1, a single function ¢, associated with the
subinterval (x,_;,x,.,), must be constructed. It satisfies (34) together with the
boundary conditions and the continuity conditions (26). This can be achieved
using polynomials of degree G = n + 1 and the whole procedure for con-
structing the test functions is quite similar to that for Algorithm 1.

The test functions used for Algorithms 2—4 belong to the linear space
spanned by those used for Algorithm 1. Due to this fact, Algorithms 2—4 can
be derived from Algorithm 1 by algebraic manipulations.

VI. AN ERROR ESTIMATE

An error estimate for the finite difference algorithms obtained using the
method presented in this paper has been established and the detailed derivation
is carried out elsewhere [14]. Here, only a summary of results is given.
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The systems of weighting functions used in Algorithms 2—4 are subsystems
of the linear space spanned by those used in Algorithm 1. Using this fact, it can
be seen that the error estimate for Algorithm 1 also applies to the other ones.
Thus, attention will be restricted to this case.

As mentioned previously, a convenient procedure to produce the weighting
functions is by collocation. When Eqs. 34 are satisfied and the collocation
points are Gaussian, a standard argument yields [8]

1 ,
f w'S*etdx = 0(™");  y=1,2. (40)
0

A far more elaborated argument whose details are given in [14], shows that
when (27) holds, then

du, du
— = Q(h"? &~ 2l =0y, 41
luz = uo| = O") and == ——= = 0(") (41)
Equation 40 corresponds to (27) with » = 2n + 1, so that the error estimate is
=l =00 [T =Tl 00y @)

for the nodal values, when n collocation points Gaussianly distributed are used
at each subinterval.

VIl. NUMERICAL RESULTS

To demonstrate the applicability of the superconvergent algorithms and to
verify the theoretical results, a completely general computing program was
developed and implemented in an HP 9000 computer. The test functions ¢7(x)
satisfy the equation

Ere5(x) =0 at X,y <X = Xgpse e s Xan < X 43)

where n is the number of collocation points at every subinterval (x,_;, x,).
When the functions ¢;(x) are polynomials of degree G, it is necessary that
G=n+1

Collocation equations (43), together auxilliary or continuity conditions lead
to a system of (n + 1) X (n + 1); i.e., a system of GXG, for the coefficients
of ¢,(x). Once these coefficients have been obtained, it is easy using Eqgs.
(28)—(33) to construct the finite difference algorithms.

This procedure is very easy to program and turns out to be quite versatile.
The computer program was tested applying it to three equations

d’u 2x du 2

@ T+ T (442)
d2
5+ 40m'u =0, (44b)
2
4 S00m = 0. (44c)

dx’
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¥

In Figures 2-8, these equations are referred to as examples I, 11, and III,
respectively. The boundary conditions were Dirichlet conditions such that the
exact solutions are

wlx) = 1 o sin W40 x; sin \/500 my [45)
respectively (Fig. 2).

For every one of the three algorithms, one can choose arbitrarily the number E
of subintervals and the number n of collocation points. Let

& = maxfu, — u,; a=1,...,E ~1, (46)

then according to Eq. (42) the asymptotic behavior is
—loge=(2n ~1)logE - M 47

where M is constant. When n is fixed, this defines a straight line of slope
2n — 1 (Figs. 3-5).

W
g

32.0 -
' 4
©
28.0
©
24.0
20.0

B

L e
7

12.0

R log E
0.0 1.0 2.0 3.0 4.0 5.0
FIG. 3. Numerical results for Eq. () (fixing n). (a) n = 2 slope (th = 3 act = 4). (b)
n = 3 slope (th = 5.0act =5.9). c)n = 4 slope (th = 7 act = 7.5).
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w
o
S
4.0 4
10.0 / ]
8.0 / / -
6.0 -/ { -
4.0 / /
2.0 ] — log E
1.0 2.0 3.0 4.0
FIG. 4. Numerical results for Eq. (II) (fixing n). (a) n = 2 slope (th = 3.0
act = 3.6). (b) n = 3 slope (th = 5.0 act = 5.5). (¢) n = 4 slope (th = 7.0

act = 7.4),

In Figures 3-5, the graphs labeled a, b, ¢, and d correspond to n = 2, 3, 4,
and 5, respectively. The theoretical predictions for the asymptotic slope agree
well with the actual results, although they are slightly conservative. For ex-
ample, when n = 2, this formula gives the values 3, and the corresponding
graphs in the figures are 4, 3.6, and 3.5. For n = 4, the theoretical slope is 7,
while the actual is 7.5, 7.4, and 7.1.

The procedure is also convergent if one keeps E fixed and increases the num-
ber n of collocation points. In this case, the numerical prediction approaches
the exact values at a finite number (E — 1) nodes. The error behavior for this
case is illustrated in Figures 6-8 for the three examples considered. Here, the
curves a, b, c, etc. correspond to E = 4,8,...,28.

As mentioned, the method converges when n is kept fixed and E — o, and
also when E is kept fixed and n — . Thus, one can refer to an “E” version
and an “n” version of the “Algebraic Approach.” This situation is similar to
Babuska’s p and h-p versions of the finite element method [15].

This work was supported in part by CONACYT (National Council for Science and
Technology, Mexico). The author acknowledges the significant contribution of Juan D.
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