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sSummary
e e

Herrera's Optimal Test Function Method is briefly explained.
From numerical experiments carried out up to now, it is con-
cluded that the only procedure with a comparable efficiency is
the version of Petrov-Galerkin due to Hughes and Brooks. Compar
isons of the test functions used in these two methods show that
Hughes and Brooks' test functions are a good approximation of
the author's optimal test functions in a well defined range of
Peclet's numbers. Outside this range, however, Herrera's opti-
mal test functions can be expected to be more efficient.

Introduction
The numerical solution of the advective-di{ffusive transport ~

equation is a problem of great importance because many problems
in science and engineering have mathematical representations
characterized by sharp fronts. This happens when the process 1is
advection dominated, in which case its numerical treatment 1is
very difficult. Considerable work has been expended in develop-
ing discretization formulae for this kind of problems ([1-3].
Most have focused on upstream weighting techniques. A fundamen-
tal criticism to these methods is the essentially ad-hoc nature
of their development. This is manifested through the presence of
an arbitrary parameter, the choice of which has to be decided
by the analyst. An alternative and very promising approach has
been introduced by the author [4-9]. In the past =several re-
searchers [2,3], when developing test functions, have considered
them optimal when they yield exact values at the nodes. More
generally, the author has proposed to consider a system of
weighting functions optimal when they yield exact values at in-
ter-element boundaries for arbitrary excitation terms. When this
1s done, this criterium of optimality reduces to Ehe notion of
T(Trefftz)-completeness which has been introduced by the author
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[4)]. Herrera's approach consists in using optimal test functions
(OTF) systematically. ‘

Numerical comparisons have been carried out between the results
obtained using the author's method and other procedures[9]. 1In
general, it was found that the OTF method yields more satisfac-
tory results. The only procedure whose results were very close,
is the Petrov-Galerkin method of Hughes and Brooks [3]. In this
paper Herrera's OTF method is described. Then, a ‘comparison
between the test functions used in these two methods is carried
out. They are shown to be quite similar uﬁ to fairly large val-
ues of the element Peclet number. The optimal test functions
used in the author's approach are derived via the solution of
the adjoint differential equation. The test functions of Hughes
and Brooks are derived in a relatively ad;hdc manner and usjkg
very different considerations. However, they turn out to be good
approximations of the solutions of the adjoint differential equa’
tion (OTF), except for very large values of the element Pec]et‘
number. This explains the good preformance of Hughes approach in
the corresponding range of Peclet numbers; outside of which the

advantages of the author's approach are more clear (Fig. 2).

Herrera's OTF Method

Let us introduce the approximation for one-dimensional steady-

state transport equation with sources, given by

oz 53 -vil v Ry = fo(x), 0s<x<d (1)
u(0)=g (2a)
U(Q'J:gg (2b)

First type boundary conditions are chosen for convenience of
presentation only. The numerical procedure has been implemented
for general differential equations and general boundary condi-
tions [6-8].

The domain [0, g] is divided into E subintervals, or elements

(not_necessarily equal), {[xo,xl], [XI’XZ]""’[XE—I’XE]}’ where

xo=0 and xE=2. This yields E+1 nodal points {xo,xl,...,xE}.
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we adopt the representation

: E
u{0)= I Uj ¢j(x) (3)
i=0 7

where Uj are the nodal values of u(x). A test function w(x) will
be taken localized in the union of two neighboring subintervals

[Xj—l’xj] and [xj,xj+1],where Xj is any interior node (Fig. 1).

In addition, the test function w satisfies

.w(xj_l);o : (da)
W(xs5,1)=0 (4b)
w(xj-) = w(xj+) | (4c)

Conditon (4c) states that the limits from the right and from the
left égree at the node x.;i.e. w is continuous at node Xj' How-
ever, generally, the derivative of the test function w will

have a jump discontinuity at Xj (Fig. 1).

Multiplying Lu by W, integrating from Xj— to and applying

1 X541
"generalized Gauss Theorem" for functions with jump discontin-
uities (see, for example [10]). it is obtained.

X. X . X .

I+l [ dw | I aw] J*rl s

J wlLudx=- UDH§J -ﬂPDHE + J ul wdx (5)

- ’ - X . X
j-1 :

1-1 ] Xj-]

, 1s defined by

Here, the "jump" M l

dw || _ d dw
MPDH§:H = uj(xj+)Da¥ (Xj+)_u(xj—)DH% (xj—) (6)
©X

: *
while the adjoint operator £ 1is defined by

*

-d d d
LwiEge (Dg) + g (VW) + Rw (7)

In the author's procedure, the optimal test function w satisfies

£ w=0. In this case, combining (5) with (1), it is obtained

X .
- [T e 8
Ay Uj AU +AS Us [X' wiodx (8)
j-1
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where _ _
_ndw . _ dw . _ e ndw
Ajm g x5 Ay ” e Ajer™ g (9)
1-1 - X X
‘J J+]
When equation (8) i1s applied at each one of the interjor
nodes (i.e., j=1,...,E-1), the unknown values (U],...,UE_]) of

the solution there, can be obtained from the resulting system
of E-1 equations. Before closing this Section, we observe that
the optimal test function w used in (8), may be thought as de-
fined throughout the whole interval [0,%2], if its value ié iden

tically zero outside [xj_],xj+]]. In view of equations (4), such

test function 1s continuous on [0,L] but its derivative has jumped

discontinuities at interior nodes.

Comparison with Petrov-Galerkin

The procédure explained before has been applied to advection
dominated problems using semi-discretization [9]. The results
so obtained are quite satisfactory, being oscillation free, to
a large extent. The only method whose results are close for a
large range of Peclet numbers is the Petrov-Galerkin version of
Hughes and Brooks [3]. After a more careful analysis it was

- found that this is due to the fact that the weighting functions
used in both methods are close to each other.

For the case when D=1, R=0 and V is constant, in equation (1),
Hughes' test function is
4o

w= ¢+3[(cotha) - 1/a] Vai (10)

where ¢ 1s a basis function and a= Vh/2 is the element Peclet
number. In Fig. 2, the test functions for both methods are com-
pared for «=1,3,5,7 and 10. '

Thus, we can conclude that the weighting fuﬁction used in HB-
Petrov-Galerkin method is a good approximation of Herrera's Op-
timal Test Function, up to Peclet numbers of 1. Beyond this
value, they are clearly different and because of their opti-
mality property Herrera's test functions can be expected to be

more efficient.
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