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A new numerical solution procedure is presented for the one-dimensional, transient
advective-diffusive transport equation. The new method applies Herrera's algebraic
theory of numerical methods to the spatial derivatives to produce a semi-discrete ap-
proximation. The semi-discrete system is then solved by standard time marching al-
gorithms. The algebraic theory, which involves careful choice of test functions in a
weak form statement of the problem, leads to a numerical approximation that inherently
accommodates different degrees of advection domination. Algorithms are presented that
provide either nodal values of the unknown function or nodal values of both the function
and its spatial derivative. Numerical solution of several test problems demonstrates the
behavior of the method.

INTRODUCTION

Numerical solution of the advective-diffusive transport equation is of great
importance..in many fields of engineering and science. When the diffusive pro-
cess dominates, the transport equation is relatively easy to solve by virtually
any standard numerical scheme. Howcver, when the problem is dominated by
advection, standard numerical approximations become problematic. Either non-
physical oscillations appear in the vicinity of sharp fronts, or excessive numeri-
cal diffusion is introduced and the ability to capture a sharp front is precluded.

Considerable effort has been expended in developing discretization formulas
for the advective-diffusive transport equation. Most formulations involve some
sort of upstream weighting to accommodate the advective nature of the trans-
port. These include classical upstream weighted finite differences [20], high-
order upstream finite differences [21], collocation methods [1, 22], and a variety
of finite element, or Petrov-Galerkin methods [3,8,10,16-18]. A fundamental
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criticism of many of these methods is the presence of an arbitrary parameter,
the choice of which must be decided by the analyst. Criteria to assist in this
choice are provided by Hughes and co-workers [17,18].

This paper proposes an alternative approach, based on the original ideas of
Herrera [12-14]. In this approach, finite difference and boundary element tech-
niques are incorporated in a new "algebraic theory." The methodology leads to
an optimal approximation in the following sense. Several researchers [9] have
considered test functions used in a weak fonnulation to be optimal when they
yield exact values at the nodes. This notion of optimality can be generalized by
considering test functions to be optimal when they yield exact values at inter-
element boundaries. One can then prove [11] that for a system of test functions
to possess this optimality property, for arbitrary forcing functions, it is neces-
sary that the test functions be solutions of the homogeneous adjoint differential
equation associated with the original governing differential operator. In the ap-
proach of Herrera, test functions are constructed based on this criterion. The re-
sulting test functions have the following advantages: (1) there are no arbitrary
parameters that appear in their definition; (2) the functions vary continuously
with the coefficients of the governing equation (for example, velocity, diffusion
coefficient, reaction rate); and (3) definition of the functions results from a sys-
tematic and mathematically sound fonnulation. We refer to this method as an
Optimal Test Function (OTF) method.

The presentation in this paper is organized as follows: The underlying numeri-
cal procedure is first developed for the one-dimensional, steady-state, constant
coefficient case. Optimal test functions are chosen to satisfy the homogeneous
adjoint equation, and thus yield exact nodal values of the sought solution (and
its derivative, if desired). Treatment of variable coefficients is discussed briefly,
and an example calculation is presented. The procedure is then extended to
time-dependent problems by using a semidiscretization is space. Details are
presented regarding treatment of the temporal derivative. Next, a detailed dis-
cussion on choices of test functions is presented. This includes a comparison of
test functions based on OTF to test functions used by Hughes and co-workers
[16-18] in their Petrov-Galerkin fonnulation. Numerical results are then pre-
sented, including numerical comparisons between OTF and upwind finite dif-
ferences, standard Galerkin finite elements, orthogonal collocation, and Hughes
Petrov-Galerkin method. Finally, a general discussion is presented that includes
comments on future directions for this research. This focuses on extension to
multiple dimensions.

DEVELOPMENT OF THE APPROXIMATION

This section details the salient features of the numerical approximation
method. The underlying theory has been presented by Herrera and co-workers
[5,11-15] for general boundary value problems. The presentation that follows
focuses specifically on the transport equation.
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Let us begin by developing the approximation for the one-dimensional

steady-state transport equation, given by

dzu du
:£u = D~ -V- =f(x), 0:5 x:5 f (1)

dx dx

u(O) = go (2a)

u(f) = gf (2b)

First type boundary conditions, and constant coefficients, are chosen for conve-
nience of presentation only. The numerical procedure is applicable to general
differential equations and general boundary conditions.

The numerical algorithm developed herein is based on a weak form of the
governing differential equation. For eq. (1), this is expressed as

if (:£u)w(x) dx = iflx)w(x) dx (3)

where w(x) is a weight, or test, function. Next, the domain [0, f] is subdivided
into E subintervals, or elements, {[xo,xJ, [xl,xz], ..., [XE-l'XE]}, where Xo = 0
and xE = f. These subintervals are separated by E + 1 node points, {XO,Xl,
...,XE}' Let us now assume that the solution u(x) possesses continuity of both
function and derivative at all points in [0, f], u(x) E C1[0, f]. In addition, let
the test function w(x) exhibit discontinuities within [0, f], w(x) E C-l[O, f]. Fi-
nally, let any discontinuities in w(x) be assumed to occur only at node points.
Under these rather general conditions, the integral on the left side of eq. (3) can
be written equivalently as

if (:£u)w(x) dx = ~ [~j+1 (..<eu)w(x) dx (4)

Equation (4), which introduces elementwise integration, can be written because
of the continuity assumptions on u(x), w(x). The case of lower continuity on
u(x) has been treated in the general development of [11,12]. For the current
presentation, u E Cl suffices since no solutions of interest are precluded.

There are two key steps in the numerical development. The fIrst is applica-
tion of integration by parts twice to each element integration of eq. (4). The
second is a special choice of test function, w(x); this choice is based on the ad-
joint operator that arises from integration by parts.

Let each element integral in eq. (4) be integrated by parts twice. Given the
definition of :£ in eq. (1), the fIrst application of integration by parts yields

f X+1 ( dZ d ) [ d ] Xj+l 1 D~ -V-.!!. w(x)dx = Dwi -Vwu

Xj dx ix' Xj

-Xj+1( du )dw D- -Vu -dx
dx dx

(5a)

.
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, ]XJ .U -Vwu

x,

= [DW~ -D~

+ {Xj+l (o'E*W)U(X) dx

dx

'x
}

where :£* is the formal adjoint of the operator :£. Equation (5b) replaces the
original spatial integral by nodal evaluations (these are the boundary terms in
the integration by parts, since the boundaries are nodes xi' Xj+U' and a spatial
integration involving the adjoint operator applied to the test function.

The next step is elimination of the spatial integral on the right side of
eq. (5b). Examination of eq. (5b) indicates that elimination of the integral al-
lows the original spatial integral to be written equivalently in terms of only
nodal values. As such, all information is effectively concentrated at node
points. To achieve this concentration of information, the test function w(x) is
chosen so that it satisfies the homogeneous adjoint equation :£*w = 0 within
each element. This eliminates the spatial integral on the right side of eq. (5b)
by forcing the integrand to zero. Upon elimination of this integral, eqs. (3),
(4), and (5b) combine to form the following equality,i t E-l {[ du dw ] Xi+l}0 (:£u)w(x)dx = j~ Dw~ -D"d;u -Vwu Xi (6a)

Since u(x) E C1[O, f], nodal evaluations of both u and du/dx are unique, be-
cause these functions are continuous. However, since w(x) E C-1[O, f], nodal
values of wand dw / dx are generally nonunique and depend on the element
from which the node is approached. Given these observations, eq. (6a) can be
written equivalently asi t E-l {[[ dw ]] du (:£u)w(x)dx = ~ D"d; + Vw Uj -[[Dw]li~j

0 J I x) (6b)[( dW ) dU] t + -D"d; -Vw u + (Dw)~ 0

where the double bracket denotes a jump operator, [[.]]x = (')x:l- -(')x,-. Since
) } }

D, V, and w are known (explicit functional forms for w(x) are derived below),
the only unknowns in eq. (6b) are the nodal values of function u and its deriva-
tive, {Uj, (du/dx)j}J=o. Equation (6b) can be written more succinctly as

i t(,£u)w(x)dx = f AjUj + Bj~dxUj ~-:)
0 j=O

~

(7'
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The only step t9at remains i~explicit definition of a suitable set of test func-

tions. The formal adjoint operator associated with the operator';£ of eq. (1) is

d2 d
';£* = D- + V- ( 8 )dx2 dx

There are two linearly independent solutions to the homogeneous equation,

';£*'1' = O. These solutions are given by

'I'\(x) = 1 (9a)

'l'2(X) = exp[ -(~)x] (9b)

Any linear combination of 'I' I(X), 'l'2(X) also satisfies the homogeneous adjoint

operator equation. The computational procedure uses two linearly independent

solutions to ';£*w = 0 within each subinterval. When the test functions are fully

discontinuous, w(x) E (:;-I[O, f], the following choice of test functions is

taken, with superscript e referring to the element defined by [x;,x;+J,

w~(x) =

x. < x < Xj+l
)

: 

lOa)

x > Xj+0 x < Xj'

-eXPI -(~) (x -Xi;
x. < x < Xj+l

J

-(i) (Xj+
(lOb)

w~(x) =

1 

-exp -x. J

0 , x < Xi' X> Xj+l

This particular linear combination of the fundamental solutions (9a), (9b) are
chosen simply because they possess the properties w~(Xj) = I, w~(Xj+J = 0,
w~(Xj) = 0, w~(Xj+J = 1. This is a choice based on convenience only; any
other linear combination is equally acceptable.

The choice of test functions given by eqs. (10) produces 2E equations for the
2E + 2 nodal unknowns {Uj, (dufdx)j}7=o. These equations are linear algebraic
equations of the form of eq. (7), with coefficients Aj and Hj evaluated from the
definitions (10). Two additional equations are obtained from the boundary con-
ditions. This closes the system, producing a (2£ + 2) x (2£ + 2) matrix
equation for the nodal unknowns.

Solution of this matrix equation yields exact nodal values for both function
and derivative. This occurs because no approximation has been introduced in
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the numerical development, and because the test functions form aT-complete
(Herrera [11-13]) system. Detailed algorithms for constant coefficient, ordinary
differential equations are presented by Herrera et al [14].

Exact nodal values are generally not obtainable when the coefficients are
nonconstant. This is because the homogeneous adjoint equation exhibits non-
constant coefficients and cannot, in general, be solved exactly. Celia and Her-
rera [5] and Herrera [15] have presented high-order methods to approximate
solutions to ';£*w = 0, thereby providing good estimates for the test functions.
Celia and Herrera [5] used piecewise Lagrange polynomials to approximate the
spatially variable coefficients. General power series solutions were obtained as
approximations for the test functions (except in the case of piecewise constant
approximations, when series solution is unnecessary). Herrera [15] applied col-
location to solve ';£*w = 0 within each element.

To demon"strate the numerical procedure, consider the following example of
transport with nonconstant coefficients,

-d2u du
(e 4X)~ --= 0, 0:5 X :5 1 u(O) = 1 u(l) = 0 (11)

dx dx

Let the variable coefficient be approximated with a piecewise constant func-
tion, so that constant values pertain within each element, with different values
from element to element. Solution of '£*w = 0 within any element then in-
volves a constant coefficient ordinary differential equation, with solutions given
by eqs. (10), with D and V interpreted as values within the element of interest.

Figure 1 illustrates numerical results for nodal values of both function and
derivative. Solutions are plotted for both the approach outlined above, using

1,0
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0.6-
( X

A) -0.4

<~
0.2

0

-1.4

FIG. I. Solutions to equation (II) using C-I OTF (0) and Hermite collocation «(!).
Arrows indicate direction of the nodal gradients. Solid line corresponds to the exact
solution.
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piecewise constant approximations for the variable coefficient, and for an or-
thogonal collocation solution based on a piecewise cubic Hermite polynomial
trial space. This collocation solution also yields approximations for both func-
tion and derivative at the nodes. The dramatic superiority of the new approach
provides motivation to proceed to the solution of transient problems.

TRANSIENT PROBLEMS

To develop the approximation for transient, one-dimensional transport equa-
tions, let us consider the model advective-diffusive transport equation,

au au a2u-+ v- -D- = 0, 0 .5 X .5 t' t > 0 (12)
at ax ax2

subject to suitable initial and boundary conditions. Several approaches to this
multi-dimensional (space-time) problem can be proposed. The first is to extend
the methodology of the previous section directly to the space-time domain.
Thus a set of test functions {Wk(X, t)} would be generated by solving the homo-
geneous adjoint equation, ;£*Wk = O. This eliminates interior integration, and
concentrates information at element boundaries. However, in this case element
boundaries are line segments of nonzero length, as opposed to the boundaries in
the ordinary differential equation case, which are simply node points. These
lin~ integrals must be evaluated, and an appropriate finite set of dependent vari-
ables needs to be identified. Furthermore, the homogeneous adjoint equation
now possesses an infinite number of solutions. Choice of an appropriate finite
subset of these solutions to use as test functions is difficult.

A second possibility is to use a semi-discretization approach, wherein the nu-
merical procedure outlined previously is applied in the spatial dimension only.
This ultimately produces a semi-discrete set of ordinary differential equations in
time, which can be solved using standard time marching algorithms. This latter
approach is taken herein, and an outline of its development follows. Several
comments pertinent to the full multi-dimensional treatment are presented in the
Discussion section of this paper.

To semi-discretize eq. (12), let the equation fIrst be rewritten as
:.2 ~

co uu
.;Lu=D---x

au= --f(x,t)
ax at

where operator ;£x refers to the spatial derivatives of eq. (12). Let the weak
form analogous to eq. (3) be written,

i e( a2u au) i e (au )D~ -v- w(x)dx = --f(x,t) w(x)dx (14)
0 ax ax 0 at

Under the assumption that u E (:;1[0, f], wE (:;-1[0, f], the left side of
eq. (14) can be written as a sum of elementwise integrations, exactly as eq. (4).
Application of integration by parts twice to each element integration then leads
to an equation analogous to eq. (5), viz.,

(13)
dXZ

au~v-
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it " ( ax
f x'+1

} (15) + x: (;;£:w)udx

Choice of w(x) such that ;;£:w = 0, and appropriate accounting of discontinu-
ities in w(x), makes eq. (15) equivalent to the following.i t( a2u au

) E-I {[[ dw --
D~ -v- -w(x)dx = L D- -~-,

0 ax ax j=O dx
-I _dw

dw ] Xj+l

-D-u -Vwu
dx x

J

D iJ2U

~
au-v-

JUj -[[Dw]lj ~j}) au ] l -Vw u + (Dw)- (

ax 0

-+ Vw

+ -D-:-
dx

E au
= "\:' A.u. + B.- ].

:,-,JJ J~ xJ=O a

Equation (16) uses the fact that ':£:w = 0 to eliminate all interior integrals. Test
functions that conform to this condition are identical to those of eqs. (9) and
(10), since the spatial operator is unchanged by the addition of transience.
Equation (16) also reflects the fact that all variables in the equation are known
except the nodal values {Uj, (au/ax)j}J=o. Coefficients Aj,Bj are known scalars.

The key to numerical solution of transient problems is effective treatment of
the temporal derivative that appears on the right side of eq. (13). Examination
of eq. (13) indicates that a spatial integration of the product of au/at(x, t) and
w(x) must be evaluated. To evaluate this integral, the temporal derivative au/at
is approximated using a polynomial expansion that involves the nodal values
appearing in eq. (16). Given that both function and derivative appear as nodal
values, the natural choice for polynomial interpolator is a piecewise cubic Her-
mite polynomial. Such an interpolator has the form

au au E au
-;- (x, t) = -;- (x, t) = }: Uj(t)~Oj(x) + -;- j(t)~lj(X) (17)
at at j=O oX

In eq. (17), {Uj, (aU / ax)j}J=o are time-dependent nodal values of function and
spatial derivative, while cPOj, ~lj are standard piecewise cubic Hermite polyno-
mials (see, for example, Carey and Oden [4], pp. 63-65). Substitution of ex-
pansion (17) int(j the integral of interest yields

r ()u E d (t
Jo -a; (x, t)w(x)dx = ~ dt [Uj(t)]Jo ~Oj(x)w(x)dx

d [ aU ] (t (18a)
+ dt -;i; j(t) Jo ~Ij(x)w(x) dx

Given that ~Oj(X)' ~Ij(x), and w(x) are each well defined and known functions,
the spatial integrals of eq. (18a) can be evaluated directly. Thus eq. (18a) repre-
sents a linear combination of known scalar coefficients and time derivatives of
unknown, time:-dependent coefficients, viz.,
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Of,

V" + f"+9--(~)G + OH" .U"+1 = (~
) G -(1 -O)H

~t ~ ~ -~t ~ ~

where 0 is a time weighting parameter, usually taken as 0 :5 0 :5 1. Imposition
of the initial condition, and subsequent marching through time, yields the dis-
crete approximation of interest.

CHOICE OF TEST FUNCTIONS

There are several important and distinguishing features of the numerical pro-
cedure and, in particular, the choice of test functions. The method itself is dis-
tinct in its nontraditional choice of test functions as well as the absence of a
trial function. This latter fact clearly distinguishes this method from traditional
finite element or Petrov-Galerkin techniques.

Figure 2 shows typical (;-1 test functions defined by eqs. (10). Examination
of the function definitions shows the following behavior. When (V /D) is small,
diffusion dominates and the test functions approach piecewise linear. As such,
they become analogous to standard "hat" functions of finite elements; however,
in the present case the functions are fully discontinuous and are thus not
equivalent to hat functions. As advection becomes progressively dominant, the
test func1;ions become increasingly skewed in the upstream direction. A sort of
upstream weighting is inherent in the functions. The degree of upstreaming is
automatically set by the requirement that test functions satisfy the homogeneous

bquations (18), (16), and (14) can be combined to produce the semi-discretized
equation of interest.

E d d (aU ) au i f L CXj-d (Uj) + (Jj-d -j + AjUj + Bj- j = -f<x,t)w(x)dx (19)

j=O t t ax ax 0

Equation (19) is written for each of the 2E choices of w(x) given in eqs. (10).
The two boundary conditions required for the second order equation .( 13) pro-
vide two additional equations, so that 2E + 2 equations result for the 2£ + 2
nodal unknowns. The semi-discrete system is thus

dUG .-= + H .U = F (20)
~ dt ~ --

where matrix Q contains the coefficients CXj' {Jj, !.! is composed of coefficients
Aj, Bj, and f contains the forcing function terms and boundary condition infor-
mation. Equation (20) can be solved by any standard time integrator. For ex-
ample, a variably weighted Euler approximation produces,

Un+1 UnG + H . [fJun + I + (1 -(J)U~ = Fn+8 (21a)
~ ~t ~ --J -
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FIGURE 2 C: DISCONTINUOUS TEST FUNCTIONS
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FIG. 2. Test functions used for (A) C-1 Optimal Test Function method, (B) CO Optimal
Test Function method, and (C) Petrov-Galerkin formulation of Hughes and coworkers.
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where rj(x) are standard piecewise Lagrange polynomials (see Carey and Oden
[4], pp. 38-41). Spatial integrations proceed directly, and, ultimately, a semi-
discrete system results. The unknown vector of eqs. (21), !,l(t), now involves
only nodal function values. Further discussion of computational details is pro-
vided in the Numerical Results section, where both Co and C~I test functions
are used to calculate results.

It is also insightful to compare the test function of Figure 2b to the test func-
tion used by Hughes and co-workers (Brooks and Hughes [3]). The Hughes
method is a Petrov-Galerkin formulation for which test functions are chosen to
be perturbations of the standard Galerkin functions, viz.,

adjoint equation. No arbitrary parameters appear in the test function definition
(as opposed to many upstream methods), and the amount of upstreaming varies
continuously with the coefficients of the governing differential equation.

Because the test functions chosen are precisely those required to analytically
concentrate information at node points [see eqs. (5) and (6) or (15) and (16)],
and because these functions inherently accommodate varying degrees of advec-
tion domination, they can be viewed as possessing an optimality property. We
refer to this numerical procedure as an Optimal Test Function method.

The development outlined above is for the case of w(x) being fully discon-
tinuous at interior nodes. As discussed in detail by Herrera et al. [14], other
continuity conditions can be imposed on w(x) to produce different approxima-
tions. For example, consider choice of w(x) such that the function is required to
be continuous at all points in [0, t']. In this case, several modifications pertain
to the development presented above, although the overall procedure is analo-
gous. First, since w(x) E Co[O, t'], [[w))x- = 0 for all j. Therefore coefficients

JBj in eq. (7) are zero forj = 1,2,...,E -1 (Bo,BE remain to accommodate
second and third type boundary conditions). This eliminates nodal derivative
unknowns from the resulting algebraic equations. Nodal function values are the
only unknowns.

Imposition of Co continuity constraints on w(x) does not change the fun-
damental solutions of eq. (10), but now solutions in adjacent elements are no
longer independent. In particular, the continuity constraint w(x) E Co[O, t'] re-
quires w~(x) and W~+I(x) to merge to form one independent function. Thus
E + 1 independent test functions are available to solve for function nodal val-
ues. Imposition of boundary conditions parallels that of standard finite ele-
ments: fIrst type conditions are imposed directly and no approximating equation
is written at that node, while second or third type conditions are imposed in the
context of the approximating equation for the boundary node. A typical CO test
function is illustrated in Figure 2b.

A final point regarding Co test functions is treatment of temporal derivatives.
Since nodal values of spatial derivatives no longer appear in eq. (16), the Her-
mite expansion of eq. (17) is replaced by a piecewise Lagrange polynomial ex-
pansion. This takes the form
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dw
w(x) = w(x) + '1TV- (23)

dx

where w(x) is the standard Galerkin test functidn (for example, piecewise lin-
ear), V is velocity, and 1T is a free parameter. Hughes gives a criterion for "opti-
mal" choice of 1T, based on results of Christie et al. [6]. This latter reference
derived a procedure that yields exact nodal values for the one-dimensional,
steaqy-state, constant coefficient, nonreactive, homogeneous advective-
diffusive transport equation. (A similar result was originally presented by Allen
and Southwell [1]). A typical test function, w(x) of eq. (23), is illustrated in
Figure 2c. Based on the definition of optimality discussed in the Introduction,
these test functions must be considered optimal for the one-dimensional,
steady-state, constant coefficient, nonreactive, homogeneous transport equation.

HQwever, the functions of eq. (23) do not yield exact nodal values when the
equation is nonhomogeneous, when any other terms are present in the govern-
ing equation (for example, a fIrst-order reaction term), or when the coefficients
of the equation are spatially variable. This is to be compared to our Optimal
Test Function method, which yields exact nodal values when the equation is
nonhomogeneous and when reaction terms are present. We have the option to
obtaip only nodal function values or both function and derivative values at the
nodes. In addition, for the case of variable coefficients, procedures have been
developed (Celia and Herrera [5], Herrera [15]) to obtain nodal values to any
desired order of accuracy. As such, OTF maintains optimality properties over a
broad class of equations. The reason is that the test functions are based on the
adjoint equation, which reflects all terms that are present in the governing dif-
ferential operator. The test functions thus incorporate all relevant information
for any given operator, not just homogeneous advection-diffusion.

NUMERICAL RESULTS

Two test problem results are presented to demonstrate the performance of the
propqsed method. The C-1 formulation using Hermite polynomials and the CO
formulation using quadratic Lagrange polynomials are implemented. Results
are compared to other weighted residual methods. The governing equation that

is solved is eq. (12).
In computing the integrals associated with the temporal derivative [see

eqs. (18) and (22)], use is made of the fact that each test function w(x) is
nonzero over only one (in the c-1 case) or two (the CO case) elements. As
such, the only integrals calculated are those for which both w(x) and the inter-
pqlating functions (I/>Oj, 1/>1j for the Hermite case, rj for the Lagrange case) have
intersecting nonzero regions. When calculating solutions for the Co quadratic
case, a unique quadratic Lagrange polynomial is defined based on the three
nodes that define the span of the given test function w(x). This means that the
quadratic pqlynomial changes with different test functions. The procedure es-
sentially uses a "sliding template" to define the relevant quadratic polynomial.
This differs from standard quadratic finite element interpolation, which defines
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fixed quadratic (three node) elements, with interpolation independent of test
function.

Propagation of an initial step discontinuity

This example problem uses the following initial and boundary conditions:
u(x,O) = 0, 0:5 x:5 i, u(O,t) = 1, t> 0, u(i,t) = 0, t> 0, and the right
boundary is maintained sufficiently far downstream to not influence the solu-
tion. Parameters of interest are chosen as V = 1, D = 0.0002, ~x = 0.02,
~t = 0.01, leading to Courant and element Peclet numbers of Cu = 0.5 and
Pe = V ~x/D = 100, respectively. For time integration, a Crank Nicolson
method [6 = 0.5 in eq. (21)] is chosen. Results for this problem are shown in
Figure 3a-e. In each plot, the analytical solution is given as solid line and the
numerical solution by dashed line. Figure 3a and c show simulations using the

FIGURE 3A: aOTF
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FIG. 3. Numerical results for propagation of an initial step discontinuity using (A) Qua-
dratic (Co) Optimal Test Function method (QOTF), (B) Streamline Upwind Petrov
Galerkin (SUPG), (C) Hermite (C-1 Optimal Test Function Method (HOTF), (D) Her-
mite collocation (HCOL), and (E) Linear Finite Elements (LFEM).
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FIGURE 3C: HOTF
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FIGURE 3E: LFEM
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OTF procedure developed herein. Figure 3a corresponds to Co test functions
with quadratic interpolation (denoted by QOTF), while Figure 3c corresponds
to C-1 test functions and Hermite interpolation (denoted HOTF). The QOTF
method performs very well, producing a solution that is very similar to that
produced by the streamline-upwind Petrov-Galerkin (SUPG) method of Brooks
and Hughes [17], shown in Figure 3b. The HOTF method is slightly oscillatory,
but shows improvement over standard Hermite orthogonal collocation (HCOL),
shown in Figure 3d. For comparison purposes, Figure 3e displays a traditional
Galerkin solution using piecewise linear trial and test functions (LFEM).

Propagation of a Gauss Hill

This example has as the initial condition a Gaussian distribution centered at
Xo with standard deviation 0", viz., u(x,O) = exp{ -(x -XO)2 /~}. Homogeneous
Dirichlet boundary conditions are used. Relevant parameters are Xo = 0.25,
0" = 0.0333, V = 1.0, D = 0.00002, I1x = 0.02, ~t = 0.01, so that Pe =
1000, Cu = 0.5. The chosen values produce a narrow initial distribution that
spans only seven elements. Results for QOTF and HOTF are displayed in Fig-
ure 4a and c. QOTF is slightly diffusive and, again, very close to SUPG (Fig-
ure 4b). HOTF performs very well for this case. Notice that the peak in the
,HOTF numerical solution is lost by linear interpolation of nodal function values
inherent in the graphics package used, not by excessive numerical diffusion. The
HCOL results (Figure 4d) also performs relatively well for this case. A tradi-
tional LFEM solution, which is quite dispersive, is shown in Figure 4e. In
addition, a fully upwinded finite difference (UFD) solution is displayed in Fig-
ure 4f for comparison. This figure demonstrates the very poor performance of
traditional upstream finite difference methods.

FIGURE 4A:QOTF
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FIG. 4. Numerical results for propagation of a Gauss hill. Plots (A) to (E) correspond
to methods of Figure 3; plot (F) is upstream finite difference method.
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FIGURE 48: SUPG
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FIGURE 4E: LFEM
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FIGURE 4F: UFD
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Effect of time weighting parameter 8

Choice of time weighting parameter 0 greater than 0.5 introduces artificial
diffusion in the numerical solution. This can be observed for both QOTF and
HOTF, as illustrated in Figures 5a and b. Use of 0 = 0.6 results in slightly dif-
fusive but nonoscillatory solutions. Behaviors of SUPG and HCOL are analo-
gous to those of QOTF and HOTF, respectively.

Effect of Courant number

Figures 6 and 7 demonstrate the effect of Courant number on the predictive
capabilities of QOTF and HOTF. Use of Cu = 0.25 does not appear to have
significant effect on QOTF solutions (Figures 6a and 7a). When Cu == 0.83,
QOTF solutions show some deterioration but again changes are not dramatic
(Figures 6c and 7c). Sensitivity of SUPG to Courant number is analogous to
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FIGURE SA: aOTF e = 0.6

0
::)"-
::)

X/L
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Effect of time weighting parameter (8) on OTF solutions. Results are for

that of QOTF. HOTF solutions are much more sensitive to Courant number.
Figures 6b and 7b show dramatic improvements in HOTF solutions when
Cu = 0.25 is used. The Gaussian hill is practically exact, while the steep front
simulation is excellent (a shift of approximately one-half grid step occurs in this
latter case due to Hermite interpolation of the step initial condition). On the
other hand, use of Cu = 0.83 results in significant deterioration in HOTF solu-
tions (Figures 6d and 7d). HCOL behaves in a similar way.

DISCUSSION AND FUTURE DIRECTIONS

Results presented herein for the case of one-dimensional, transient, nonreac-
tive advective-diffusive transport show that Optimal Test Function solutions are
at least as good as those from the best available interior methods. These results
represent our initial efforts to apply OTF to transient problems. While our re-
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FIGURE 6A: aOTF, Cu = 0.25
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FIG. 6. Effect of Courant number on OTF solutions for the propagation of an initial
step discontinuity.
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FIGURE 6D: HOTF, Cu = 0.83
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suIts are similar to those of, for example, optimal Petrov-Galerkin formulations
(equivalent to Hughes' method), we believe that our method offers advantages
in its generality and its systematic and mathematically rigorous underpinnings.
This provides a fmn foundation on which extensions to higher dimensions can
be built, and from which improvements can be formulated.

There are currently two directions that we ¥e pursuing in seeking advance-
ments and improvements in the methodology. The fIrst is improved treatment
of temporal discretization, and the second is extension to multiple spatial dimen-
sions. Improvements in temporal treatment is focusing on choosing space-time
test functions that satisfy the homogeneous space-time adjoint operator while
effectively incorporating the fIrst order hyperbolic (characteristic) behavior of

FIGURE 7A: aOTF, Cu = 0.25
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FIG.7.
hill.

Effect of Courant number on OTF solutions for the propagation of a Gauss
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FIGURE 78: HOTF, Cu = 0.25
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FIGURE 7D: HOTF, Cu = 0.83
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the governing equation. This approach is not based on a semi-discretization and
differs from the approach presented herein in fundamental ways, although the
overall philosophy is the same.

Several methodologies for multiple spatial dimensions are currently under in-
vestigation. One such method uses tensor products of one-dimensional test
functions [eqs. {IO)] to form appropriate two-dimensional test functions. For
two dimensions, elementwise integration, and subsequent integration by parts,
leads to line integrals along element boundaries. If the Laplace equation is con-
sidered as an example, and Co test functions are used, it is a straightforward
calculation to show that different nodal interpolation schemes along element
boundaries lead to different approximations. Piecewise constant approxima-
tions, in the context of element boundary integrations, produces a standard
five-point finite difference approximation; piecewise linear interpolation leads
to a standard nine-point (piecewise bilinear) finite element approximation;
piecewise quadratic interpolation leads to a nine-point scheme of significantly
enhanced accuracy. In fact, this latter nine point scheme is sixth order accurate.
Furtheimore, Collatz [7) has shown that higher order nine point schemes are im-
possible. Therefore, this OTF approximation leads to optimal accuracy in terms
of a best possible approximation. When advection is added to the governing
two-dimensional equation, the procedures remain invariant with the only
changes being in definition of test functions. We are currently investigating the
case of two-dimensional, advective-diffusive transport.

Overall, we feel that the methodology presented herein provides a new and
potentially powerful approach for developing numerical approximations to par-
tial differential equations in general and to transport equations in particular.

SUMMARY

The presentation introduces a new numerical method for solution of the one-
dimensional, transient advection diffusion transport equation. The procedure is
based on a weak form of the governing equation. Definition of test functions is
provided as part of the numerical algorithm. These test functions vary continu-
ously as the parameters of the governing equation change, thereby automatically
accommodating varying degrees of advection domination. The test functions
possess optimality properties, and we thus call the method an Optimal Test Func-
tion (OTF) method. Initial numerical results show excellent behavior of the
method over a wide range of grid Peclet numbers.

This work was supported in part by the Sloan-Cabot research funds of Mff
under grant 26950 as well as Project Athena of Mff under grant 24728. The
work was also supported by CONOCYT of Mexico.
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