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A new numerical solution procedure is presented for simulation of reactive transport in porous
media. The new procedure, which is referred to as an optimal test function (OTF) method, is
formulated so that it systematically adapts to the changing character of the governing partial
differential equation. Relative importance of diffusion, advection, and reaction are directly incorpo-
rated into the numerical approximation by judicious choice of the test, or weight, function that appears
in the weak form of the equation. Specific algorithms are presented to solve a general class of
nonlinear, multispecies transport equations. This includes a variety of models of subsurface contam-
inant transport with biodegradation.

The recent work of Herrera [1984, 1985a, b], Herrera et
al. [1985], and Celia et al. [1989a] provides a systematic
framework in which numerical solutions to general second-
order equations can be obtained. The procedure leads to
numerical approximations that automatically change as the
governing partial differential equation changes. This is
achieved by choosing test functions, which are present in a
weak form of the original governing equation, to satisfy
specific, rigorously derived criteria. No arbitrary parameters
are involved. It is the purpose of this paper to develop a
solution algorithm, based on this procedure, for systems of
advective-ditIusive-reactive transport equations. In a com-
panion paper [Kindred and Celia, this issue] the methodol-
ogy is applied to a specific model of transport in biologically
reactive porous media.

The presentation in this paper begins by exposing the
underlying numerical algorithm for the case of a single
advective-ditIusive-reactive transport equation with con-
stant coefficients. This allows the salient features of the
method to be explained in a simple mathematical setting.
The procedure is then extended to the case of spatially
variable coefficients, and finally to the case of multiple
equations that are coupled through nonlinear reaction terms.
Example calculations are presented to demonstrate the
numerical procedure and to provide a direct link to the
biodegradation model that is developed in the companion
paper [Kindred and Celia, this issue].

1. INTRODUCTION

A proper description of contaminant transport is impor-
tant in many aqueous systems. For subsurface flows, de-
scription of the flow physics must often be augmented by
chemical and/or biological considerations. This generally
leads to advective-di1Iusive-reactive transport equations.
When multiple species are present in the aqueous phase, the
governing equations form a set of partial differential equa-
tions that are coupled through reaction terms. These equa-
tions generally need to be solved numerically.

The transport equation is one for which numerical solution
procedures continue to exhibit significant limitations for
certain problems of physical interest. The most widely cited
example is the case of advection domination. In this case,
one is usually forced to choose between nonphysical oscil-
lations or excessive (numerical) diffusion. While a variety of
methods have been developed specifically for advection-
dominated flows [Leonard, 1979; Hughes and Brooks, 1982;
Tezduyar and Ganjoo, 1986; Baptista, 1987], only partial
success can be reported to date.

A key to providing reliable numerical simulations is rec-
ognition of the changing nature of the governing equation.
Diffusion domination implies behavior analogous to that
predicted by model parabolic partial differential equations;
advection domination implies behavior analogous to first-
order hyperbolic partial differential equations; and reaction
domination implies first-order ordinary differential equation
(in time) behavior. A numerical procedure that fails to
accommodate these disparate behaviors cannot be expected
to produce reliable numerical solutions.

f

NUMERICAL ALGORITHM-SINGLE SPECIES

TRANSPORT WITH CONSTANT COEFFICIENTS
Copyright 1989 by the American Geophysical Union.

Paper number 89WRO0271.
0043-1397/89/89WR-00271 $05 .00

The numerical development begins by examining a single
species, advective-difIusive-reactive transport equation
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The first key to the numerical procedure is application of
integration by parts twice to each term of the summation in
(4). For each element integration, the first integration by
parts produces

R au/at + v au/ax -D a2u/ax2 + Ku = f(x, t) (1)

O~x~L t>O

i~j+I(:£xU)W(X) dx

= (Xj+ I

JXj

a2u au )D -;;::z -V --Ku w dx =
ax ax

au
D-w- Vuw

ax

r

au dw dw )-D--+ Vu--Kuw dx
axdx dx

+ (XI + I I

JX} \ /

Application of an additional integration by parts then yields

L X}+I [ au dw (:£ u)w dx = D -w -Du --Vuw

x ax dx

x) -

+ (Xj+ I

JXj

dw

dx -KW)UdX

d2wDp+V

u(O, t) = go t > 0

au/ax(L, t) = gL t > 0

u(x, 0) = uo(x) 0 ~ x ~ L

defined over the finite spatial domain n = [0, L]. Any
boundary conditions can be accommodated in the numerical
algorithm; the conditions given above provide a typical
example. Nomenclature is such that R is a retardation
coefficient (dimensionless); V is fluid velocity (L/1); D is a
diffusion coefficient (L 2/1); K is a first-order reaction coeffi-
cient (1/1); f is a given forcing function; and u(x, t) is the
dependent scalar of interest, which in this case is a measure
of concentration of a dissolved substance. The forcing
function f(x, t) is a source/sink term that may include
reaction terms that are not dependent on the unknown
function u. To begin the numerical development, let the
coefficients R, V, D, and K be assumed constant. The
numerical procedure that is to be applied to (1) consists of
application of the algebraic theory of Herrera [1984, 1985a,
b] in space, thereby producing a semidiscrete system of
ordinary differential equations in time. This resulting set of
ordinary differential equations is then integrated in time
using standard methods.

Let (1) be rewritten in the form

:£xu = D a2u/ax2 -V au/ax -Ku = R au/at -f(x, t) (2)

where the operator :£x incorporates both the spatial deriva-
tives and the reaction term. The weak form of (2) is then
formed by multiplying the equation by a weight, or test,
function, w(x), and integrating over the domain [0, L]

-L

(D a2u/ax2 -V au/ax -Ku)w(x) dx

[ au dw ]XJ+l LXJ+' = D a; w -Du ~ -Vuw + (:;E~w)u dx (5)

XJ Xl

where :;Ex is the original spatial operator and :;E': is its formal
adjoint.

The second key to the numerical procedure is to recognize
that the original integral (on the left side) of (5) can be
replaced by nodal evaluations by choosing w(x) such that
:;E*xw = 0 within each [xi' xi+I]' That is to say, proper choice
of the test function w(x) effectively concentrates information
at node points and eliminates interior element integrations.
In addition, the concentration of information at node points
is accomplished in the absence of any trial function definition
(as would be the case in a standard finite element formula-
tion). Both the special choice of test function and the lack of
a trial function distinguish this numerical formulation from
standard finite element or Petrov-Galerkin methods.

Consider a choice of w(x) that satisfies :;E*xw = 0 within
each [xi' xi+I],j=O, 1, ..., £-1. Furthermore, allow w(x) the
ability to exhibit discontinuities at node points. Given such a
definition ofw(x), (4) and (5) can be combined and restated in
terms of known coefficients and unknown nodal values of the
dependent variable. In light of (5) and the fact that :;E*xw = 0,
(4) can be rewritten as

Eil (Xj'
j = 0 J x)

(:£xu)w dx

= iL(R au/at -f)w(x) dx (3)

Next, let the spatial domain [0, L] be subdivided into E
subintervals {[XO, XI]' [XI' X2]' ..., [XE-I' XE]}' with Xo = 0,
XE = L. These subintervals, or elements, are separated by
the E + 1 node points {XO, XI' ..., XE}' If the solution u is
assumed to be at least (:;1 continuous, u E (:;1[0, L](that is, u
and au/ax are continuous functions over Os X s L), and w(x)
is at least (:;-1 continuous, wE (:;-1 [0, L] (that is, J~ w(x')
dx' is a continuous function over 0 ~ X ~ L), then the
integral on the left side of (3) can be written equivalently as

iL(D a2u/axZ -V au/ax -Ku)w(x) dx

E-)

= L
j= )

au
UJ" -[[Dw ]1-;- j

} uX

dw
D ~ + Vw

£-1

= j~O i:j+l(D iJ2U/iJx2 -V iJu/iJx -Ku)w(x) dx (4)

+[(-D~

) au ]L -Vw u + Dw -(6)

ax 0

In (6), the double bracket denotes a jump operator, which is
defined by [[o]]x = lim.,--.o [(o)x+e-(o)x-e]. Since D, V, and

J J J

The equality (4), which introduces elementwise integration,
is permissible due to the continuity constraints on u and w.
The case of lower continuity on u has been treated by
Herrera [1984, 1985a, b]; for the present development, u E
1[1 will suffice. Also, let any discontinuities that occur in w(x)
be restricted to node points. Within each [Xp Xj+I]' it is
assumed that w(x) E 1[2.
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ware are all known, the only unknowns in (6) are the 2£ +
2 nodal values {Uj, (iJu/iJx)j}.f~o' These nodal values corre-
spond to the function U and its spatial derivative. These
values are unique at each node by the continuity assumption
U E C1[O, L]. Equation (6) can be written more succinctly as
a simple linear combination of known coefficients and un-
known nodal values

boundary conditions, 2E+2linear algebraic equations result
for the 2E+2 nodal unknowns. Solution of this set of
equations produces exact nodal values, since no approxima-
tion has been introduced, and the set of test functions is T
complete [see Herrera, 1984]. Detailed algorithms for the
case of constant coefficient, ordinary differential equations
are presented by Herrera et al. [1985].

When au/at e~ 0, the time dimension must be included.
Examination of (3) indicates that a spatial integral of the
product of (au/at)(x,t) and w(x) must be evaluated. To
perform this integration, au/at is approximated using a
polynomial expansion that involves the nodal values appear-
ing in the expression on the right side of (6). The natural
choice for the approximation developed above is a piecewise
cubic Hermite polynomial interpolation in space, since this
involves nodal values of u and au/ax, namely,

i L E au
(:£xu)w dx = 2: Ajuj + Bj a;j (6')

0 j=O

For the operator :£x of (2), the formal adjoint operator is,,ccording 
to (5),

:£1 = Dd2/dx2 + Vd/dx K (7)

The homogeneous solutions corresponding to :£; are given
by E

iJu/iJt = iJu/iJt = L {Vj(t)c/Joj(x) + (iJ V/iJx)J{t) <P\j (x)} (10)
j=O

In (10), {Vi' (iJV/iJx)i}f~o are time-dependent nodal values of
function and spatial derivative, and <Poi, <P1j are standard
cubic Hermite polynomials (see, for example, Carey and
aden [1983, pp. 63-65]). Substitution of expansion (10) into
the integral of interest yields

'l'\(x) = exp [(a + /3)x] (8a)

'l'2(X) = exp [(a -/3)x] (8b)

where a = -VIW and /3 = (1/2D) (V2 + 4KD)I/2. Equations
(8a) and (8b) represent the two fundamental solutions of the
homogeneous adjoint equation. Any linear combination of
these solutions also satisfies the homogeneous adjoint equa-
tion. The computational procedure proposed herein uses as
test fullctions two nonzero solutions to ':£:W = 0 defined in

each element and formed as linear combinations of solutions
(8a) and (8b). These functions are defined such that they are
nonzero only within the element of interest, and zero in all
other elements. As such, each w(x) E (:-1[0, L]. For any
element e, defined by [xi' Xj+1]' the test functions are defined
by

d [ iJUj ] (L }+ di -;;:;- (1) Jo cf>ij(X)w(X) dx (11)

Given that cPoj{X), cPv{x), and w(x) are each well defined and
known functions, the integrals can be evaluated directly and
(11) can be written, with inclusion of the coefficient R, as

w1(x) = C11 exp [(a + f3)x) + C12 exp [(a -f3)x) (9a)

Xi<X<Xi+

R (II'wj(x) = 0 x < Xj X> Xj +

wz(X) = C21 exp [(a + f3)x] + C22 exp [(a -f3)x]

~)ax

(9b) Thus the resulting approximation that derives from (11), (6),
and (3) is

X'<X<Xj+

J

E { d d ( aUo) dUo}" ao-(U)+ ,B °- -1 -AoUo-Bo-1
L., :I dt J :/ dt ax :I J J axj=O

w~(x)=O X<Xj x>Xj+1

The constants CII, C12' C21' and C22, are chosen, for
convenience, to satisfy the conditions w~(x) = 1, W~(Xj+J =
0, W2(X) = 0, and W2(Xj+J = 1. Therefore CII = -exp
[-(a+ f3)xj-2f3(llx)]/{1-exp [-2f3(llx)]}, C 12 = exp
[-(a-f3)xj]/{l-exp [-2f3(llx)]}, C21 = -exp
[-(a-f3)xj+I-2f3x)/{1-exp [2f3(llx)]}, and C22 = exp
[-(a-f3)xj+J/{l-exp [2f3(1lx)]), with Ilx = Xj+I-Xj' Any
other linear combination of the fundamental solutions (8)
would be equally acceptable. Since there are E elements, 2E
equations are produced corresponding to the 2E linearly
independent test functions, {w~(x), W2(X)}:=I' The undeter-
mined nodal values that appear in (5) are the function u and
the spatial derivative au/ax, forming the set of 2E+2 un-
knowns {Uj, (au/ax)j}f~o' Two boundary conditions provide
the two additional equations needed to close the system.

For steady state conditions, au/at = 0 and (1) reduces to an
ordinary differential equation. After evaluation of the right
side forcing term I~x)w(x) dx and imposition of the two

=iL.
f(x, t)w(x) dx (12)

An equation of the form of(12) is written for each of the 2£
choices of w(x) given in (9). The two boundary conditions
required for the second-order equation (I) provide two
additional equations, so that 2£+2 equations result for the
2£+2 nodal values. This provides the semidiscrete system of
equations

P .dU/dt -Q .U = F (13)

where matrix P contains the ap f3j coefficients of (11), Q
contains the coefficients Aj, Bj of (6), and the vector U
contains nodal values of U and au/ax. The structure of the
coefficient matrices P and Q is exactly analogous to that of
standard cubic Hermite collocation. This structure is illus-
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p=

Fig. 

1. Typical five-diagonal matrix structure. Matrix P of (13) is shown. Matrix Q has the same structure. First and
last rows correspond to boundary conditions.

trated in Figure 1. Computational requirements for this
optimal test function (OTF) method are very similar to those
for Hermite collocation algorithms.

Equation (13) can be solved by any time integrator of
choice. A simple scheme is the variably weighted Euler
method.

p. (un+l-un)/llt-Q. [8Un+l+(1-8)un]=Fn+6
(14a)

= [(II Ilt)P+(l- 8)Q] .Un + Fn + 6

(14b)

or
[(l/~t)P-IJQ] .Un + I

where 8 is a weighting parameter, usually taken as 0 :5 8 :5
I. Imposition of the initial conditions and subsequent march-
ing through time yields the discrete approximation of inter-
est.

This development, for both steady state and transient
cases, requires the equation to be second order in space, that
is, D # O. If the equation is purely advective, then solution
of the homogeneous adjoint operator equation is no longer
given by (8), and the entire deyelopment must be reformu-
lated. This is consistent with the formal change from a
parabolic to a hyperbolic equation. While the procedure for
pure advection is analogous to that presented above, the
present formulation only considers the case of D # O.

A
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3. OPTIMAL TEST FUNCTIONS

The choice w(x) given by (9) derives from a rigorous and
exact mathematical treatment of the spatial operator in the
governing equation. The test functions reflect all of the
physical processes that are described by the governing
differential operator. Furthermore, the formulas of (9) indi-
cate that the test functions respond automatically to changes
in the coefficients D, Y, and K. Figure 2 illustrates three
different sets offunctions, one each for the cases of diffusion
domination, advection domination, and reaction domination.
When diffusion dominates, the functions approach piecewise
linear forms (analogous to finite element "hat" functions,
although the current functions are fully discontinuous).
Since diffusion is a symmetric process that has spatial
coupling, these functions are seen to correspond to the
dominant physical process. When advection dominates, the

Fig. 2. Typical test functions, plotted over one element for the
cases of (a) diffusion domination, (b) reaction domination, and (c)
advection domination.

functions exhibit an upstream bias. This corresponds to the
physically asymmetric process of advective transport. The
amount of the upstream bias, or "upstream weighting," is
directly related to the parameters of the governing equation
and involves no arbitrary parameters or coefficients. This is
in contrast to traditional upstream finite difference or finite
element methods, wherein the degree of up streaming is
generally related to an arbitrary parameter. Finally, when
reaction dominates, the functions are weighted toward the
nodes, and spatial coupling is diminished. This is consistent
with the spatial derivatives in the governing equation being
unimportant, and the point process (in space) of the first-
order reaction being dominant.

This automatic shifting of the test functions in accordance
with the physics inherent in the governing partial differential
equation implies a certain optimality of the test functions.
Examination of the equality of (5) reinforces the optimality
claim in the sense that the differential equation is written in
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terms of nodal values in a mathematically precise way.
Furthermore, optimal accuracy occurs for steady state equa-
tions in both one dimension (exact nodal solutions for
equation (1) when R = 0) and two dimensions (see Discus-
sion in section 8). The numerical algorithm presented above
is therefore referred to as an OTF method.

equation of the form of (1), where the coefficients are
functions of the unknown u, linearization involves evalua-
tion of the coefficients using previous (known) values of the
solution. These can be values of previous iterations or values
at previous time steps. In either case, the linearized govern-
ing equation is analogous to a variable coefficient problem.
Techniques discussed in the previous section therefore per-
tain.

Linearization can take one of several forms. For time
marching problems, nonlinear coefficients can be estimated
from solutions at previous time steps, allowing for solution
at the new time level exclusive of iteration. Conversely,
progressively improved solutions at the new time level can
be obtained through iterative solution procedures. These
iterative procedures include simple (Picard) iteration, New-
ton-Raphson iteration, and various modifications of each.
The linearization that is chosen herein for the case of
nonlinear reactive transport uses a noniterative time march-
ing algorithm coupled with a second-order projection tech-
nique for estimating the nonlinear coefficients. Estimates of
nonlinear coefficients are based on solutions at the previous
two time levels. For a time weighting parameter 8, as used in
(14), the appropriate projected value is given by

un+8=(1+8)un-8un-l (15)

This is a second-order (in time) estimate for Un+B. This very
simple linearization was chosen because of the relatively
mild nonlinearities and the very good numerical results that
were subsequently produced. As stated previously, applica-
tion of the optimal test function method is indifferent to the
linearization chosen; OTF is applicable to any linearization
procedure.

4. TREATMENT OF NONCONSTANT COEFFICIENTS

When the coefficients in (1) exhibit spatial variability, it is
generally not possible to exactly satisfy the homogeneous
adjoint equation, ~:w = O. In this case, an approximation

procedure is required to provide good estimates to w, so that
~:w = O.

Two approaches have been developed to treat the variable
coefficient case. The first, which is used herein, involves
replacement of the coefficients in (1) with piecewise La-
grange polynomials. The approximate coefficients have dif-
ferent polynomial definitions in each element and are gener-
ally discontinuous across element boundaries. The basic
idea is that with these approximate coefficients, the adjoint
equation is simply an ordinary differential equation with
polynomial coefficients. As such, two independent series
solutions can be developed for the homogeneous adjoint
equation using standard techniques (see, for example, Hilde-
brand [1976]). Celia and Herrera [1987] have shown that
through judicious choice of interpolation points within each
element, piecewise nth degree Lagrange interpolants can
provide O«l1xfn+2) accuracy in the numerical solution. The
arguments used to develop this theory are analogous to those
used to choose collocation point locations in the collocation
finite element method (see, for example, Prenter [1975]). The
interpolation points in the OTF method, and the collocation
points in the collocation finite element method, both turn out
to be the Gauss-Legendre integration points within each
element [Celia and Herrera, 1987]. An alternative approach
for developing test functions uses a local (elementwise)
collocation solution for the homogeneous adjoint equation.
This again yields two independent solutions for w(x) within
each element. Details of this local collocation procedure are
provided by Herrera [1987].

For the current treatment, consider approximation of the
coefficients by piecewise constants. That is, the coefficients
are constant within each element and can change from one
element to the next. Since ~:w = 0 within each element

separately, the adjoint equation in any element involves
constant coefficients. Therefore si~ple analytical solutions
can be obtained for the test functions. By the error estimate
cited above, this provides O«l1xf) accuracy in the approxi-
mation. If D(x), V(x), and K(x) are replaced by D(x), V(x),
and R(x), with overbarred quantities referring to piecewise
constant approximations, then the test functions remain as
defined in (9) with D, V, and K, interpreted to be the values
within the element of interest.

6. SETS OF COUPLED EQUATIONS-REACTIVE
TRANSPORT OF MULTIPLE SPECIES

Mathematical description of transport of multiple species
in flowing groundwater involves a set of coupled, advective-
diffusive-reactive transport equations. Depending on the
nature of both the flow system and the chemical or biological
reactions, different forms of equations pertain. Rubin [1983]
provided a detailed overview of various types of chemical
reactions and their concomitant mathematical descriptions.
Kindred and Celia [this issue], in a companion to this paper,
discuss biologically reactive media and its related mathemat-
ical description.

The set of transport equations chosen for the current
presentation has the following form:

2
iJc) iJc) iJ c)
at + V) ~ -D) -a?" + K)(c), ..., cN, XI, ...,XM)c)

= !i(CI, , CN,X\,

2aC2 aC2 a C2
-+ V 2 --D 2 ~ + K2(cI ...C N X Iat ax ax- ..,. ., XM)Cz

=fic ...,CN'Xi,...,XM) (16a)

~

2OCN OCN 0 CN
-+ VN--DN-;:-T+ KN(Ct,'
ot ox or

" CN, XI, ..., XM)CN

5. TREATMENT OF NONLINEAR EQUATIONS

When the governing partial differential equation is nonlin-
ear, some linearization technique must be applied to allow
for tractable numerical solution. This is true of any numer-
ical approximation, including the optimal test function
method. The linearization mayor may not involve iteration,
depending on the severity of the nonlinearity and the pref-
erence of the analyst.

For the optimal test function method, a linearization is
performed prior to derivation of the adjoint operator. For an = fN<c\, , CN,X\, ,XM)
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iJX\

iJt

+ 

G\(c\, , CN,X"

XM)X1

=F,(c" , CN,X\, ,XM)

(16b)

~ + GM(c\,
at CN,X\, XM)XM

= FM(c CN,X1, ,XM)

0 10 20 30 40 50 60 70 80 90 100

Distance

Fig. 3. Comparison of numerical solutions to analytical solu-
tions. Solid curves indicate OTF numerical solutions; symbols
indicate analytical solution values.

transport systems. A variety of problems related specifically to
biodegradation are solved in the companion paper [Kindred
and Celia, this issue] using the techniques developed herein.
Additional test problems for the specific case of advection
dominated, nonreactive transport are reported by Celia et al.
[1989a]. Bouloutas and Celia [1988] provide an in-depth nu-
merical analysis of a related OTF algorithm for nonreactive
transport of a single species.

In (16), Cl' CZ' ..., CN are measures of aqueous concentrations
of N dissolved species, each of which is hydrodynamically
transported and has the ability to react with other constituents.
The variables Xl, Xz, ..., XM are concentration measures of
reactive species that are stationary. This set of equations is
taken to generally correspond to various models of biodegra-
dation discussed by Kindred and Celia [this issue]. The present
objective is to describe the overall numerical algorithm pro-
posed to solve the set (16). Kindred and Celia [this issue]
provide derivation and physical motivation for the equation
forms as well as additional computational details.

The solution procedure adopted herein utilizes the optimal
test function concepts developed in the earlier sections of this
paper. To proceed from one time step to the next, a simple,
noniterative linearization is employed. Equation (15) is used to
provide required estimates of the solution for evaluation of the
nonlinear reaction coefficients and forcing functions. The pro-
jection is applied to each Ci' i= 1,2, ..., N, as well as each Xi,
i= 1, 2, ..., M. Let the projected values be denoted with an
asterisk. The linearized version of (16) is thus written

7.1. Comparison to Analytical Solutions

Equation (1), with constant coefficients, is solved for
several different combinations of the coefficients. Three
cases are considered: (1) R = I, K = 0; (2) R = 1, K = 0.01;
and (3) R = 2, K = 0.01. Each case uses V = 1.0, D = 0.2,
f(x,t) = 0.0, and 6x = 2.0, implying a grid Peclet number of
10. Initial conditions are fixed as uo(x) = 0, and boundary
conditions are go = 10, gL = o. Figure 3 shows numerical
results for each case, as well as the respective analytical
solutions. Agreement is excellent in each case. Numerical
mass balance errors are less than 1% for the first two
solutions and approximately 1.5% for the third solution.

, c~,xf,

xXt)Ci

= Ji(cf, cN,Xf,

(17a)

XXI)

ax/at + Gj(cf, CN,Xj,

XM)Xi

=Fj(cf,"',CN,Xf,"',XXI) (17b)

These equations are used to moye from the level n to n + 1.
Given known values c;*, XJ', each Kj, Gj,fj, and Fj are known
functions of space. These spatially variable coefficients are
next approximated by piecewise constants, with each coef-
ficient taken as constant within any element. Given these
piecewise constant values, the adjoint operator is obtained
for each element. Homogeneous solutions of the adjoint
equation are subsequently obtained and used as test function
in the optimal test function algorithm. Each transport equa-
tion has its own set of test functions, and each equation is
solved separately.

The equations for X,{X, t) have no spatial derivatives, imply-
ing no coupling in space. As such, these equations are solved
for each node in space, with no coupling between nodes.
Linearization is again based on the projection technique of(15).
Use of constant values of Gj and Fj over a time step, based on
the values c;, X;, allows (17b) to be solved analytically.

7.2. 

Two-Species Transport

A second example is presented that involves transport of
two species, coupled through the reaction terms. One sta-
tionary component is included, but it is assumed to be
temporally static. One physical analogy for this system is
transport of two substrates in the presence of a stationary
biological population. Dissolved species might be an organic
contaminant and dissolved oxygen, leading to an aerobic
biodegradation transport problem. Simulations that include
temporal dynamics of the stationary species are included in
the work by Kindred and Celia [this issue].

Governing equations for this system take the form

iJc)/iJt + V iJc)/iJx -D iJZclliJxZ + K)(c), XJc) = h(cz, Xu

iJc7/iJt +ViJc7/iJx -D iJzc7/iJxz + Kz(cz, XJcz =!z(c\, XJ
7. EXAMPLE CALCULATIONS

Several example calculations are presented to demonstrate
the viability of OTF methods for advective-diffusive-reactive
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Fig. 4.
DISTANCE (m)

Numerical solution of (18) and (19) using OTF. Solutions are plotted at time t = 68 days.

species 2. This error is not a consequence of the time
stepping algorithm, because the solution was insensitive to
time step reductions. Reduction of the space step Ax from 2
m to I m reduced the mass balance errors to less than 3% for
species I and less than 1 % for species 2. The actual solutions
for Ax = 2 and Ax = 1 are virtually indistinguishable at t =
68 days, with only a slight change evident at the interacting
concentration fronts (the fronts are displaced by approxi-
mately 1 m). This appears to be a consequence of the
piecewise constant approximation of the spatially variable
(nonlinear) reaction coefficient, which is a relatively poor
approximation in the vicinity of the sharp concentration
fronts. Implementation of the high-order spatial procedures
of Celia and Herrera [1987] or reduction of the space step (as
indicated above) will alleviate the mass balance discrepancy.
While the mass balance approaches unity as Ax decreases,
the numerical solutions for concentrations remain virtually
indistinguishable from those presented in Figure 4.

8.

DISCUSSION AND CONCLUSIONS

This paper presents a new numerical method for solution
of reactive transport problems. The technique derives fromjudicious 

mathematical manipulation of the weak form of the
governing equations. Special choice of the test functions,
based on solution of the homogeneous adjoint equation,
leads to an optimal approximation technique. The method
has the desirable property of automatic adjustment of the
approximation to accommodate varying degrees of diffusion,
advection, and reaction domination.

For one-dimensional, steady state problems (ordinary
differential equations with constant coefficients), the method
produces exact nodal values for the unknown function and,
if desired, its first derivative. Procedures of arbitrarily high
order, on fixed grids, have been developed for the case of
variable coefficients [Celia and Herrera, 1987; Herrera,
1987]. In addition, tensor product test functions applied to
the two-dimensional Laplace equation lead again to an
optimal approximation. This latter case can be shown to
produce a sixth"order approximation using only nine node
points [Celia et al., 1989b]. Collatz [1960] has shown that
this is the highest possible order of approximation for a nine
point approximation to the Laplace equation. The OTF
approach therefore appears to be a very promising numerical
method.

Specific functional forms for the nonlinear coefficients are
chosen, based on the analogy to biodegradation, as follows:

K1(CI, XJ = (V~xl/(Kl + cJ)81 (19a)

Kz(cz, XJ = (V~XI/(K~ + cz))az (19b)

II (cz, XJ = -KIZ(V;"xI/(K~+ cz))azcz = -KIZKzcz (19c)

h(cl,XJ= -KZI(V:nXI/(Kl + cJ)8lcl = -KZIK1cl (19d)

where physical interpretations are that V:" is the maximum
uptake rate for species i, K~, the half-saturation constant for
species i, Kij is the yield ratio coefficient for species i when
speciesj is limiting, and 8j is equal to 1 if species i is limiting
the reactions and zero otherwise. Species 1 and 2 are
assumed to react in a fixed ratio; this is reflected in the
coefficients Kij. Equations (18) allow either of the species to
be limiting. There is no bacterial growth in this equation (GI
= 0), so the stationary species has a fixed value X I. Deriva-

tion and discussion of these equations is provided in the
companion paper [Kindred and Celia, this issue].

Parameter values are assigned as follows: V:" = 1.0
days-I, i = 1, 2; K~ = 0.1 mg/L, i = 1,2; KI2 = 2.0, K21 =
0.5. Initial conditions are Cj(X, 0) = 3.0, C2(X, 0) = 0.0.
Imposed boundary conditions are CI(O, t) = 3.0, C2(0, t) =
10., iJCj/iJx (L, t) = iJC2/iJX (L, t) = 0, where L = 100 m. The
stationary species is fixed at XI = 0.2 mgiL. Flow parame-
ters are V = 1.0 rn/day and D = 0.2 m2/day. The system

described by these parameters corresponds to a step intro-
duction of species C2 at the left boundary. This propagates
into the domain by advection and diffusion. Its presence
instigates uptake of both species 1 and 2. Figure 4 shows
plots of concentration as a function of distance for time t =

68 days, for both species 1 and 2, calculated using the OTF
algorithm with grid spacing f).x = 2 m and time step ilt = 0.2

days. The reaction occurs until species I, which is limiting to
the left of the invading front, disappears, at which point
reaction ceases. To the right of the front, species 2 is
limiting, due to its initial concentration of zero. The grid
Peclet number for this example is 10. This small to interme-
diate value of Grid Peclet number is easily accommodated by
the OTF method. This example is expanded in the compan-
ion paper of Kindred and Celia [this issue] to include both
inhibited and uninhibited bacterial growth.

Mass balance errors for this two-species example were
approximately 5% for species 1 and approximately 3% for
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Current efforts are focusing on improved treatment of the
time domain as well as extensions to multiple spatial dimen-
sions. As indi~ated above, initial efforts in multiple dimen-
sions using tensor product test functions have produced very
encouraging results. We plan to extend these results to the
case of multidimensional reactive transport. We are also
investigating several formulations that apply the OTF con-
cept to the full space-time equation. The companion paper to
this one [Kindred and Celia, this issue] uses the OTF
simulator developed herein as a numerical tool to demon-
strate behavior of various biologically reactive subsurface
transport systems.
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