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INTRODUCTION
The difficulties arising in the application of numerical approximations to

advection-diffusion transport problems are weI1 known. The difficulties arise
because of the dual nature of the equation. When the transport is advection
dominated, the equation behaves as a first order equation. When the transport
is diffusion dominated, the equation behaves as a second order parabolic

equation.
Recently many workers have turned to Eulerian-Lagrangian methods

(ELM) in an attempt to satisfactorily capture both the second order parabolic
and first order nature of the equation (Baptista (1987), Glass and Rodi (1982),
Holly and Polatera (1984) and Neuman (1984»). The equation is solved in two
steps. In the first step, past information is carried along characteristics,
thereby decoupling the solution of the first order part of the equation from the
second order parabolic part. In the second step, the second order parabolic
problem is solved on a fixed grid.

The foI1owing method resembles an ELM in that information that is
required in the difference equations wiI1 be brought from the last time step by
tracking along characteristics. The advection-diffusion equation is written in
Lagrangian coordinates. It is then approximated by a central difference in
time and a least squares coI1ocation (LESCO) (Joos, 1986) discretization in
space. It is the coI1ocation point locations which are backward projected
along characteristics. A major difference between our approach and ELMs is
that no intermediate solution is computed. '

DEVELOPMENT
In a Lagrangian system, the one dimensional advection-diffusion tran

sport equation is written:

(1)~fl +LC(X,I)=O
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Rt is the residual associated with the k'" collocation point. When the colloca-
tion point comes from a location within the domain of the last time step, the
function and the operator of the last time step are simply evaluated from the
cubic approximating function of the last time step at that location.

When the flow line intersects the domain boundary, the evaluation of the
function and operator of the last time step is more complicated. If Ii is the
time of intersection and XB is the boundary coordinate, then 61 of Eq. (2)
becomes 'A-Ii, xi becomes XB and C(X;,IA-J becomes C(XB,li). The values
of C(xB,lj) and LC(XB;j) must be approximated. If the boundary condition is
of the first type, then C(XB,lj) is simply the boundary value at time Ij .The spa-
tial operator is approximated by:

LC (XB,li) = I3LC (Xt,IA) + (1-I3)LC (XB,IA-J (5)

where:

R- tj-t.-1
t'-~

Substitution of Eqs. (3) and (5) into Eq. (2) yields the error, Rt , associ-
ated with a collocation point that entered the domain during the last time step:

Rt =-t!::t: !a;(lo)cIJi(XV-~ +.S(l+I3)L{! a; (lo)cIJi (Xt)}

+ .S(l-I3)L{t a; (lo-UcIJj (XB) } (6)

I; never equals '0. but as it approaches '0. the formulation approaches fully
implicit. As I; approaches '0-1 the formulation approaches Crank Nicolson.

The sum of the squares of all of the errors, t , is:

t=k1R; (7)

where ncol is the number of collocation points.

To minimize the sum of the squares of the errors, the derivatives with
respect to the coefficients cxA') are set equal to zero:

at k ' aRt .
~ I =2 Rt~ 1 =0 ) = l,nbas (8)
uCXj\'O' = UUj\'o'

Combination of Eqs. (4), (6), and (8) yields the least squares collocation
set of equations:

{x: '.'r;Llclli (xuL 1 cIIj (Xi) }a;(t.) = kILlc11j(xu!L~j(X;)a;(t.-v (9)

for j = l,11ba5



12

The fonTl of the operators L1 and L2 varies depending on the 1000..ation of
the backward projected collocation point. When the collocation point comes
from within the domain of the last time step. the use of Eq. (4) yields:

L1 = -l,+.SL (9a)

L2= -l,-.SL (9b)

When the collocation point enters the domain from the first type boundary at
XB and at time Ii. then Eq. (6) yields:

L1 =-L+.S(J+IJ)L (Q~)lA-I.

C(XB.4)':t;'Lz4>;(xi) a(/.-I) = I. -I; -.5(]-P)%'Lc2>;~B)a;(/'-I) (9d)

Cubic Hermites allow the specification of both the function and the first
derivative at each node. Consequently, boundary conditions of both the first
and second type are directly enforced in the matrix equations. The initial con-
ditions are imposed by least squares fitting the cubic hermites to the initial
values of concentration at the collocation points.

In summary, the computations required for each time step are:
I. Choose the collocation point locations ( Xt, ) of the time step to be com-

puted.
2. Back project the collocation point locations to the last time step (i.e., com-
pute xi ).
3. Compute the coefficient matrix and the right hand side vector using Eq.
(9).
4. Solve the matrix equation for a;(/.) .
5. Compute the new set of CI continuous cubic polynomials that approximate
the solution at the present time step by summing over all of the base functions
in each element.

RESULTS
The results of two simulations are presented in Figures 1 and 2. In both

cases velocity = .5, time increments = 192, total time steps = 50, element
lengths = 200 and there are 8 collocation points per element. The Courant
number is 0.48. Analytic solutions are solid lines and LESCO computed solu-
tions are dash-double dot lines. The oscillatory Galerkin finite element solu-
tions are shown as dash-dot lines. The Galerkin solution used Lagrange qua-
dratic basis functions with element lengths of 200 and node spacing of 100.

In Figure 1, the diffusion coefficient is zero (the pure advection case)
and a gaussian plume of standard deviation 264 was used as the initial condi-
tion. The right boundary has a zero concentration, and the left boundary a
zero derivative. The analytic and LESCO computed solutions are coincident.
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.In Figure 2, a concentration front is propagated from the left boundary.
The initial condition was zero concentration. The left boundary concentration
is one, and the right boundary derivative is zero. The diffusion coefficient is
one, and the grid Peclet number is 100. The analytic and LESCO computed
solutions are essentially coincident.

CONCLUSION
Excellent results have been obtained using the total derivative and

LESCO to solve the advection-diffusion transport equation. As can be seen
from the two examples, the method works well in advection dominated tran-
sport. This is partially due to having eliminated the first order hyperbolic
term that dominate~ when the Peclet number is large. In addition, numerical
test results, not presented here, have demonstrated that the LESCO formula-
tion reproduces the higher spatial frequencies in the con~entration fronts in a
superior way. As the velocity decreases, the equations reduce to the Eulerian
equations for diffusion, so the procedure works well for diffusion dominated
transport as well. Given the promising early results, the method deserves
further investigation.
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