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Numerical solution of the advective-dispersive transport equation is difficult when ad-
vection dominates. Difficulties arise because of the first-order spatial derivatives which
can be eliminated by a local coordinate transformation to the characteristic lines of the
first order hyperbolic portion of the equation. The resulting differential equation is dis-
cretized using a finite difference in time and finite elements in space employing cubic
Hermite basis functions. The residuals at individual collocation points arc then com-
puted. The sum of the squares of the residuals is minimized to form the necessary set of
algebraic equations. The method has performed well in one-dimensional test problems.

INTRODUCTION

The difficulties arising in the application of numerical approximations to
advective-dispersive transport problems are well known and can be attributed to
the dual nature of the equation. When transport is advection dominated, the
equation behaves as a first-order hyperbolic equation. When transport is disper-
sion  dominated, it behaves as a second-order parabolic equation. Since many
practical problems. such as estuary studies, have transport conditions that vary
greatly in time and space, a numerical method should be able to function well
in transport conditions that vary from advection {o dispersion-dominated.

Central difference methods and symmetrically weighted finite-element
schemes are well suited to the purely parabolic problem. However, when ap-
plied to the first order-term associated wilh advection, numerical oscillations
develop when advection dominates. Much rescarch has been devoted to elimi-
nating the oscillations without introducing artificial numerical diffusion.

In a Lagrangian coordinate system, the first-order term associated with advec-
tion does not cxist. Several workers (Varoglu [22], Varoglu and Finn {23, 24},
ONeill and Lynch {19]) have achieved good results using Lagrangian schemes.
However, the disadvantages of using a deforming grid system such as currently
uscd in Lagrangian methods, seem to preclude the general use of the method.
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Eulerian-Lagrangian methods were developed to take advantage of the attrac-
tive properties of the Lagrangian coordinate system while avoiding the disad-
vantages of a deforming coordinate system. The methods are implemented in
two steps. The first step solves the first-order hyperbolic problem by the method
of characteristics. This creates an intermediate solution that accomodates
advection. A second step uses the intermediate solution to solve a parabolic
problem associated with diffusion. Several approaches have been reported
{1,2,4,6,7,9,10, 14,17, 18,21]. Encouraging results have been obtained,
suggesting that further investigation of this general stratcgy is warranted.

Least squares collocation (LESCO) can be considered a finite element method.
The domain of interest is divided into elements over which a trial function ap-
proximates the scalar field. A residual statement of the differential cquation is
formulated. The residual is then evalualed at a discrete set of locations called
~ collocation points. The coefficicnts associated with the basis functions arc com-
puted by minimizing the sum of the squares of the collocation point residuals.

Scveral workers have investigated the usc of least squares collocation to solve
partial differential equations [3,5,8. 11, I3, 15, 20], but the method has not be-
come generally popular. Although conceptually simple, the method scems to
require more compuational effort than other standard methods. As an cxample,
simple test problems that compare the solutions of one-dimensional parabolic
PDEs indicate that equivalent accuracy is obtaincd by LESCO using cubic Her-
mite basis functions and Galerkin finite elements using a Lagrangian quadratic
basis. The resulting matrices for the two methods have equal rank, bui the
LESCO matrix bandwidth is seven compared to five for the Galerkin finite-
element method. In addition, LESCO requires higher order continuity basis
functions and more work in the matrix assembly.

However, LESCO is particularly well suited for solving problems that re-
quire coordinate transformations or tracking. Being a collocation method, it is
possible to sequentially track and evaluate each point individually over a single
time step, and then start the next time step with a new sct of collocation points.
Hence, deforming coordinate systems and continuous particle tracking arc
avoided. The resulting approach can be thought of as combining an Lulerian-
Lagrangian method with LESCO, and we will call the method ELLLESCO. We
will demonstrate that ELLESCO accurately sol'vgs the first-order hyperbolic
problem. This step has been described as the main source of error in fractional
step or Eulerian-Lagrangian methods (ELM) |2,9, 12].

In ELLESCO, spatial coordinates are transformed to the characteristics of the
first-order hyperbolic portion of the equation, and the first-order term does not
explicitly appear in the transformed system. Information at the base of the col-
location point characteristic is used in computing the residual associated with
that collocation point. Despite these similarities, ELLESCO is different {rom
the Eulerian-Lagrangian methods described earlier. Although information is
brought from the previous time level along characteristics, an intermediate so-
Jution is not required or computed. ELLESCO is also casily formulated as a
central difference approximation in time. as opposed to the backward dilference
used by most ELMs. It is worth noting that the characteristic that is computed
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includes all of the first-order terms, such as thosc that may arise from a spa-
tially varying dispersion coefficient.

PROBLEM STATEMENT

The general form of the parabolic pantial differential equation with one spa-
tial dimension is

2
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where U(x, 1) is an unknown scalar field. The boundary conditions can be written
GU(x,1) = a(x,1) X =X, (2)

where G, = boundary operator, a(x, ) = specified boundary value, x, =
boundary, and ! = boundary index, which can be used to specify different con-
ditions at the ends of the domain.

COORDINATE SYSTEM TRANSFORMATION

A coordinate system transformation can be used to eliminate the troublesome
first-order term from eq. (1). The appropriate transformation can be found by
solving for the characteristics of the first-order equation

oU(x,1) + A(x',)auf.r.l) -0 3)
ar . O0x

The resulting characteristic equations lead to the transformation cquations from
{(x, 1) space to (£, 7) space, that is

df = dx — Alx,1)d! (4a)
T=1. (4b)

The coordinate system transformation defined by eqs. (4a,b) allows the
transformation of the partial derivatives of eq. (1) into (¢, 7) space:
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The combination of egs. (1). (4), and (5) yields the partial differential cqua-
tion in the (£, 7) system:
au(¢, 1)
o7
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+ Cl&. 1UE.7) + D(E.7) = 0. (6)
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Not only has the first order term been climinated in the transformed coordi-
nate system, but also £ is a constant along the characleristics ol eq. (3) (i.e..
when dx — A(x,t)dr = 0), and the partial derivatives with respect to the spa-
tial coordinate are invariant under the coordinate sysicm transformation.

FINITE DIFFERENCE IN TIME

Equation (6) can be modificd using the following finite difference approxi-
mation in time:

U, 1) — ULE.T,.,) QU T,)
A + ®B(§._r,,)———~—-a£: +

OC(, T U, 7)) + OD(E,7,) +
QU 7,.) +

afl’
(1 - 0)C¢, 7, U, 7,.) + (1 = O)DE,7,-)) = 0.

If © = 1/2, the partial derivative with respect to time is a central difference.,
As noted above, a line of constant € corresponds to a characteristic line of eq.
(3) in the (x, t) plane (Figure 1). The starting point of the characteristics is arbi-
trary, so, for convenience, we choose { = xat 7, = ¢,.

The spatial coordinate in (x, ) space which corresponds to £ at the «,_, time
level is defined as x*. Or equivalently, x* is the spatial coordinate at the time
t,., of the characteristic which originated from (x,1,). and it can be computed

)]
(1 - 0)8(¢.7,-)

in-1y
x*=x+ I Alx,1)dr. (8)

In the examples that follow, the solution of eq. (8) is trivial, because A(x,r) is
constant. However, when A(x, ¢) is variable, some type of numerical integration
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FIG. 1. Spatial rclationship between the (£.7) and (x, 1) coordinate sysiems. Dashed
lines are the characteristics of eq. (3) and represent traces of constant £. Collocation

points are tracked along characleristics until they intersect the last time level or a domain
boundary.
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will be required, and, depending on the complexity of A(x, r) this may cause
some difficulties. Although this is an issue which must be addressed by all
ELMs, for the remainder of this paper an exact solution of eq. (8) is assumed.

Equations (Sb, ¢) demonstrate that the spatial derivatives are invariant under
the coordinate system transformation, and so we can replace the partial deriva-
tives with respect to £ with partial derivatives with respect to x, From the above
discussion, we see (£,7,) = (x,1,) and (£, 7,-,) transforms to (x*,s,_,). Hence,
eq. (7) can be rewritten

- - )
Ulx.1,) Ail(x Aay) + OB(x. '-)g“%(;‘;—"') + OC(.1,)U(x.1,) +

2 *
OD(x, 1) + (1 = 9)3(-""".-06—(1%—;-“_—‘_) +

(1 — @)C(x*, 1, YUK*,1,_,) + (1 — O)D(x*,1,.,) = 0. (9)

Eq. (1) is now approximated entirely in terms of the untransformed coordi-
nate system.

Recapitulating, we started with the general parabolic partial differential equa-
tion and rewrote it in terms of a transformed coordinate system, thereby elimi-
nating the troublesome first order term. We then formed a finite difference in time
approximation. We noted that lines of constant ¢ were simply the characteris-
tics of a first-order partial differential equation and that the partial derivatives
with respect to the spatial coordinate were invariant under the transformation,
This allowed us to write the difference equation in terms of the untransformed
coordinate system, and this is presented as eq. (9).

LEAST SQUARES COLLOCATION

LESCO uses least squares to minimize the residual errors of eq. (9) at a set
of discrete locations called collocation points. To compute the residuals, we
must specify the form of the trial function. Collocation procedures require trial
functions with C' continuity even at element boundaries. Cubic Hermites are
well known functions with this property (p. 67, Lapidus and Pinder [16]). Em-
ploying cubic Hermites, the scalar field is approximated by

L

Ux.1) = 3 a,(0)d,x) (10

i}
where

®;(x) = cubic Hermite basis functions (two per node),
a,(1) = coefficients of basis function i at time r (two per node). and
nbas = the number of basis functions.

The trial function is substituted into eq. (9) and is evaluated at each colloca-
tion point to form a residual. Similarly, the residuals associated with colloca-
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tion points on the boundary are computed by substituting the trial function into
eq. (2). The residuals are squared and summed, that is,

acol nb
e =2 wR;+ D wR} (1)
A=t l=

where R, = residual associated with the kth interior collocation point, R, =
residual associated with the /th boundary collocation point, ncol = number of
interior collocation points, nb = number of boundary collocation points, and
w = weight assigned to a collocation point.

To minimize the sum of the squares of the errors, the derivatives with respect
to the coefficients of the trial function, «,(1,), are set equal to zero:

ncol

W R——— + viRy——— =0 j = |,nbas . 12)
gl [ R d 3 da ( ) I_z' ] la (’ ) .’ (
Equation (12) forms the system of cquations to be solved.

At this point it is convenicnt to introduce the operator L:

LU(x,1) = B(x,t ’9%(5'2 + Clx, 1)U(x,1) + D(x,1). (13)

To evaluate the residual at a typical interior collocation point, the approximate
scalar function, eq. (10), is substituted into the difference equation, eq. (9).
The resulting expression is evaluated at both the collocation point locations
(x4 1,), and the associated locations at the last time level, (x¥,1,-,). that is

Ry ' | g
Re=+ 2:,' alt,),(x,) — = ‘_Zl 01,2 )P, (xy')

nbas nbas (l4)
+ G{Z a,(t,,)Ld),(x,)} + (1 ~ @){z a,(l,,_.)L(l),(x;')}.

=\ iml

Equation (14) holds for any collocation point whose characteristic curve re-
mains within the interior of the spatial domain throughout the time interval
t,., S 1 s 1, such as the right collocation point in Figure 1. It then follows

3R, ]
= |— 9 . S
o) ( ot OL)d’,(x,) (15)

When, as for the left collocation point in Figure I, the characteristic associ-
ated with the collocation point intersects a domain boundary at (x,.1,),
eqgs. (14) and (15) arc no longer valid. The time increment is no longer Ar, but
becomes

A, =1, —1,. (16)

Also, the terms in eq. (9) that were evaluated at (x.1,_,) must now be evalu-
atcd at (x5, 1,). However, a solution does not exist at 1, so that U(\,, 1) and
LO(xg, 1,) must be approximated. To this purpose, the interpolation parameter 3
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is introduced

ﬁ='l—'l—|

Ar a7

Consider first the case of a non-first type boundary. The parameter 8 is used
to write the following approximations:

O@xg,1,) = BOx1,) + () = B)U(xpt,.,) (18)
LO(g, 1;) = LM, 1,) + (1 = BILO(,,1,.,) . (19)
Substituting egs. (16), (18), and (19) into eq. (9), we arrive at the residual for a

collocation point whose characteristic crosses a non-first type boundary:

1 -

1 - B - *
Re = =3 2 at)®xn) = == 3 al, )P, &5)

+ O+ - (-));3){2’ ai(l,)L(I),(x,)} (20)
=]

+(1-0)1-p8 {nz a,-(t,,_.)L¢>,(x§)}.

=1
Equation (19) also holds for a first type boundary, but Eq. 18 is replaced by:
Otxg.1,) = Ult,) (21)
where U(1,) is the specified boundary value at time ¢, This leads to the residual
for a collocation point whose characteristic crosses a first type boundary:
nbas 1 .
A—l Z al(’n)(bl(xl) - ZT'U(’a)

R, =

nhas .
+(O+ (1~ 9){3){2 a,(t,,)Lfb,-(x.)} (22)

abas
+(1-0)1 - B){Z a,(t,,_l)LQn(.r;)}.
(L3

Experience has shown that the preceding approximation works well. Note
that A, is never zero, or it would be a boundary collocation point and subject
to eq. (2). However, as ¢, approaches f,, the formulation approaches fully im-
plicit. As 1, approaches 1,_,, the formulation approaches that of cq. (14).

We now turn to the enforcement of the boundary conditions. Since a colloca-
tion procedure is being used, Green's theorem is not applicd to the equations,
and the first and sccond type boundary conditions are enforced by the same
procedures. Two methods exist for enforcing boundary conditions of the first
and second type. The first method, which has been used in the examples pre-
sented later, is to enforce the conditions directly in the matrix equations. This
can be accomplished because the boundary nodes have a degree of freedom as-
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sociated with the value of the function and a dcgrce of freedom associated with
the derivative of the function.

The second method is lo use a boundary collocation point to enforce the
boundary conditions. This is also a mecthod for enforcing a third type boundary
condition. Using this approach. the residual associated with a boundary condi-
tion is obtained by substituting eq. (10) into eq. (2). The residual, R,. associ-
ated with a boundary collocation point [, is then: .

nbas
R, = G:{Z a.(l.)q’i(ll)} - al(x,.1,) (23)
=1

where G, is the differential operator that describes the boundary condition that
is being enforced. The derivatives of egs. (20), (22), and (23) follow naturally
and are similar in form to eq. (15). Finally. the initial conditions are incorpo-
rated by assigning the initial values of Otx,. 1) at vach collocation point. The
cubic Hermite basis functions are then lcast squares fitted to the collocation
point values.

All of the relations required to form the system of equations represented by
eq. (12) have now been specified. The resulting matrix equation is

(é+__§_)g=g+4. (24)
where

al
a, = 2 (Al + OL)(b(x, (l + OL)¢(xl)

"2 —
+ 3 w,(' Bi@+a- O)B)L)(b,(x,)
konled At,

. (l A—:B +(@+ (1 —'G),)ﬁ)L)cb,(x,) (24a)

+ Z w (—l- + (@ + (l - @)ﬁ)L)(b (X‘)

hens] At

|
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. (l — B + (0 + (1 - O)B)L)ch,(x.) (24¢)
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The three interior collocation point summations associated with A and ¢ are for
the interior collocation points whose characteristics remain in the domain
(eq. (14)), those which cross non-first type boundarics (eq. (20)) and those
which cross first type boundarics (cq. (22)) respectively. The stiffness matrix is
symmetric, positive definite and has a bandwidth of seven.

The number and location of collocation points can affect the results of the
ELLESCO computation, and the optimum number and location of collocation
points remains an open question. Under most circumstances, three collocation
points per elcment spread evenly across the domain will yield excellent results.
However, in the presence of large spatial gradients, the solution can be im-
proved by increasing the number of collocation points to five or more. As the
number of collocation points increases, the computational effort in tracking and
matrix construction increascs, but the effort required to solve the rcsullmg ma-
trix equations is unchanged.

The steps required to solve cach time step are summarized:

1. Choose the collocation point locations (xy,1,).

2. Project the collocation point (x,.1,) along its associated characteristic to
the previous time level. or until it intersects a spatial boundary.

Use the appropriate equation, (14), (20). or (22). to compute the collo-
cation point residual and the derivative of the residual.

Add the contribution from step 3 to eq. (12).

Repeat for all collocation points.

Use eq. (23) to compute the residual and the residual derivatives for
cach boundary collocation point.

Add the contribution from step 6 to eq. (12).

Enforce the first and sccond type boundary conditions in eq. (12).
Solve eq. (12) for the coefficients, a,.

Substitute the coefficients. a,. into eq. (10) to form the C' cubic polyno-
mial approximation to the scalar ficld.

n b Kad

o

S0 >

ADVECTIVE-DISPERSIVE TRANSPORT EQUATION

The advective-dispersive transport equation with constant dispersion is written

dC(-.t.H N v(”aC(..r.l) -D d"Cj‘.\:‘.l) -0 (25) :
a1 X axe
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where C(x,t) = concentration, v(t) = velocity, and D = dispersion cocffi-
cient. Equation (25) is a special case of eq. (1), and the method described in
the preceding section can be used to solve it. Equation (25) will be used to
demonstrate the efficacy of the proposed method and to compare ELLESCO to
other methods,

Results of ELLESCO will be compared to the ELM using Lagrangian qua-
dratic basis functions (ELMLQ) which has been described by Baptista et al.
{1}. Briefly, the ELMLQ method consists of two steps. First, the node locations
of the finite-element mesh are tracked to the last time step. The values at the
foot of the characteristic are interpolated using the nodal values of the last time
step and then assigned to the node. forming an intermediate solution, Second,
the dispersion portion of the equation is solved using the intermediate solution.

An ELM using cubic Hermite base functions (ELMCH) will also be dis-
cussed. The ELMCH method was first proposed by Holly and Preissmann [9).

_ In this method, both the function value and the value of the derivative are ob-

ZO=~=>x=2ZnN2Z0N

tained by tracking along characteristics to the last time step. The intermediate
solution is constructed by using these values to sel the values of the two de-
grees of freedom associated with the cubic Hermites at the nodes. Again, the
second step solves the dispersion problem using the intermediate solution. The
results for Galerkin finite elements with Lagrangian quadratic basis functions
(GALERKIN) will also be displayed for reference.

RESULTS

The results of five test problems are presented in Figures 2 through 6. In all
five test problems v = 0.5 and r = 9600. Analytic solutions are represented by
solid lines. Figures 2, 3, and 4 illustrate the advection, D = 0, of a Gaussian
plume with standard deviation o = 264. In Figure 2, the element length is 200,
At = 96 and the number of collocation points per element (ncol) is three. The
ELLESCO result is indistinguishable from the analytic. The GALERKIN solu-
tion has some asymmetry and slight dispersion. Both of the ELM solutions arc
significantly dispersed, and ELMLQ is oscillating.

In Figure 3, the element length has been increased to S00 and ncol = 5.
ELLESCO now shows a 4.6% accumulated error in the peak concentration.

ELLESCO GALTRRIN LIMLQ LLACN
LA Peaman
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dr e 98

Vo ot0 . /

- 200
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=1 7 7 7 7

DISTANCE (X 10 Yy

FIG. 2. Comparison of advected Gaussian plumcs. Solid lines are analytic solution.
Broken lines are computed solutions.
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FIG. 3. Comparison of advected Gaussian plumes with increased clement length.
Solid lines are analytic solution. Broken lines are computed solutions.
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FIG. 4. Comparison of advected Gaussian plumes with increased time step increment.
Solid lincs are analytic solution. Broken lines arc computed solutions.
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FIG. 5. Comparison of advected fronts. Sohd lines arc analytic solution. Broken lines
are computed solutions.

This error can be reduced to less than 3.5% by taking ncol = B. In addition. a
slight oscillation has developed. The GALERKIN solution has deteriorated in o
similar manner, but to a greater degree. The ELM solutions are greatly dis-
persed and have large oscillations. Note that the ELLESCO solution is still su-
perior to the ELM solutions in Figure 2. where the element length is only 200.

The result in Figure 4 has the element length resct to dx = 200, ncol = 3,
and the time increment is doubled 10 At = 192. The advantages of the ELMs
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are visible, and the two ELM solutions are quite improved. The ELMLQ solu-
tion is superior to the ELMCH solution. but this is due to the Lagrangian qua-
dratic node spacing of 100 yiclding Co = 0.96 which is close to 1. When
Co = 1, all methods display increased accuracy. The Galerkin solution is dis-
persed and oscillatory. The ELLESCO solution is essentially exact.

Figures 2 and 3 demonstrate the effects of accumulated interpolation crror on
the ELMs when many time steps are required and the spatial discretization is
large. In these circumstances the GALERKIN solution can be superior. To a
much lesser extent, ELLESCO will behave similarly to the ELMs, but appears
10 at least match the accuracy of the GALERKIN solution, However, when the
Co increases, the ELMs become superior to the Galerkin. In all cases. the
ELLESCO solution is the best.

Solutions to an advancing front are illustrated in Figures 5 and 6. Initial con-
ditions are C(x,0) = 0 and a source of C(0,7) = 1 is set at the left boundary.,
The element length is 200 and ncol = 5. Figure S represents the solution to the
pure advection (D = 0) problem. The ELLESCO solution has virtually no dis-
persion. An 8% oscillation has developed ahead and behind the front. and it is
mainly due to the Gibb’s phenomena. The GALERKIN solution is more dis-
persed and also has serious trailing oscillations. Both ELMs arc seriously dis-
persed, as well as contaminated by oscillations. '

The dispersion coefficient was increased to D = 0.5 for the problem repre-
sented by Figure 6. This corresponds to a grid Peclet number of 200 (Pe = 100
for ELMLQ and GALERKIN since the node spacing is half the clement
length). All the solutions have improved. however only the ELLESCO solution
no longer has oscillations or antificial dispersion.

CONCLUSION

An accurate method for the numerical solution of parabolic PDEs with large
and variable first-order terms has been presented. The method combines least
squares collocation with a coordinate transformation to eliminate the asymmet-
ric first order term associated with numerical oscillations.

The method has several appealing features. Since it is a collocation method,
the coordinate transformation can be reduced to tracking individual collocation
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3. 5. t 5 5 7
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FIG. 6. Comparison of transportcd fronts. Solid lines arc analytic selution. Broken
lines are computed solutions.
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points. The tracking and the formation of the collocation point residuals is eas-
ily done on a point-by-point basis. Deforming grids and continuous particle
tracking are avoided. Similarly. the position and number of collocation points
can be varied at cach time step in order to adjust 1o changing feawres, while
minimizing computational effort. The method automatically adjusts to spatial
and temporal changes in the first order term, allowing it to work well in advee-
tion and dispersion dominated flows. As with ELMs. there is no inherent limi-
tation in the size of the time step, and Courant numbers can be greater than 1.
In fact, in advection dominated flow, large time steps can improve the solution.
Although tracking is required, ELLESCO is a single step method and no inter-
mediate solution is gencrated. Besides the simplicity of application, the Icast
squares format also provides a natural error estimate in the form of the residuals
which arc minimized by the procedure.

ELLESCO is computationally competitive in onc spatial dimension and may
provide significant savings in multi-spatial dimensions. Comparison of
Figures 2 and 3 indicates that the ELLESCO results are superior to the ELMLQ
results with half the clement length. Given that ELLESCO can use twice the '
element length, the rank of the ELLESCO matrix will be one half the rank of
the ELMLQ matrix. The ELLESCO matrix bandwidth is 7 compared to the 5
of the ELMLQs. The number of collocation points per clement that must be
tracked will generally be 3. but may increase to 5 or 6 in difficult arcas. In con-
trast, ELMLQ is required to track 4 nodes over the same interval.
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