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ABSTRACT

Solution of advection-dominated transport problems by discrete interior
methods 1s usually accomplished by employing some type of upstream weighting.
Upwinded finite element formulations have also been developed. At present the
authors are developing a procedure, based on Herrera's algebraic theory of
boundary value problem, which systematically uses localized adjoint formulas.
Here, the baslc ideas of the method are explained. Also, the present state of

development, as it applies to one and multi-dimensional steady-state and
transient problem 1is revised.

INTRODUCTION

The numerical solution of the advective-difusive transport equation is a
problem of great importance because many problems is science and engineering
involve such mathematical model. The numerical treatment of advection
dominated proceses is quite difficult. The procedures available derive from
two maln approaches: standard semidiscretization and Eulerian-Lagrangian. The
brain distinguishing feature of the latter is the use of characteristics to
carry out the discretization in time. Most formulas that have been developed
wsing a standard semidiscretization approach have been based on upstrea,
weighting techniques, whose development is essentially ad-hoc.

in alternative and very promising approach has been introduced by Herrera

[1-4]. In past work, this has been referred as “Optimal Test Function
¥ethod" . However, from a technical point of view, 1t would be more
wppropriate to call such procedures “Localized Adjoint Methods"”. Also, In

this manner, the method would be more clearly distinguised from other

procedures. Thus, this 1s the terminology that will be adopted in what
jfollows.
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The starting point of locallzed adjolnt methods is a rather simple and, as a
matter of fact, old, idea. let £ be a differential operator defined in a
region 1 and let £ be its formal adjoint. Then, when u and v satisfy
suitable boundary conditions, Green’'s formula

»*
J Q viudx = IQ v¥ wvdx (1.1)

is satisfied. Equation (1.1) allows a convenient interpretation of the method
of weighted residuals. Consider the problem of solving the equation

2u=f‘n, in Q (1.2)
subjected to homogeneous boundary conditions for which Green's formula (1.1)
applies. In the method of weighted residuals, one usually considers a system
of welghting (or test) functions {¢ 1,...,¢ N }. Then, one says that a
function u' is an approximate solution of this problem when

Ia

> (2’ - f‘n)dx =0, a=1,..,N (1.3)

Generally, the system of N equations (1.3) has many solutions, but in order to
obtain a system possessing a unique solution, it is customary to introduce the
representation u’ = ¥ aad:a of u in terms of the system {¢1 ¢n)°f base (or

trial) functions. However, this representation ls an artifice that bears no
relation to the exact solution u.

The actual Iinformation about the exact solution contained in an approximate
one, can be established making the following observations. From (1.2) it is
clear that the exact solution u satisfles :

Sq @, (Lu-£) dx=0, a=1,...,N (1.4)

Equations (1.3) and (1.4) together imply

J‘n ¢, Lu'dx fn

"

- fu dx, =1,...,N, (1.5)
or

J‘n u'f«)a dx J‘nuﬂ'wa dx, = 1,...,N. (1.6)

by virtue of Green's formula (1.1). Consider the Hilbert space LZ, in which
the inner productr of two functions u and v is given by J‘qudx. Then, the

system of equations (1.6) allows the following conclusion:
Any function u' whose proJjection, on the subspace spanned by the system of

functions (Q.qpl ,,,,,.‘8'<p }, coincides with that of the exact solution u, is

an approximate solution. Indeed, this projection is all the informatio
about the exact solution contained in approximate one.
In this light, the representation u'=Ef %cdb“can be interpreted as a procedure

for extrapolating the actual information contalned 1in the approximate

solution. The very simple and precise result Jjust presented clariflies much
the nature of approximate solutions and it would be desirable to apply it, in
a systgmat.ic manner, to analyze discrete methods. For this purpose it tis
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necessary to have avalilable Green's formulas similar to (1.1), but which are
applicable even when the functions considered are not smooth. This is because
in most applications weighting functions are localized (i.e., they have local
support) and they usually violate the smoothness assumptions at the boundary
of their support. Even more, the development of a theory spplicable to carry
out the analysis when both base and test functlons are fully discontinuous, is
most desirable since standard theory of distributions is not applicable to
that case. .

Herrera [1-4)}, recently developed an "algebraic theory of boundary value
problems”, in which the analysis of the Iinformation contained in an
approximate solution can be carried out, when both trial and test functions
are fully dlscontinuous. Such setting is ideal for localizing the adjoint
equation (1.8).

LOCALIZED ADJOINT METHODS

"Localized adjoint methods" consist in making systematic use of the resulting
equations to analyse the information contained in approximate solutions.
Since the quality of the results obtained with a numerical method depends, in
an important manner, on the welighting functions used, one of the main goals of
localized adJjoint methods, thus far, has consisted in developing improved
weighting functions. .

In recent years the authors have applled localized adjoint methods to
advection diffusion equations. The numerical results indicate that this kind
of methods possesses definite advantages over other procedures (5-8). Further
improvements are expected to come from work presently under way, in which
Herrera's theory is applied in space-time. The localized adjoint methods
derived in this manner, clarify and perfect Eulerian Lagrangian procedures
(9,10).

In what follows Herrera's (1-4) algebralc theory of boundary value problems is
briefly explalned. For a more detailed presentation and proofs of the
results, the reader is referred to the original papers (1,2,4).

The general abstract boundary value problem to be considered corresponds to
one with prescribed Jumps and it is defined by the system of equations:

<Pu,v> = <f,v> ; <Bu, v> =<g,v> ; <Ju,v> = <j,v> Ve D (2.1)

Where D is the linear space of admissible functions, P, B and J are bilinear
functionals, while f, g and J are prescribed functionals (the data of the
problem). Generally, the bilinear forms P, B and J are associated with the
differential operator, the boundary values and the Jumps accross
discontinuities. When the sought solution is smooth, the prescribed Jjump j=0.
Under the assumptions of the general theory, the three equations (2.1) are
equivalent to the single variational formulation

<(P-55JJU.V> = <f - g~ j,v> veD 2.2}

This variational formulation is said to be "the variational formulation in
terms of the data of the problem", because Pu, Bu and Ju are prescribed.

Making use of the General Green’'s formula for operators in discontinuous
flelds (1.4)

<(P-B-J)u,v> = <(Q-C-K)v,u> (2.3)

323



HERRERA, CELIA AND MARTINEZ

the variational formulation (2.2) is transformed into
<(Q-C-K) v,u> = <f~g-j,v> (2.4)

This is sald to be "“the variationgl formulation in terms of the sought
information", because Qu Cu and Ku are not prescribed. Generally, Qu
supplies }nformation at the interior of the reglon of definition of the
pgoblem, Cu supplies information about the complementary boundary values, and
K u ylelds the average of the solution (and derivatives) accross surfaces of
discontinuity. Regarding the general Green’s formula (2.3), it is assumed that
the bilinear forms P and Q are formal adijoints, in the sense of the theory.
The boundary bilinear forms B and C, can be constructed using arguments which
are essentially standard. However, the construction of the operators J and K
is not standard. The systematic manner supplied by Herrera’s algebralc theory
will be succintly explained now.

Let the region of definition of the problem Q, be decomposed into two
subregions ﬂx and Qxx and assume the discontinuities of the trial and test

fuhctions can only'occur on the common boundary I', separating QI and 0 1

Then, let the space of admissible functions be D=Dx + DII. where DI and Dlx

are linear spaces whose elements are functions defined 1in QI and Q

respectively.

After havlng constructed the operators B and C, twoiclasses of functions, s'p
and S'D, are considered. Elementes belonging to S° will be said to be left
smooth w@ﬁle those belonging to S" will be sald to be right-smooth. The
classes S' and S', are taken to be conjugate subspaces; i.e.,

<{P-B)u, v> = <(Q-C)u,v>, ue s'aves (2.5)

Given any element ueD, write u = {ux,ulx} with uie Dx and uII € DIX' Define
= (ul. uxx} where uf € Dx is left-smooth extension to nx of ulle DII' while
ufle DIl is the left-smooth extension to le of ule Dl the existence of such

extensions is a fundamental hypothesis of the theory (see [1]). Then, it is
_possible to define

at = (e w) 2 (2.6a)

ful® = ut- u (2.6b)

Equations (2.8) together, imply
u=u - [u' 2 (2.7)

Observe that u'e D and [ul'e D. These functions will be called the (abstract)

average and Jjump, respectively, based on the left-smoothness criterium.

Correspondingly, given any function ve D, one considers the functions vlvu
r

v', v' and [vl", which are defined replacing the left—smooth class of
functions, by the right smooth class of functionﬁ

By asgumption, equation (2.5 holds whenever ucS and ve S". However, P-B #
(Q-C) , in general. Thus, one defines

R=P-B-(Q-0C° (2.8)
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In addition, the operators R :D —> D and R D —> D' are defined, for

every u = {ux’“xx) € D, by

Rlu.v> = <Rul, vx>; <R u,v> = <RuI

. , V.. > (2.9)

1 I

which hold for every v=(vx. V.)€ D. Using these operators, J and K are
iven by [1]:

< Ju, v> = <R (ul*, v" > (2.10a)

hd 1 r
<K u,v > = <Rlu , [vl> (2.10b)

As a final remark, it is observed that the validity of equations (2.10) is pre
served if Rx is replaced by Rn f1].

~ ADVECTION-DIFFUSION EQUATIONS

The methodology is applicable to steady state and time dependent problems in
one and several dimenslons.

A - One Dimensional Problems. The steady state leads to ordinary
differential equations, for which four algorithms were developed by Herrera et
al. [3] They were derived by seeking nodal information only.

Algorithm 1.
Algorithm 2.
Algorithm 3.
Algorithm 4.

The value of the function and its derivative;

The value of the function only;

.The value of the derivative only;

The function at some nodes and the derivative at some
others.

1

For steady state the advection diffusion equation with linear sources is

fu =d (Dduw/dx)/dx - Vdu/dx+Ru = fﬂ(x), o< x <& (3.1)

and N

2 v = d(Ddv/dx)/dx - d(Vv)/dx + Rv (3.2)
The domaln [0,8] is divided into E subintervals or elements, not necessaryly
equal, [xo,x1] ,...[xg_‘,xE}. In order to concentrate all the information at

nodal points, test functions are required to satisfy £.¢a=o' locally. For

algorithms 2 to 4, three-diagonal matrices are contained, while algorithm 1
ylelds tetra-diagonal matrices [3]. Thus far, two procedures have been
egployed for constructing the wieghting functions which satisfy the equation

? =0 In [S] the (variable) coefficients of the equation were
approximated by piece-wise polynomials, while in [6] polynomials were used to
approximate the test functions, which were required to satisfy the equation

f} a=0 at collocation points only. Using a seml-discretization approach,
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the extension to time dependent problems is straightforward. For this case
the advection-diffusion equation can be written as

fu= 8 w3 t - fn {(x,t) (3.3)

vwhere ¥ is differential operator in x, given by equation (3.1). Thus, in [7}
the term 8u/dt was incorporated in the right-hand side of equation (3.1), at
each time step, and the solution procedure for steady state problems was
applied to the resulting equation.

B.~- Problems in Several Dimensions. The results for advection dominated
transport-diffusion problems, in several dimensions, have been presented in
[8]. The procedure differs from that for one-dimensional problems, mainly,

due to the fact that T-complete systems [11] are infinite in this case. Of
course, only a finite number of test functions are used 1in actual
applications, introducing a truncation error in this manner.

C.~- Numerical Results. For one dimensional steady state problems the
procedure yielded {5,6] very efficient and highly accurate algorithms, which
advantageously compare with other algorithms. .

For time dependent one-dimensional situations, only algorithms 1 gnd 2 wvere
applied. These correspond to the use of fully discontlnuous and C° weighting
functlions, respectively. Two test problems were treated to demonstrate the
performance of the new method: the propagation of an initial step
discontinuity and of a Gauss hill. The results and the efficiency of the
procedure were compared with other methods, testing the effect of changing
several parameters such as 8 (in time), element Peclet number, as well as
Courant number. The conclusion was reached that solutlions obtained with this
method are as least as good as those from the best avallable interlor methods
[71.

Similar conclusions were drawn in the case of two-dimensional problems. For
details see (8]. In general, localized adjoint methods allow very effective
treatment of boundary conditions, but this 1is specially noticeable for
two-dimensional problems, due to its greater difficulty.
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