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ABSTRACT 

Solution oí advection-dominated transport problems by discrete 
interior methods is usually accomplished by employing some t}~ 
oí upstream weighting. Upwinded finite eIement rormul~tions 
havo also been developed. At present the authors are develop­
ing a procedure, based on Herrera's alg~braic theory oí bound­
ary value problep. which systematically uses loculited aJjoint 
formulas. HOTO, the basie ideas of the mothod are explaineJ.
AIso, the present state oí development, as it applies to ane 
and multi-dimensional steudy-state and trunsient problems, is 
revised. 

1.- lNTRODUCTION 

The numerical solutíon oí the advective-dif{usive transport
equation is a problem oí great importance becnuse muny problcms
in seience and engineeríng involve such mathematical modelo The 
numerical trcatmcnt oí advection dominated processes is quite
diffícuIt. The procedures available derive from two maín ap~ 
proaches: standard semidiscretization and EuIerian-Lagrangian•• 
The maín distinguishing feature of the Intter is the use of 
characteristics to carry out the discretization in time. 'Most 
formulas that have been developed using a standard semi­
discretízation ap~roach have been based on upstream weighting
techniques, whose deveIopment is essentially ad-hoc. 

An alternative and very promising approach has been intro­
duced by Herrera [1-4]. In past work, this has been referred 
as "Optimal Test Function Method". However, from a technical 
point of view, it would be more appropiate to call such pro­
cedures "Localized Adjoint Methods". AIso, in this manner the 
method would be more cIearly distinguished from other proce­
dures. Thus, this is the terminology that will be adopted in 
what follows. 

The starting point of localized adjoint methods is a 
rather simple and, as a matter of fact, old idea (see, e.g., 
[5J). Let! be a differential operator defined in region.n
and let !* be its formal adjoint. Then, when u and v satisfy 
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suitable boundary candítions, 

1~ vludx = J ul·vdx .. ~ 

15 s3tisficJ. Equation (1.1) 
tion oí the method of weighted 
of solving the equation 

t. u '" {"" in Q 
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Green1s formula 

( 1.1) 

allows a convenient interpreta­
residuals. Consider the problem 

(1. 2) 

subjected to homogeneous boundary condítions for which Green's 
formula [1.1) applies. In the method of weighted residuals, 
one usually cansiders a system af weighting (or test) functions 
i~¡""J~sJ. Then, one says that a funetíon u· ís an approxí­
mate 501ution of this problem when 

( ." lt',J# - fr,., )dx .. O, n- l •.. ,N. (1. 3)J;: ..& ~, 

Gcncrally, th~ system oí N cquations (1.3) has many 501utions. 
but in arder to obrain a system possessing a unique 501ution, 
it is customary to introduce the rcprcsentation u# .I3a~á oí u~ 

in terros oí the system {~lJ""~N} oí base (or trial) functions. 
tlo"c\'~r. this roprcsentntion i5 an artifice that bears no 
rel~tion to thu Clact solution u. 

The actual informar ion about the eX3ct solution contained 
in an approximate one, can be established making the following 
obs~rvations. From (1.2), it is cIear that the exact solutlon 
u satisfies 

(1. 4) 

Equations '1.3) and (1.4) together impIy 

J::2 "':.J. lU~dX .. In'Pu lu dx, o'" l .... ,N. (1. S) 

or 

dx = dx. o:: 1•••• ,N. (1. 6)Jul·.pn u 

by virtue oí Greenls formula (1.1). Consider the Hilbert space 
ll. in which the inner product of two functions u and v is 
given by iJ uvdx. Then. the system of equations (1.6) aIlows 
the following conclusion: 
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Any function u', whose proj,ection on the subspace spanned 
by the system of functions {l*~l"" ~~N}' coincides with that 
of the exact s01utioñ u, 1s an approximate 501ution. Indeed, 
this projection i5 all the information about' the exact 501utlon 
contained in approximate one. 

In this light, the representation u~.Eaa$a can be inter­
preted as á procedure far extrapolating the actual information 
contained in the approximate s01ution. 

The very simple and precise result just presented clari ­
fies much the nature of approximate solutions and lt would be 
desirable to apply it, in a systematic manner, to analyze dis­
crete methods. For this purpose it is necessary to have availa 
ble.Green's formulas similar to (1.1), but whlch are applicable 
even when the functionsconsidered are not smooth. This Is 
because in most applications weighting functions are localized 
(i.e •• they have local support) and usually violate the smooth­
nessassumptions at the boundary of their supprot. Even more, 
the development of a theory applicable to carry out the analysis
when both base and test functions are fully discontinuous, was 
most desirable since standard theory oí distributions is not 
applicable to that case. 

Herrera [1-4}, recently developed an "Algebraic Theory of 
Boundary Value Problems", in which the analysis of the informa­
tion contained in nn approximate so1ut10n can be carried out, 
when both trial and test functions are ful1y discontinuous. 
Such setting 1s ideal for localizing the adjoint equation (1.6). 

2.- LOCALIZED ADJOINT METHODS 

"Localized adjoint methods" eonsist in making systematic use 
of the resulting equations to analyze the information contained 
in approximate solutlon5. Since the quality of the results 
obtained with a numerical method depend5, in an important mume~ 
on the weighting functions used, one of the main goals of local 
ized adjoint methods, thus far, has consisted in deyeloping ­
improved weighting functions. 

In recent years the authors have applied localized adjoint
methods to advection diffusion equations. The numerical results 
indieate that this kind of methods possesses definite advan­
tages oyer other procedures [5-8J. Further improvements are 
expected to come from work presentIy under way, in which 
Herrera's theory is applied in space-time. The Iocalized ad­
joint methods deriyed in this manner, clarify and perfeet Eu­
lerian-Lagragian procedures [9,10J. 
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3.- ADVECTION-DIFFUSION EQUATIONS 


, The methodology has been applied to steady state and time 
dependent problems in one and several dimensions [S-S1. 

A. - One Dimensionarl Problems. -. The steady state leads to 
orditiary aifferential equations, for which four algorithms were 
developed by Herrera et al. [3]. They were derived by seeking 
nodal information only. 

Algorithm 1.- The value of the function and lts derivative; 

Algorithm 2.- The value of the function only; 

Algorithm 3.- The value of the derivative only; 

Algorithm 4.- The function at some nodes and the deriva­

tive at some others. 

For steady state the advection diffusion equation with 
linear sources Is 

tu =d(Ddu/dx)/dx - Vdu/dx + Ru .. !n(X), O ~x ~ t (3.1) 

and 

1. -v:: d(Ddv/dx)/dx + d(Vv)/dx + Rv (3.2) 

The domain {O.tl is divided into E subintcrvals or elcmcnts, 
not nccessarily equal, [x ,x ), •••• (x l'x J. In order tO 

o . 1 E- E 
concentTate a11 the information at nodal points, test functions 
are required to sathfy I.·.pa • O, 10ca11y. For algorithms Z to 
4, three-diagonal matrices are obtained, while algorithm 1 
yields tetra-diagonal matrices (31. Thus far, two procedures
have been e~ployed for constructing the weighting functions 
wich satisfy the equation I.-.po • O. In (5] the (variable) 
coeíficients oí the equation were approximated by piece-wise
polynomials, while in [6] polynomials were used to approximate
tha test functions, which were required to satisfy the equation 
l·~Q a O at collocation points only. 

Using a semi-discretization approach, the extension to 
time dependent problems is straightforward. Por this case the 
advection-diffusion equation can be written as 

.t: u '" dul dt • f n(x. t) (3. 3) 

".here l is differential operator in x, given by equation 
(3.1) • Thus. in 17] the term a u/at was incorporated in the 
right-hand sidc of equation (3.1), st esch time step, and the 
solution procedure for steady state problems was applied to 
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the 	resulting equation. 

B.- Problems in Several Dimensions.- The results for ad­
vection dominated transport-diffusion problems, in several di­
mensions, have been presented in [8J. The procedure differs 
from that for one-dimensional problems, mainly, due to the faet 
that T-:eO!!IPlete systems[ll] are infinite in this case. Of course, 
only a flnite number of test functions are used in actual ap­
plications, introducing a truncation error in this manner. 

C.- Numerical Results.- For one dimensional steady sUte 
problems the procedure yielded [5,6] very efficient and high1y 
accurate algorithms, whieh advantageously compare with those 
previously availab1e. 

For time dependent one-dimensional situations, on1y al ­
gorithmsl and 2 were applied. These correspond to the use ol 
fully discontinuous and Co weighting functions, respectively.
Two test problemswere treated to demonstrate the performance 
oE the new method: the propagation oí an initial step disconti ­
nuity and oí a Gnuss hill. The results and the efficiency of 
the procedure we·I'C compared with other methods, testing the 
effect of changing several parameters such as e (in time), 
element Peclet number, as well as Courant number. The conclu­
sion was reached that solutions obtained with this method are 
as least as good as those írom the best available interior 
methods (7). 

Similar conclusions were dl~wn in the case of two-dimen­
sional problems. For details see [8) in these proceedings. In 
general, localized adjoint methods allow very effectivetrcnt­
ment oí boundary conditions, but this is special1y noticiable 
lar two-dimensional problems, due to its greater difficulty. 
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Abstraet 


Petrov-Galerkin finite elements corresponding to higher order upwind fmite 
difference schemes, including lhe QUICK scheme, lor convection dominated 
problems are introduced and demonstrated. These elements are developed using 
either trial or test functions which are extended to higher polynomial degrees by 
including nodes extemal to lhe element under consideration. In simple one 
dimensional siruations, lhe fmite elements are shown to reproduce second and third 
order finite difference approximations for lhe convective term, an unaffected 
(seeond order) diffusion term and a consistentupwind mass termo A two 
dimensional driven cavity fluid flow (stream funetion-vortieity formulation) 
solution al a Reynolds Nwnber of 1000 is also presented. 

1. IntroductioD 

Numeriea! solutions of eonvection dominated problems have long sufrered 
from the instability of centered or Bubnov-Galerkin representations of lhe 
eonveetion terros. In order lO obtain stable solutions, sorne form oí upwinding, 
whether of lhe fmite diffenmees. or oC me fmite volume interpolations, or of me 
test funetions in a Petrov-Galerkin fmite element method, is usually employed. In 
erfeet, an artificial or numerical diffusion, in me form of a first order, seeond 
derivative, truncalíon enor is introduced. Wim a eonsistent fmite el~ment 
leehnique or wim carefu! blending of upwind and centered forms, this additional 
error may be negated in combination with olher error terms presento 
Extraordinarily aecurate and cven exaet resules are possible in particular situations. 

In fmite volume formulations of me fluid flow and transport equations, 
quadratie upwind interpolation [1] ofconveeted quantities has provided an 
altemative means oí stabilizing solutions without introducing nwnerical diffusion. 
In ruiite difference methods second or lhird order upwind differenees have been 
used lO similar effect [2,3J. In either ease the diserete equations eontain tenns from 
more upstream nodes than downstream nodes. While such methods do nOl 
eliminate the "wiggles", meir magnitude is limited and lheir presence is confmed to 
regioos ofvery steep gradients [4]. Accuracy in smooth regions ofthe solution is 
generalIy enhanced [4.5]. 


