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and
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ABSTRACT

Solution of advection-dominated transport problems by discrete
interior methods is usually accomplished by employing some type
of upstream weighting. \Upwinded finite element formulations
have also been developed. At present the authors are develop-
ing a procedure, based on Herrera's algebraic theory of bound-
ary value problem, which systematically uses localized adjoint
formulas. Here, the basic ideas of the method are explained.
Also, the present state of development, as it applies to one
and muétx -dimensional stcady state and transient problems, is
revise

1.- INTRODUCTION

The numerical solution of the advective-diffusive transport
equation is a problem of great importance because many problems
in science and engineering involve such mathematical model. The
numerical treatment of advection dominated processes is quite
difficult. The procedures available derive from two main ap-
proaches: standard semidiscretization and Eulerian-Lagrangian. -
The main distinguishing feature of the latter is the use of
characteristics to carry out the discretization in time. -‘Most
formulas that have been developed using a standard semi-
discretization approach have been based on upstream weighting
techniques, whose development is essentially ad-hoc.

An alternative and very promising approach has been intro-
duced by Herrera [1-4]. In past work, this has been referred
as "Optimal Test Function Method". However, from a technical
point of view, it would be more appropiate to call such pro-
cedures "Localized Adjoint Methods". Also, in this manner the
method would be more clearly distinguished from other proce-
dures. Thus, this is the termlnology that will be adopted in
what follows.

The starting point of localized adjoint methods is a
rather simple and, as a matter of fact, old idea (see, e.g.,
[S]). Letr be a differential operator defined in region .Q
and let £* be its formal adjoint. Then, when u and v satisfy
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suitable boundary conditions, Green's formula

J viudx = J ut.vdx (1.1)
¥ Q

N
. -

is satisfied. Equation (1.1) allows a convenient interpreta-
tion of the method of weighted residuals. Consider the problem
of solving the equation

Lus=1f., in & (1.2)

subjected to homogeneous boundary conditions for which Green's
formula (1.1) applies. In the method of weighted residuals,
one usually considers a system of weighting (or test) functions

{¢;,...,¢s}. Then, one says that a function u' is an approxi-
mate solution of this problem when

J ¢ ULu” - f)dx = 0, a= 1,..,N, (1.3)

-~
..

Gencerally, the system of N equations (1.3) has many solutions,
but in order to obtain a system possessing a unique solution,
it is customary to introduce the representation u” =Ia ¢, of u’

in terms of the system (@1,...,¢N} of base (or trial) functions.
However, this representation is an artifice that bears no
relation to the exact solution u,

The actual information about the exact solution contained
in an approximate one, can be established making the following
observations., From (1.2), it is clear that the exact solution
u satisfies

| wutzu - fo)dx = 0, as L.llN. W)

Equations (1.3) and (1.4) together imply

Jq,euru’dx = !qufu dx, a=1,...,N. (1.5)

or

* * :
J u' Ly dx = J ul vy dx, a=1,...,N. (1.6)
& u Q o
by virtue of Green's formula (1.1). Consider the Hilbert space

LY, in which the inner product of two functions u and v is
given by I7 uvdx. Then, the system of equations (1.6) allows

the following conclusion:
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Any function u”, whose projection on the subspace spanned
by the system of functions {£*p, ... ff¢,}, coincides with that

of the exact solution u, is an approximate solution. Indeed,
this projection is all the information about’ the exact solution
contained in approximate one.

In this light, the representétion u“=La abo can be inter-

preted as a procedure for extrapolating the actual information
contained in the approximate solution.

The very simple and precise result just presented clari-
fies much the nature of approximate solutions and it would be
desirable to apply it, in a systematic manner, to analyze dis-
crete methods. For this purpose it is necessary to have availa
ble Green's formulas similar to (1.1), but which are applxcable
even when the functions considered are not smooth, This is
because in most applications weighting functions are localized
(i.e., they have local support) and usually violate the smooth-
ness assumptions at the boundary of their supprot. Even more,
the development of a theory applicable to carry out the analysis
when both base and test functions are fully discontinuous, was
most desirable since standard theory of distributions is not
applicable to that case.,

Herrera [1-4], recently developed an "Algebraic Theory of
Boundary Value Problems", in which the analysis of the informa-
tion contained in an approximate solution can be carried out,
when both trial and test functions are fully discontinuous.
Such setting is ideal for localizing the adjoint equation (1.6).

2.~ LOCALIZED ADJOINT METHODS

“Localized adjoint methods" consist in making systematic use

of the resulting equations to analyze the information contained
in approxxmate solutions. Since the quality of the results
obtained with a numerical method depends, in an important manner,
on the weighting functions used, one of the main goals of local
ized adjoint methods, thus far, has consisted in developing
improved weighting functions.

In recent years the authors have applied localized adjoint
methods to advection diffusion equations. The numerical results
indicate that this kind of methods possesses definite advan-
tages over other procedures [5-8]). Further improvements are
expected to come from work presently under way, in  which
Herrera's theory is applied in space-time. The localized ad-
joint methods derived in this manner, clarify and perfect Eu-
lerian-Lagragian procedures [9,10].
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3.- ADVECTION-DIFFUSION EQUATIONS

. The methodology has been applied to steady state and time
dependent problems in one and several dimensions [5-8}.

A.- One Dimensional Problems.- The steady state leads to
ordinary differential equations, for which four algorithms were
developed by Herrera et al. [3]. They were derived by seeking
nodal information only.

Algorithm 1.- The value of the function and its derivative;
Algorithm 2.- The value of the function only;
Algorithm 3.- The value of the derivative only;

Algorithm 4.- The function at some nodes and the deriva-
tive at some others.

For steady state the advection diffusion equation with
linear sources is

Lu sd{(Ddu/dx)/dx - Vdu/dx + Ru = Ql(x), 0<x< 2 (3.1)

and
£ v 2d(Ddv/dx)/dx + d(Vv)/dx + Rv (3.2)

The domain [0,%] is divided into E subintervals or elements,
not necessarily  equal, [xo.xl],....[xe_l,xgl. In order to

concentrate all the information at nodal points, test functions
are required to satisfy1r¢u = 0, locally. For algorithms 2 to

4, three-diagonal matrices are obtained, while algorithm 1
yields tetra-diagonal matrices [3]. Thus far, two procedures
have been employed for constructing the weighting functions
wich satisfy the equation £'¢a = 0, In [S5] the (variable)

coefficients of the equation were approximated by piece-wise
polynomials, while in [6) polynomials were used to approximate
the test functions, which were required to satisfy the equation
L'y, = 0 at collocation points only.

Using a semi-discretization approach, the extension to
time dependent problems is straightforward. For this case the
advection-diffusion equation can be written as

Lu = 3du/dt - fn(x,t] (3.3)

where £ is differential operator in x, given by equation
(3.1). Thus, in [7] the term 9 u/dt was incorporated in the
right-hand side of equation (3.1), at each time step, and the
solution procedure for steady state problems was applied to
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the resulting equation.

B.- Problems in Several Dimensions.- The results for ad-
vection dominated transport-diffusion problems, in several di-
mensions, have been presented in [8]. The procedure differs
from that for one-dimensional problems, mainly, due to the fact
that T-complete systems[11] are infinite in this case. Of course,
only a finite number of test functions are used in actual ap-
plications, introducing a truncation error in this manner.

C.- Numerical Results.- For one dimensional steady state
problems the procedure yielded [5,6] very efficient and highly
accurate algorithms, which advantageously compare with those
previously available,

For time dependent one-dimensional situations, only al-
gorithmsl and 2 were applied. These correspond to the use of
fully discontinuous and C° weighting functions, respectively.
Two test problems were treated to demonstrate the performance
of the new method: the propagation of an initial step disconti-
nuity and of a Gauss hill. The results and the efficiency of
the procedure werc compared with other methods, testing the
effect of changing several parameters such as 6 (in time),
element Peclet number, as well as Courant number. The conclu-
sion was reached that solutions obtained with this method are
as least as good as those from the best available interior
methods [7].

Similar conclusions were diawn in the case of two-dimen-
sional problems. For details see [8] in these proceedings. In
general, localized adjoint methods allow very effective treat-
ment of boundary conditions, but this is specially noticiable
for two-dimensional problems, due to its greater difficulty.
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A QUICK Finite Element
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Dept of Civil Engineering, University of Alberta,
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Abstract

Petrov-Galerkin finite elements corresponding to higher order upwind finite
difference schemes, including the QUICK scheme, for convection dominated
problems are introduced and demonstrated. These elements are developed using
either trial or test functions which are extended to higher polynomial degrees by
including nodes external to the element under consideration. In simple one
dimensional situations, the finite elements are shown to reproduce second and third
order finite difference approximations for the convective term, an unaffected
(second order) diffusion term and a consistent upwind mass term. A two
dimensional driven cavity fluid flow (stream function-vorticity formulation)
solution at a Reynolds Number of 1000 is also presented. »

1. Introduction

Numerical solutions of convection dominated problems have long suffered
from the instability of centered or Bubnov-Galerkin representations of the
convection terms. In order to obtain stable solutions, some form of upwinding,
whether of the finite differences, or of the finite volume interpolations, or of the
test functions in a Petrov-Galerkin finite element method, is usually employed. In
effect, an artificial or numerical diffusion, in the form of a first order, second
derivative, truncation error is introduced. With a consistent finite element ‘
technique or with careful blending of upwind and centered forms, this additional
error may be negated in combination with other error terms present.
Extraordinarily accurate and even exact results are possible in particular situations.

In finite volume formulations of the fluid flow and transport equations,
quadratic upwind interpolation [1] of convected quantities has provided an
alternative means of stabilizing solutions without introducing numerical diffusion.
In finite difference methods second or third order upwind differences have been
used to similar effect [2,3]. In either case the discrete equations contain terms from
more upstream nodes than downstream nodes. While such methods do not
eliminate the "wiggles”, their magnitude is limited and their presence is confined to
regions of very steep gradients [4]. Accuracy in smooth regions of the solution is
generally enhanced [4,5].



