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ABSTRACT

Lacalized AdJoint Method is a new methodology of wide
applicability, based on the author’s Green’s formulas for
discontinuous fields. Here it is presented in connection with
transport diffusion problems for which the Eulerlan-Lagranglan
Localized Adjoint Method (ELLAM) has been formulated by the
LAM group (M.A. Celfa, R.E. Ewing and T.F. Russell, in
addition to the author). The ELLAM development unifies
characteristic methods, treats boundary conditions
systematically, ylelding conservative schemes.

1. INTRODUCTION

The numerical solution of the advective-diffusive transport
equation is a problem of great importance because many problems in
science and engineering involve such mathematical model. The
numerical treatment of advection dominated processes 1is quite
difficult. The procedures available derive from two mailn
approaches: standard semidiscretization and Eulerian-Lagrangian.
The main distinguishing feature of the latter is the use of
characteristics to carry out the discretization in time. Most
formulas that have been developed using a standard
semidiscretization approach have been based on up-stream weighting
techniques, whose development is essentially ad-hoc.

An alternative and very promising approach has been introduced
by Herrera ([1-5] and coworkers. In past work, this has been
referred as "Optimal Test Functions Method". However, from a
technical point of view, it would be more appropriate to call such
procedures "Localized AdJjoint Methods". Also, in &his manner the
method would be more clearly distinguished from other procedures.
Hence, this is the terminology that has been adopted more recently
l6,71. '

The starting point of localized adjoint methods is a very
simple idea. Let £ be a differential operator that will be applied
to functions defined in a region N and let 2‘ be its formal
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adjoint. Then, when u and v satisfy suitable boundary ronditions,
Green‘s formula
k) Qvfudx = J‘Quiﬂ' vdx {(1.1) .

is satisfied. Equation (1.1) allows a convenient interpretation of
the method of weighted residuals. Consider the problem of solving
the equation

fu = fQ . in Q (1.2)
subjected to homogeneous boundary conditions for which Green’'s
formula (1.1) applies. In the method of weighted residuals, one
usually considers a sysiem of welghting f(or test) functions
(:pl,...,goN}. Then, a functlon w’ 1is said to be an approximate
solution of this problem when

fnwa(fu' - fg)dx =0, a=1,...,N (1.3)
Generally, the system of N equations (1.3) has many solutions, but
in order to obtain a system possessing a unique solution, it is
customary to introduce a representation u’ = >:Ac‘43oc of the
approximate solution in terms of the system (¢1,...,¢N}of base (or
trial) functions. However, this representation is an artifice that

bears little relation with the exact solution u.

The following observations permit establishing the actual
relation that exists between an approximate solution and the exact
one and derive the actual information about the exact solution
which is contained in an approximate one. From (1.2), it is clear

that the exact solution u, satisfies

J“qua(ieu —fQ)dx = 0, a=1,...,N. (1.4)
Equations (1.3) and (1.4) together imply
J‘quaﬂu dx = fncpaifudx w=1,...,N. (1.5)
or
, - - - -
J'Qu 2 q)adx = J‘QUZ wadx a=1,...,N. (1.6)

‘by virtue of Green’s formula (1.1). Consider the Hilbert space 1’2.
of square integrable functions and in which the inner product of
two functions, u and v, is given by J‘qudx. Then, the system of
equations (1.6) allows the following interpretation:
A function u’ is an approximate solution if and only if, its
projection on the space spanned by the system of functions
{-‘B.wi.....f.qpn). coincides with that of the exact solution u.
As a matter of fact, this is all the information about the

exact solution contained in an approximate one.
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In this light, the representation u’ = 2Aa¢a can be Interpreted as
a procedure for extrapolating the actual information contained in
the approximate solution. ’

The very simple and precise result Jjust presented clarifies
much the nature of approximate solutions and it would be desirable
to apply it, in a systematic manner, to analyze discrete methods.
For this purpose it 1{is necessary to have available Green’s
formulas similar to (1.1), but that can be applied even when the
functions considered are not smooth, since in most numerical
applications the weighting functions are localized (i.e., they
have local support) and they usually do not satisfy the smoothness
requirements at the boundary of their support. Even more, the
development of a theory applicable to carry out the analysis when
both base and test functions are fully discontinuous, 1is most
desirable since standard theory of distributions is not applicable
to that case.

Herrera [1-5]), recently developed an "algebraic theory of
boundary value problems” with precisely that property; that is, in
which the analysis can be carried out when both trial and test

functions are fully discontinuous. Such setting is ideal for
localizing %he ad joint equatlon (1.6).

"Localized adjoint methods (LAM)", which are presently being
developed by the LAM group (M.A Celia, R.E. Ewing, 1. Herrera and
T.F. Russell), consist in making systematic use of that theory to
analyze the information contained in approximate solutions. Since
the quality of the results obtained with a numerical method
depends, in an important manner, on the weighting functions used,
one of the main goals of localized adjoint methods, thus far, has
consisted in developing improved welghting functions. In this
paper the LAM methodology 1is explained 1Iin connection with
transport diffusion problems.

2. GREEN-HERRERA’S FORMULAS FOR TRANSPORT-DIFFUSION EQUATIONS

The general abstract boundary value problem considered by the

theory 1is formulated in a linear space of functions D and
corresponds to one with prescribed Jumps. It is defined by the
system of equations:

Pu = f; Bu = g; Ju = j§ (2.1
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where P, B and J are functional valued operators, while feD, geD.
and ch. are prescribed functionals (the data of the problenm).
Here, D‘ is the algebraic dual of D (i.e. D’ is the space of
linear functionnals defined on D). The general theory supplies a
systematic procedure for derlving the operators P, B and J, as
well as Q, C and K, to be introduced later on. Their definitions
depend on the differential operator, the boundary conditions and
smoothness conditions considered. The linear functionals f, g and
J, are determined by the data of the problem; in particular, when
the sought solution is smooth, the prescribed jump j=0.

The bilinear functionals B and J are constructed so that they

are boundary operators for P, which are fully disjoint {2,5]. In

this case the system of equations (2.1) is equivalent to the
single equation
(P-B=-Jju=f-g- (2.2)

This equation is a variational formulation of the problem, as can
be verified observing that (2.2) is equivalent to

<{P - B- JJu,v> = <f ~g - J,vv ¥ veD (2.3)
This is said to be "the variational formulation in terms of the
data of the problem"”, because according to (2.1) Pu, Bu and Ju are
prescribed.

Making wuse of the Herrera's general Green formula [s)

4

operators in discontinuous fields [2,5]

R - -
P-B-J=Q~-C-K (2.4)
the variational formulation (2.3) is transformed into
- » -
<(@ ~-C -K)uvws=<f-g-jv¥veD (2.5)

Where for any bilinear functional, the star refers to the
corresponding transposed bilifear functional. Formulation (2.5) is
said to be "the variatlional formul#tion in terms of the sought
information", because Q'u, C.u and K'u are not prescribed.
Generally, Q.u. C.u and K.u supply infeormation about the sought
solution at the interior of the region of deffnition of the
problem; the complementary boundary values and the average of the
solution (and its derivatlives) across interelement boundaries
(where the base and test functions chosen may have jump
discontinuities), respectively.

Making use of the variatiopal formulation in terms of the

sought information, the arguments that lead to the formulation of



Computational Methods in Surface Hydrology 437

Localized Adjoint Methods, constitute a mere repetition of those
presented in the Introduction. Given a system of welighting

functions (¢1,....¢N}CD, an approximate solution is agaln< any
function u’eD which satifies
L - -
<(Q -C -K Ju’,@ > = <f-g-J,p. > , «=1,...,N (2.6)
Clearly, equation (2.6} implies
* L d L 3 L 3 - -
<(Q -C X )u’,¢a> = <(Q -C ~K )U.¢a>, «=1,...,N (2.7)

since an exact solution alsoc satlsfies (2.6). Equation (2.7), 1is
the basis for the analysis of the information contained in an
approximate solution and constitutes the foundation of Localized
Adjoint Methods. In particular, when the test functions are chosen
satisfying the adjoint differential equation (Qv =0), the
information is concentrated at the nodes (K u) and complementary _

boundary values (C u), exclusively

3. EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHOD (ELLAM)
LAM procedure was applied by the LAM group [6,7] to the

one-dimensional transient advection-diffusion equation

=R av® oy g;_“z_ = folxt) 5 O t)eq | (3.1)
subjected to the initial and boundary conditions:
u(x.0)=ux(x) (3.2a}
u(O,t)=u°(t) and 6u/3x(1.t)=q1(t) (3.2b)

Here, Qx . is the space-time rectangle [0, 11X[0,T].

*

For any function v, the adjoint operator

L]
£v=-2 -2 -0 i’ll PoGen (3.3)
8x
satisfies
v&u -uz‘v = —~(uv)+ q—[vVu+D(u5— - leﬂ (3.4)
ax

which is a divergence form in space-time. Integrating (3.4) in the
region ('zx‘t and applying a generalized version of divergence
theorem [8], which 1is applicable to functions with Jjump
discontinuities, it is obtained

v du, 1 T
S veu —uf viaxdt = Cvindu-vill) lat + ffuviTax

av au
- Iz{((v-vz)v+05§)}u-v05§ ldat (3.5)

where I includes all the curves where Jjump discontinulties can

occur and for any function w, the notation [w] denotes the jump in
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W across Z:

[w] = L (3.6)
As it is usual when formulating initlal-boundary value problems- in
a weak manner, a bilinear form <Pu,v> is introduced weighting the
differential operator ¥u with the function v. In a similar fashion
the bilinear form <Qv,u>§<Q'u,v> is defined weighting Z‘v with the

function u. Thus

» »
<Pu,v>zj'Qx tvl’udxdt while <Q u,v>= Ihx tuf vdxdt (3.7)

To accomodate the boundary and initial conditions (3.2) the
operators B and C are defined by

- _¢T v 1 _ Te,pdu
<Bu, v>= jb((Vv+D5§)u}°dt + Io(uv)odx Io(V05§’1dt {3.8a)
and
<C‘u Vo= —II(VDQB) dt - Il(uv) dx - IT((VV +Dé!)u} dt (3.8b)
g o dx'o 0 T o ax” 1 :

so that <(B—C‘)u.v> includes all the boundary terms appearing in
{(3.5). The definition of the bilinear forms J and K depends on the
smoothness conditions to be satisfied by the sought solution u.
Usually for transport diffusion problems physical requirements
impose the conservation of mass condition, which 1implies
continuity of u .and 8u/8x, unless the equation coefficlents are
discontinuous. For these smoothness conditions the general theory
of the author [2,5i yvields

- . v 15e09Y1 (ul-Snf 94
<Ju,v> = Iz{((V Vz)v+D§§)[u] vD[ i ])dt (3.9a))
and
" v 4., 3u
<K u,v> = S AUV-VR) IvI+D[ 5o JIu-[vIDg-)dt (3.9b)

vhere the jump [ ] is taken as in (3.6), while for any function w,

w is the average across Z, defined by:

woE (W W)/ (3.10)
In view of (3.5), one has
] - -

<(P-B~J)u,v> = <(Q -C -K Ju,v> (3.11)

which 1is Green-Herrera formula (2.4), as it applies to the
transport diffusion equation. The weak variational formulation in
terms of the data of the boundary value problem, with specified
Jumps, is now given by (2.3)

<(P-B-J)u, v>=<f-g-j, v> vV veD (3.12)
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where f, g and J are linear functionals defined in terms of‘the
data of the problein. They are such that f=Pu, g=Bu and j=Ju when u

is a solution of the problem. Thus
<f,v>= Invfﬂdxdt V veD (3.13a)

_ _¢T av _ T _ ol
<g,v>= J“o{(Vv+D‘—3§))ouodt J‘o(vD)Iqldt J“o(v)ouldx (3.13b)

while j is the identically zero functional, when a smooth solution

Is sought. The variatlional formulation in terms of the sought

information is given by (2.5):

<(Q* - C‘ - K')u.v> =<f - g - J,v> ¥ veD (3.14)
Equation (3.14) can be applied to analyze the information
contained in approximate solutions. In this manner a
generalization of Characteristic Methods, called

Eulerian-Lagrangian Localized Adjoint Method (ELLAM), has been
developed by the author in collaboration with Celia, Ewing and
Russell [6,7].

3. GENERAL COMMENTS AND CONCLUSIONS

Many numerical methods use characteristic analysis to
accomodate the advective component of transport. Such
Characteristic Methods include Eulerian-Lagrangian Methods (ELM)
[9-11], Modified Method of Characteristics (MMOC) [12,13], and
operator splitting methods [14,1S]. The ELLAM approximations
provide a systematic framework for development of Characteristic
Methods for numerical approximation of advective-diffusive
transport equations. The Localized Adjoint Method (LAM) procedures
lead naturally to the definition of special space-time test
functions that produce the generallzed CM approximations. The
resulting set of approximating equations subsumes many of the CM
approximations proposed in the literature. It therefore. unifies
these methods. In addition, the development inherently provides a
systematic procedure for proper Iincorporation of all types of

boundary conditions in a mass conservatlive manner.
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