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Abstract

Localized Adjoint Methods (LAM) form a broad class of numerical methods of
operator-splitting type for partial differential equations, which is based in Herrera’s
Algebraic Theory of Boundary Value Problems. Application of LAM to flow and
transport problems in porous media leads to generalized formulations of many stan-
dard approximation methods. These include Optimal Spatial Methods, with a vari-
ety of Petrov-Galerkin methods as subsets, and Characteristics Methods, with vari-
ous Methods of Characteristics and Eulerian-Lagrangian Methods as subsets. After
multiphase flow equations and operator-splitting techniques are presented, the LAM
technique and its associated mathematical properties are discussed and its practical
application to multiphase flow problems outlined.

1. INTRODUCTION

Many very difficult problems arise in the numerical simulation of multiphase or
multicomponent fluid flow through porous media [1]. The mathematical models used
to describe the complex flow processes are coupled systems of nonlinear partial differ-
ential equations and constraining equations. In industrial applications, these differen-
tial equations are commonly discretized via finite difference techniques in large-scale
reservoir simulators. Due to the enormous size of many field-scale applications, quite
large grid-spacings must be used in the simulations. The use of large grid-spacings
with strongly nonlinear partial differential equations often generates spurious numeri-
cal artifacts which ma§‘destroy the usefulness of the simulation. In this paper, certain
techniques are identified to help treat these problems by utilizing the basic properties
of the flow more effectively.

In complex flow processes, two or more fluids can flow in an immiscible, or non-
mixing, fashion at certain times or in a miscible mode, where mixing of the fluids takes
place, at other times. For this reason, useful numerical techniques for multiphase or
multicomponent reservoir simulators should be capable of treating both miscible and
immiscible displacement phenomena.

These problems are both basically of convection/diffusion type with convection be-
ing the dominant process. Diffusion or dispersion is a small phenomenon relative to
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convection, but is important for miscible flow regimes and may at times describe im-
portant capillary pressure effects in immiscible flow. Without the diffusion/dispersion
terms, the model equations for each prototype would be nonlinear conservation laws
which can produce shock solutions with very different flow properties. Standard up-
stream weighting techniques for stabilizing these hyperbolic partial differential equa-
tions can produce artificial numerical dispersion, which is of the order of the grid
spacing size, and spurious effects related to the orientation of the grid.

Various authors have presented techniques to control numerical dispersion in tradi-
tional finite difference simulators for the miscible convection /diffusion models. How-
ever, they have met with limited success. On the other hand, by making use of
mixed finite element techniques to study convection/diffusion models, the authors in
[2-11] have been successful in greatly diminishing or essentially eliminating numerical
dispersion and grid-orientation problems. We will stabilize the transport-dominated
equations by utilizing methods specifically designed to treat the transport properties
efficiently via special time-space test functions which follow the flow accurately. The
methods are intended to treat both miscible and immiscible displacement since both
give rise to nonlinear advection-dominated equations.

The numerical treatment of advection-dominated processes is quite difficult. The
procedures available emanate from two main approaches: the standard temporal
discretization and Eulerian-Lagrangian methods. The main distinguishing feature
of the latter is the use of characteristics to carry out the discretization in time, to
follow the flow. Most formulas that have been developed using a standard temporal
discretization approach have been based on upstream weighting techniques, whose
development is essentially ad-hoc and which can lead to serious numerical dispersion
and grid-orientation problems.

In this paper, we first examine model equations for both multicomponent and
multiphase flow and see that they both reduce to nonlinear advection-diffusion forms
of partial differential equations. We then review some operator-splitting techniques
that have been designed to treat the advective aspects of the flow. In the case of mul-
tiphase flow, we note that the operator splitting does not symmetrize the operator,
and special test functions are necessary to stabilize the Petrov-Galerkin discretization
procedure. We note that the Eulerian-Lagrangian techniques in operator splitting and
the upstream stabilization methods are each special forms of Localized Adjoint Meth-
ods. We then present Eulerian-Lagrangian Localized-Adjoint Methods (ELLAM) in
some detail for one-dimensional applications, for clarity of exposition. Next, a general
mathematical framework of the LAM techniques is discussed to indicate the general-
ity of the approach. Finally, conclusions are drawn to illuminate the potential role of
LAM in multiphase flow applications.

2. THE FLOW EQUATIONS

The miscible displacement of one incompressible fluid by another, completely mis-
cible with the first, in a horizontal porous reservoir @ C IR? over a period J = [Ty, T],
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is given by [1,17]

k
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where p and u are the pressure and Darcy velocity of the fluid mixture, ¢ and % are the
porosity and the permeability of the medium, p is the concentration-dependent viscos-
ity of the mixture, c is the concentration of the invading fluid, ¢ is the external rate of
flow, and ¢ is the inlet or outlet concentration. D is, in general, a diffusion/dispersion
tensor which has two parts, molecular diffusion and a velocity-dependent dispersion
term. For simplicity in the succeeding development, the diffusion/dispersion coeffi-
cient will be assumed to be independent of velocity. Also, the viscosity x in Equation
(2.1) is assumed to be determined by some mixing rule. In addition to Equations
(2.1) and (2.2), initial and no-flow boundary conditions are specified. The flow at
injection and production wells is modeled in (2.1) and (2.2) via point sources and
sinks.

The equations describing two-phase, immiscible, incompressible displacement in a
horizontal porous medium are given by

krw

w
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where the subscripts w and o refer to water and oil, respectively. S; is the saturation,

pi is the pressure, k,; is the relative permeability, p; is the viscosity, and ¢; is the

external flow rates, each with respect to the ith phase.

Although formally the equations presented in (2.1) and (2.2) seem quite different
from those in (2.3) and (2.4), the latter system may be rearranged in a form which
very closely resembles the former system. In order to use the same basic simulator
in our sample computations to treat both miscible and immiscible displacement, we
briefly discuss a miscible/immiscible analogy between equations.

Adding Equations (2.3) and (2.4) and performing some simple calculations, we
obtain

-V (k/\(S)Vp) =quw + ¢ = G, (25)
vi = —kM(S)Vp, (2.6)

where k) is the transmissibility, p is a global pressure of the fluid defined in [17], and
v; is the corresponding fluid velocity. Taking the difference of Equations (2.3) and
(2.4), the following equation is obtained:

2 X
g~V - (DVS)+V-(Tvi)  qu
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Here the capillary diffusion term D and the fractional flow \,v; are defined in terms
of relative permeabilities and capillary pressure terms as in [1,14,15,18].

With a special form of relative permeabilities and capillary pressure, the viscosity
dependence in pressure equation (2.5) is the same as that specified as concentration
dependence for Equation (2.1). Therefore, v, + v,, (i.e., v¢), solved from Equation
(2.5), will be identical to u in Equation (2.1). Moreover, Equation (2.8) has the
same form as the concentration equation (2.2) if S is interpreted as a component
concentration and ¢, is equal to Sq;. This establishes the analogy between the two
systems. They are both basically of the form of nonlinear advection-diffusion problems
with dominant advection. The LAM numerical techniques presented here have been
developed to treat this class of equations effectively.

3. OPERATOR-SPLITTING TECHNIQUES

In finite difference simulators the advection is stabilized via upstream weighting
techniques. In a finite element setting, we use a possible combination of a modified
method of characteristics and Petrov-Galerkin techniques to treat the transport sep-
arately in an operator-splitting mode. We describe this operator-splitting concept in
the context of a modified method of characteristics in this section and then in terms
of ELLAM techniques in the next section.

In miscible or multicomponent flow models, the convective, hyperbolic part is a
linear function of the velocity. An operator-splitting technique has been developed to
solve the purely hyperbolic part by time-stepping along the associated characteristics
[7,9,17). We first obtain the non-divergence form of (2.2) by using the product rule
for differentiation on the V - uc term and applying (2.1) to obtain

7]

a—:+u-Vc V.-DVc=gq(é c¢).

Next, the first and second terms in Equation (3.1) are combined to form a directional
derivative along what would be the characteristics for the equation if the tensor D
were zero. The resulting equation is

V- (DVec) +q(c—c¢) ¢%+u-Vc ¢%.

The system obtained by modifying Equations (2.1)-(2.2) in this way is solved sequen-
tially. An approximation for u is first obtained at time level ¢ = ¢* from a solution of
Equation (2.1) with the fluid viscosity p evaluated via some mixing rule at time level
t"~1. Equation (2.1) can be solved as an elliptic equation for the pressure p, or via a
mixed finite element method for a more accurate fluid velocity. Let C"(z) and U"™(z)
denote the approximations of ¢(z,t) and u(z,t), respectively, at time level t = t".
The directional derivative is then discretized along the “characteristic” mentioned
above as

Cn-—l (_:L'-"_l)

At

o, OO~
¢57‘_(x’t )= ¢
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where " ! is defined for an z as

n
" l=¢ U'(z)At (3.4)
¢

This technique, first described by Russell [10] for petroleum applications, is a dis-
cretization back along the “characteristic” generated by the first order derivatives
from Equation (3.2). Although the advection-dominance in the original Equation
(3.2) makes it non-self-adjoint, the form with directional derivatives is self-adjoint,
and discretization techniques for self-adjoint equations can be utilized. This modi-
fied method of characteristics can be combined with either finite difference or finite
element Galerkin spatial discretizations.

In immiscible or multiphase flow, the convective part is nonlinear. A similar
operator-splitting technique to solve this equation needs reduced time steps because
the pure hyperbolic part may develop shocks. Recently, a new operator-splitting
technique has been developed for immiscible flows [14-16] which retains the long

time steps in the characteristic solution without introducing serious discretization
errors.

The operator splitting gives the following set of equations:

S d e om 4=
¢ +—f (S)-VS.—_d;d—TS 0,

A
¢3
tm <t < tm41, together with proper initial and boundary conditions. As noted
earlier, the saturation S is coupled to the pressure/velocity equations, which will be

solved by mixed finite element methods [2,3,7-9].

\NT 77

: + V- (b™(S)S) — eV - (D(S)VS) = q(x,1).

The splitting of the fractional flow function into two parts: f™(S) + b(S)S, is
constructed [14] such that f™(S) is linear in the shock region, 0 < § < 5; < 1, and
b(S) =0 for S; < § < 1. Further, Equation (3.5) produces the same unique physical
solution as

¢ %—f + V- (f™(S)+b(S)S) =0 3.7)

with an entropy condition imposed. This means that, for a fully developed shock, the
characteristic solution of Equation (3.5) always will produce a unique solution and,
as in the miscible case, we may use long time steps At without loss of accuracy.

The solution of Equation (3.6) via variational methods leads to the following
Petrov-Galerkin equations:

B(SP, ¢) = (Sp™1, 6) (%b(x, t’")s;:‘“,w,-) + (%D(x,tm)vsr“,w,-)

= (gIT(x,tm)a ¢i)’ 1= 1’2" o aN’ SIT € Mh, ¢:’ € Nh, (38)

where M} and Nj are the trial and test spaces spanned by {6;} and {4;}, i =
1,2,---, N, respectively. B(:,-) given by Equation (3.8) is an unsymmetrical bilinear
form with spatially-dependent coefficients.



6 Localized Adjoint Methods

In order to obtain Equation (3.8), we have used the characteristic solution from
Equation (3.5) to approximate (0/97)S and the nonlinear coefficients [14] in Equation
(3.6). The nonsymmetry in the bilinear form B(-, -) is caused by the nonlinearity of the
convective part of the equation, represented by the term b(S)S. This term balances
the diffusion forces in the shock region after a traveling front has been established.

We want to use numerical techniques which work well for the symmetric, coercive,
bilinear forms to solve Equation (3.8). We consider a procedure, developed by Barrett
and Morton [19], which symmetrizes the bilinear form B(-,-) by defining a new set of
test functions as follows: ’

m a m 9 . xom p.
B(S ,¢.‘) = (akléx—ks ,5:'1:—’0,) B (S ,0,), 0<any< K. (3.9)

One can see that the test functions defined in this way are closely related to test

functions that satisfy the adjoint operator. This property will be developed in more
detail below.

The test functions ¢; defined by Equation (3.9) have nonlocal support and would
thus cause serious computational problems for large-scale problems. However, a lo-
calization procedure was developed by Demkowitz and Oden [12,13] which allows
efficient computational procedures. Since the bilinear form B(-,-) is coercive, we
obtain optimal approximation properties in the norms defined by the form. For com-
putational reasons, it may be better to use an approximate form of the optimal test
function ¢;. An estimate for the error introduced by an approximate symmetrization
of B(-,-) is given by Barrett and Morton [19].

It seems natural to relate the size of the coarse domains to the solution of the
pressure-velocity equation [14], since the velocity varies slowly and defines a natural
long space scale compared to the variation of the saturation S at a front. A local
error estimate, which determines if a coarse grid block must be refined, is given in
reference [14]. Normally, local refinement must be performed if a fluid interface is
located within the coarse grid block in order to resolve the solution there. A slightly
different strategy is to make the region of local refinement big enough such that we
can use the same refinements for several of the large time steps allowed by the method.
The local grid refinement strategy combined with the operator splitting is defined in
the literature [14-16]. The solution at each of the coarse grid vertices and the local
refinement calculation may be sent to separate processors to achieve a high level of
parallelism in the solution process.

The difficult problem with these techniques is the communication of the solution
between the fine and coarse grids. The domain-decomposition technique described in
[20] gives accurate and efficient treatment of the communication problem.
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4. AN EULERIAN-LAGRANGIAN LAM FOR
ADVECTION-DIFFUSION TRANSPORT EQUATIONS

Unfortunately, the modified method of characteristics techniques described above
generally do not conserve mass. Also, the proper method for treating boundary con-
ditions in a conservative and accurate manner using these techniques is not obvious.
Recently, M. A. Celia, T.F. Russell, and the authors have devised Eulerian-Lagrangian
localized adjoint methods (ELLAM) [21,22], a set of schemes that are defined ex-
pressly for conservation of mass properties.

The ELLAM formulation was motivated by localized methods [23,24], which are
one form of the optimal test function methods discussed above [12-15,19]. We briefly
describe these methods. Let

Lu f, z € Q or (z,t) € Q,

denote a partial differential equation in space or space-time Integrating against a
test function ¢, we obtain the weak form

/QLuquw /qusdw.

If we choose test functions ¢ to satisfy the formal adjoint equation L*¢ = 0, except
at certain nodes or edges denoted by ¢; on 00, and ¢ = 0 on the boundary, then
integration by parts (the divergence theorem in higher dimensions) yields

Z/& uL*¢dw=/Qf¢>dQ.

Various different test functions can be used to focus upon different types of infor-
mation. Herrera has built an extensive theory around this concept [25-29, 31]. The
theory is quite general.

The formulation and usefulness of ELLAM can be seen most easily via a specific
one-dimensional model problem. At first, we consider a constant-coefficient advection-
diffusion equation for concreteness and simplicity of exposition and then remark about
extensions to variable and nonlinear coefficients. We will see that in the context of
backward Euler temporal integration, the ELLAM corresponds almost exactly (except
for the more accurate treatment of boundary conditions) with the modified method
of characteristics (MMOC) approach {32] presented in the previous section. ELLAM
is more general and has potential for even better results than in MMOC.

Consider the one-dimensional transient advection-diffusion equation, motivated by
(2.2) or (2.7),with c or S represented by a scalar function u subject to appropriate
initial and boundary conditions:
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v 2

Le = -a—l:+:a (Vu)——D%v}—:- = qi = f(z,t), (4.4)
u(z,0) = ui(z),
u(0,¢) = wuo(?),

s(lt) = qft).

First- and second-type boundary conditions are chosen for demonstration purposes
only; the following development accommodates any combination of boundary condi-
tions. The adjoint operator associated with the operator L of Equation (4.4) is

ow ow 8w

The LAM approach is initiated by writing the weak form of equation (4.4). Let w(z, t)
refer to a test function (whose precise form will be determined as part of the LAM
development), so that the weak form of Equation (4.4) is

/: [ (= wie,tydtds = 0. (4.6)

As discussed above, the test function w(x,t) is chosen from the solution space of the
homogeneous adjoint equation (4.5).

As opposed to the simple developments for ordinary differential operators, the solution
space of the partial differential equation (4.5) is infinite-dimensional. Because the
objective of the numerical procedure is derivation of a finite number of algebraic
equations, only a finite number of test functions should be chosen. Different choices of
test functions (solutions of Equation (4.5)) lead to different classes of approximations,
including families of Optimal Spatial Methods and general Characteristic Methods.

By analogy to the tensor product approach of Celia, et al. [23,24], a product
solution of the form w(z,t) = £{(x)7(t) could be sought such that £(z) satisfies the
homogeneous spatial operator of Equation (4.5) while 7(¢) satisfies the temporal part.
Such a space-time split, defined on a rectangular discretization of 0, ;, leads to optimal
spatial algorithms involving exponential weightings in space. The result is analogous
to the semi-discretizations presented in [24].

To derive a general family of Characteristic Methods (CM’s), a different set of
solutions to Equation (4.5) must be used. In particular, consider solutions to Equation
(4.5) which satisfy the two homogeneous subequations that are grouped based on
common order of derivatives, viz. %—‘;’-}-V%’ﬁ = 0 and D%zx—';’ = 0. The second constraint
implies linear functions of z, while the first constraint implies w = constant along
lines z — 2o = u(t —to). A natural choice for such a test function can be defined with

respect to a rectangular array of nodes in space-time as follows,
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T—Tiy oy i
=2+ VES, (pt) ey,

+1 —  zip-w nt1_ ;
wt (z,t) =z VELSt (x,t) eQ,
0, all other (z,t),

where subscript ¢ denotes spatial location (z; = i(Az) for constant spatial step Az),
superscript n denotes time level (t* = n(At) for constant time step At); this test
function is associated with spatial location ¢ and temporal location n + 1. In writing
Equation (4.4), constant node spacing Az has been assumed. The regions Qi and
are illustrated in Figure 1, as is a typical test function. The function w?*!(z,t) has the
properties that it is C°[Q,] and C~?[€,]; it is nonzero over only one time step (" to
t"*1) with discontinuities aligned along ¢* and ¢"*!; and the lines of spatial derivative
discontinuities align with the characteristics that intersect the nodes z;_,, z;, and z;4,
at time level ¢"1,

Given this test function definition, the weak form of the equation can be evaluated
by standard integration procedures as in [21]. Let the spatial locations at time level
t" that are on the characteristic curves that intersect points x;_,, z;, ;41 at t"*! be
denoted as z}_,,z}, and z},,, respectively, as illustrated in Figure 1. These points
are often referred to as the “foot of the characteristic” points. In addition, let the
characteristic curves that pass through points z;_,, z;, and z;4, at time ¢**! be iden-
tified by zj(t), z(t), and zi(t), respectively, as illustrated in Figure 1. The weak form
of Equation (4.4) can be rewritten in an equivalent form by applying integration by
parts. If u(z,t) is assumed to be at least C*-continuous in z and C°-continuous in ¢
(cases of less restrictive continuity are treated by the general theory of Herrera), then
the integrations of Equation (4.6) can be written equivalently as a sum of elemental
integrals. Integration by parts can then be applied element-by-element, where “ele-
ments” are defined as the regions 0}, %, etc. Evaluation of the weak form (4.3), with

wit!(z,t) used as the test functlon leads to the following expression:

/o / (Lu — f) wi*t(z,t) dzx dt =

/ / [ f(w,t)l witl(z,t) dr dt

=]
/ u(z, "t (z, ") dz — / ou(z, Y wit (2, t7) do
Ti—l *

Fia
p [/ﬂj

awn-l-l tn+l ) awn+1
u(zi(0), t)|[ ]] " u(wz(t),t)ﬂ ' ]]
10 / 9z |
tn+l
o

n+1
u(zi(t),t) I[alg'm }] | ] + L u(z,t)L*wPt! dz dt
zit |
w1 d dt / )wt (e, 1) do dt =
+/Qg u(z,t) L w; x o 0 flz,t)w! T (z,t)dzdt =0,

n+1

L
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where the double bracket notation denotes a spatial jump operator, [- ]ka =
limeo [(*)zx+¢ — ()ze—e] - Due to the special choice of test function given by Equa-
tion (4.7), L*w}*! = 0 in both Q¢ and €, so that the interior integrals involving
u(z,t) are eliminated. Furthermore, due to the constant coefficients, the spatial

jump operators can be evaluated from Equation (4.4) as
[[(?w}‘“ ]I [[awrﬂ ]] 1 [[awy“ II -2
oz #(2) Oz £5(4) Az Oz 2 (1) Az

Equation (4.8) can therefore be simplified as

Tit1 T
/ u(z, ") wit (2, t") dz — / (e, tYwrt (2, ) dx
T -

i—1 Ti1

D [(Aix) /tt+ u(zi(t), ¢) dt — (Z25> /t” u(z(2), 1) dt

+(x) ]t” u(xj(t),t)dt] - L

1

o f(z,)wit(z,t) dz dt. (4.9)

In addition to conservation of mass, the ELLAM give us direct information about
how to accurately treat boundary conditions. When a characteristic line passing
through points x;_1,z;, or z;41 at time £"*! crosses the boundary between times
t* and t"*1, call it time t*, the boundary information must be incorporated into
the approximating equation. Based on the treatment of boundary conditions, all
MMOC and ELM approximations previously proposed in the literature appear to be
inherently non-mass-conservative. In variable velocity fields, failure to conserve mass
may also result from inexact representations of the characteristics.

The ELLAM approach provides a systematic and consistent methodology for
proper incorporation of boundary conditions. To demonstrate the incorporation of
boundary conditions at the inflow boundary (z = zo = 0 for the example with V > 0),
we consider an example for which the Courant number Cu = V(At)/(Axz) is between
1 and 2. The general case is treated in [21]. For the case of 1 < Cu < 2, the character-
istic curve that passes through node 1(z = z;) at time ¢"*! intersects the boundary
at z = zo = 0 at time t] > t". Therefore, equations that involve this characteristic
will be influenced by boundary conditions. Consider the ELLAM equation associated
with node 1. The test function w}*(z,t), illustrated in Figure 2, differs from the
general function w?*! of Figure 1 because part of N{'*! intersects the boundary at
z = 0 with nonzero value. Therefore, evaluation of the general ELLAM equations are
modified by boundary influence. The ELLAM equation associated with w?*(z,1) is
derived in the same way as Equations (4.8) and (4.9): elemental integration by parts
is applied to each term and the condition that L*w}*" = 0 in each element is used to
produce
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-

2 T,
/ u(z, t")wt (z, ") dz [/ ’ u(z, t")wit (z,t") dz
zo T

0

tn+1

+V/ " (0, i (0, t)dt] [(A )/ u(0,) dt

(Z%) /t:m u(z;(t),t) dt + (i) /t:"“ u(z}(t),t) dt] (4.10)

+D/:+l g (0,¢)wi*'(0,t)dt + D (Ala:) /: u(0,1) dt

./91 fz, )wit (z,t)dx dt

Examination of Equation (4.10) indicates that the spatial integration at time ¢"
is modified by the boundary at £ = 0. While this equation spans a distance of 2Ax
in Equation (4.7), it spans (2 — Cu)Az in Equation (4.10). The part that is cut off
by the boundary corresponding to the distance Cu(Az) is picked up by the third
integral on the left side of Equation (4.10), which involves the boundary value u(0, ).
The next three integrals in Equation (4.10) correspond to the three diffusive terms
in Equation (4.8), except that the left integral is evaluated along z = 0 and the
integrand is the boundary value u(0,t). Finally, the last two integrals on the left
side of Equation (4.10) are again integrals that are evaluated along the boundary
z = 0: the second of these invloves the function u(0,t), but the first involves the
spatial gradient a"(O t). Notice that this latter integral introduces an additional
degree of freedom at the boundary, so that both u(0,¢) and 3%(0,t) are present in
this equation. Even when a first type boundary condition is spec1ﬁed at r = 0, the
flux at the boundary may need to be determined due to the presence of this integral.
Therefore, an additional equation should be written, that which corresponds to node
0, with test function wj*'(z,t) (see Figure 3). Thls is in constrast to standard
finite element methods, wherein the boundary flux need not be explicitly determined
when first type boundary conditions are prescribed. The reason that both boundary
values appear in the ELLAM formulation is that the space-time LAM elements in
Figure 1 are not parallel to the time axis, while standard semi-discrete finite elements
correspond to rectangular space-time elements with sides parallel to the space-time
coordinate axes.

Similar formulations for other Courant numbers appear in [21]. Also, outflow
boundary conditions of each type and resulting matrix equations are discussed in [21]
in some detail.
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5. General Framework for Localized Adjoint Methods

A very promising general approach incorporating the methods described in the last
section has been introduced by Herrera [25-29] and co-workers. The starting point of
Herrera’s approach is a rather simple and, as a matter of fact, old idea. Again, we
let £ be a differential operator that will be applied to functions defined in a region
Q! and let £* be its formal adjoint. Then, when u and v satisfy suitable boundary
conditions, Green’s formula

Avﬁudw:/ﬂuﬁ*vdw

is satisfied. Equation (5.1) allows a convenient interpretation of the method of
weighted residuals. Consider the problem of solving the equation

£u=fn, inQ,

subjected to homogeneous boundary conditions such that Green’s formula (5.1) ap-
plies. In the method of weighted residuals, one usually considers a system of test
functions {1, --,pn}. Then, a function ' is said to be an approximate solution of
this problem when '

/Qcpo,(ﬁu’-fn)dxzo, a=1,---,N. (5.3)

Generally, the system of N Equations (5.3) has many solutions, but in order to obtain
a system posessing a unique solution, it is customary to introduce a representation
u' = Y Aada of the approximate solution in terms of the system {¢1,---,én} of
base (or trial) functions. However, this representation is an artifice that bears little
relation with the ezact solution u. Indeed, to establish a connection with the exact
solution one has to resort to an approximation theory.

The following observations permit establishing the actual information, about the
exact solution, contained in an approximate one. From (5.2), it is clear that the exact
solution satisfies

/(;(Pa(ﬁu—fn)d:l,‘zo, a=1,---,N. (5.4)
Equations (5.3) and (5.4) together imply

/ﬂ(paﬁu'da:=/9<pa£udx, a=1,---,N,

or

L ad =/ ) ad’ = 1,01V,
/(;uﬁcp z Qu,Ccp z, a=1 N

by virtue of Green’s formula (5.1). Consider the Hilbert space, L2, of square integrable
functions in which the inner product of two functions, u and v, is given by [, uvdz.
Then, the system of Equations (5.6) allows the following interpretation:
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A function u’ is an approximate solution if and only if its projection on the
space spanned by the system of functions {L*¢;,... L*pn} coincides with
that of the exact solution u. As a matter of fact, this is all the information
about the exact solution contained in an approximate one.

In this light, the representation u' = 3~ A,dq can be interpreted as a procedure for
interpolating the actual information contained in the approximate solution. Thus, a
judicious choice of the base functions ¢,, can only be made resorting to approximation
theory.

The very simple and precise result just presented clarifies much of the nature of
approximate solutions, and it would be desirable to apply it in a systematic manner to
analyze discrete methods. For this purpose, it is necessary to have available Green’s
formulas similar to (5.1), but which are applicable even when the functions considered
are not smooth. This is because, in most applications to numerical methods, weighting
functions are localized (i.e., they have local support) and they usually do not satisfy
the smoothness requirements at the boundary of their support.

Herrera [25-28], recently developed an algebraic theory of boundary value problems;
this provides a framework for localizing the Adjoint Equation (5.6). It is natural to
call the procedures obtained in this manner “Localized Adjoint Methods” since they
are applied cell by cell. However, the reader should note that in previous work [25-28],
this approach has been called the “Optimal Test Function Method”.

Localized Adjoint Methods (LAM) consist in making systematic use of that theory
to analyze the information contained in approximate solutions. Since the quality of
the results obtained with a numerical method depends, in an important manner, on
the weighting functions used, one of the main goals of localized adjoint methods,

thus far, has consisted in motivating and developing improved test functions [21-24,
28-31].

For the specific case of L and L* defined by Equations (4.4) and (4.5), respectively,
and for the specific choices of w]'*! given by Equation (4.7), we obtained Equation
(4.9). For different choices of continuity of u and w and different splittings of the
adjoint equation to obtain w, we get very different methods. The generality in the

LAM techniques is the choice of continuity and of test functions.

For example, for steady-state problems, leading to ordinary differential equations,
four distinct algorithms were developed by Herrera et al. [28]. They were obtained
by concentrating all of the information at nodes; for each one of them the sought
information was: 1) the value of the function and its derivative; 2) the value of
the function only; 3) the value of the derivative only; and 4) the function at some
nodes and the derivative at other nodes. These algorithms were made via different
choices of continuity and test functions. When the test functions exactly satisfied
the adjoint equations in [28], exact values of the trial functions were obtained. In
general, however, approximate test functions are developed which yield the sought
information to any desired degree of accuracy.
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For the extension to time-dependent problems, previous splittings grouped time
and space derivatives [23,24]. For transport dominated problems, this corresponded to
the addition of the first-order temporal and spatial discretization errors and inaccurate
solutions. The ELLAM techniques are aimed at development of implicit time-stepping
procedures which obtain a greatly improved space-time discretization error along
characteristics. The continuity assumptions in space reduce the sought information
along the characteristic lines, and special temporal integration schemes reduce the
algorithms to MMOC-like techniques, but with more accurate treatment of boundary
conditions.

The authors feel that ELLAM techniques possess great potential in multiphase
flow applications. The operator-splitting techniques of [14-16] should motivate the
proper choice of test functions, but better boundary condition accuracy is expected.
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