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This is the second of a sequence of papers devoled lo applying the localized adjoint melhod (LAM), 
in space-lime, lo problems of advcctive-diffusive Iransport. Wc refcr lo Ihe resultíng methodology 
as the Eulerían-Lagrangian localízed adjoint method (ELLAM). The ELLAM approach yiclds a 
general formulation that subsumes many specific melhods based on combincd Lagrangian and 
Eulerian approaches, so-called characleristic melhods (CM). In the firsl paper of this series the 
cmphasis was placed in the numerical implementation and a careful Irealment of implcmenlation 01" 
boundary condítions was presented for nne-dimensional problems. The final ELLAM approximation 
was shown lo possess Ihe conservation of mass property, unlike typical characteristic melhods. 
The emphasis of the present paper is on the thcoretical aspects of the method. The theory, based 
on Herrera':; algcbr¡¡ic thcory of houndary value problcms, is prcscnted for advcction-diffusion 
equations in both (me-dimensional and multidímensional syslcms. This provídes a generalizcd 
ELLAM formulation. The generality of thc method is also dcmonslralcd by a Ircalment 01' syslcms 
of cquations as wcll as a dcrivation of mixed mcthods. © 1993 John Wílcy & Sons, lne. 

l. INTRODUCTION 

This is the sccond of a sequence of papers devotcd to the application of the localized 
adjoint method (LAM) lo problcms of advcction-diffusivc transport ¡1l. Thc LAM is a 
new and promising methodology for discretizing partíal dífferential equations. H is based 
on Herrera's algebraic theory of boundary value problems [2-6]. Applicatiotls nave becn 
made succcssively lo ordinary differentíal cquations, for wnich highly accurate algorithms 
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were dcvcloped [5,7-9], multidimensional stcady-state problcms [10], and optimal spatial 
metbods for advection-diffusion equations [11-18]. Finally, tbis artieJe and the companion 
one [1] (to be referred to as Paper 1) provide generalizations 01' characteristic methods that 
wc rcfer to as thc Eulerian-Lagrangian localizcd adjoint mcthod (ELLAM). Rclatcd work 
has becn publishcd separately by sorne of the authors [19-22] and sorne more specific 
applications have already been made [23-28]. 

The numcrical solution of the advective-diffusive transport equation is a prohlcm 01' grcat 
importancc bccausc many problcms in scicncc and engineering involvc such mathcl1latical 
modcls. When the proeess is advection dominatcd the probJcm is cspccially diffkult. In 
Paper 1 a briel' revicw of the mcthods available was presented, from whieh we draw 
here. Thc methods derive from two main approaches: optimal spatía! melhods (OSM) and 
cllaracteristic methods (CM). 

The first of these procedures employs an Eulerian approach and dcvclops an accurate 
solution of tbe spatia! problem. For exal1lple, in tbe pioneering work of Allen and Southwell 
[291, a finite difference approximation was developcd for the advection and diffusion lerms 
that gives exact nodal values for the simplified case of (me-dimensional, steady-state, 
constant-coefficient advective-diffusive transport without sources, sinks, or reaction terms. 
More general and systematic results in Ihis direction llave been developed using Ihe LAM 
approach l5, 7-10]. Howcver, this kind of approximations tend to he ineffeclive in tmnsienl 
simulations because of the strong inlluence of the time derivative. The salient fealures of 
this cJass of approximations may he summarized as follows: (i) Time truncation error 
dominates Ihe solutions; (ji) Solutions are characterized by significant numerical diffusion 
and sorne phase errors; and (iii) The Courant numher (Cu == V !J..t/!J..x) ís generally 
restricted lo be less than 1, and sometimes much less than J. A general comparison 
of sorne of tbese methods was provided by Bouloutas and Celia 130J. 

Other Eulerían metbods can be developed that perform significantly bctter than OSM 
approximations. These methods attempt lo use tbe nonzero spatial truncation error 
(thereby differing from OSM) to cancel temporal errors and thercby reduce the overall 
truncation error (see, for example, [31-331). While improved accuracy results from these 
formulations, they still suffer from striet Couran! l1umber límitations. 

Finally, characteristie methods include many related approximation teehniques that are 
called by a variety of llames, such as Eulerian-Lagrangian methods (ELM) [34-37], trans­
port diffusion method [38J. characteristic Galerkin methods [39], mcthod of characteristics 
(MOC) [40J, modified method of characterístics (MMOC) [41-43], and operator splitting 
methods [44-46]. Each of these methods has in common Ihe fcature that the advcctive 
component is treated by a characteristic tracking algorithm (a Langrangian framc of 
rcferencc) and the diffusive stcp is treated separately using a more standard (Eulcrian) 
spatial approxil1lation. Thcse methods have the significant advantage that Coman! number 
restrictions of purely Eulcrian methods are alleviated becausc of the Langrangian nature of 
the advection step. Furthermore, becausc the spatial and temporal dimensions are couplcd 
through the characteristic trackíng, the inftucnce of time truncation error present in OSM 
approximations is greatly reduced. 

This paper and its companion [1] provide a generalization of characteristic methods 
using tbe approach of the localized adjoint method. In Paper 1, a specifk space-time LAM 
formulatíon that naturalIy ¡cads to generalized CM approximations (to be refcrred to as 
Eulcrian-Lagragian LAM:ELLAM) was introduced that is consistent and does no! rely 
on any opcrator splitting or equation decomposition. In addition, al! relevant boundary 
tcrms arise naturally in tbe formulation; a systematic and complete trcatment of boundary 
condítions was presented which was shown to possess the global mass-conservation 
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property. The nllmerical [realmen! and boundary conditions implementation was dcveloped 
with considerable detail. 

The present Papcr II dwelis more on lhe general LAM theory, placing ELLAM more 
thoroughly in lhe general perspective of LAM. This contributes to a more complete picture 
of Ihe possibilitíes lhat should be explored and lhe problcms that must be taekled in 
order 10 make ELLAM a more effective modeling tool. The prcscnt paper bcgins by 
reviewing Herrera's algebraic theory as well as Ihe LAM procedure. Then a general 
discussion of the approach is presented, including ilIustrations of its applieation lo ordinary 
differential equatíons. After this, Ihe LAM formulalion of the spaee-time of advection­
diffusion cquation is derived in one spaee dimension, and lhe choice of continuity and 
boundary conditions lo be satisfied by test functions is bricny discussed. The ELLAM 
formulation is then extended to several space dimcnsions. To illustrate Ihe generality of 
LAM, lhe manner in which systems of cquations are incorporated in this framework is 
explained, and as an example, mixed methods are dcvelopcd in this setting. 

11. GENERAL BACKGROUND 

In this section, Herrera's algebraic theory of boundary value problems [2-61 is briefly 
explaincd. 

Consider a region n and the linear spaces DI and D2 01' trial and test functions delined 
in n, respectivcly. Assume further that functions belonging lo DI and D2 may have jump 
discontinuities across sorne internal houndaries whose union will be denoted by 2. For 
cxamplc, in applicalions of lhe theory 10 finite element methods, lhe sel 2 could be lhe 
union of all the interelement boundaries. In this setting the general boundary value problem 
lo be considered is one with prescribed jumps aeross L. The diffcrential equation is 

I:Eu Jn in n, (2.1) 

where n may be a purely spatial region or, more generally, a space-time region. Certain 
boundary and jump conditions are specified on the boundary an of n and on L, 
respectively. When n is a space-time region, such conditions generally inclllde initial 
conditions. In the literature on mathematical modeling of macroscopic physical systcms, 
there are a variety of examplcs of initial-boundary value problems with prescribcd jumps. 
To mention just one, probIems of clastic wave diffraction can be formulated as such 
[47,48]. The jump eonditions that lhe sought solution mus! satisfy aeross L, in order lo 
define a wcll poscd problem, dcpend on lhe spccific application and on the diffcrcntial 
operator eonsidcred. For cxample, for elliptic problems of sceond order, continuíty of the 
sought solution and its normal derivativc is usually rcquired, but lhe problem in whieh 
the solution and its normal derivative jump aeross 2 in a prescribed manner is also well 
posed [48]. 

The definition of a formal disjoint requires that a differential operator I:E and ils formal 
adjoint :!,* satisfy lhe condition that wI:Eu - uI:E*w be a divergence, i.e., 

w:!'u - u:!'*w = V . {gJj(u, w)} (2.2) 

for a suitable vector-valued bilinear function ~(u, w). Integration of Eq. (2.2) ovcr n and 
application of lhe generalízed divergence theorem [49] yiclds 

( {w~u - u:!'*w}dx f filta(w, u} dx + f 0't1 (u, w) dx (2.3)Jo an 1 
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whcre 

ffia(u,w) = ~(u,w)'!l and 1J'l::i,(u,w) = ~(tt, w)] . .!l. (2.4) 

Here the square brackets stand for the "jumps" across ¡ of the fUllction containcd insidc, 
Le., limil on lhe positivc side minus Iimit on the negative side. IIere, as in what follows, 
lhe positive side 01' ¡ is choscn arbitrarily amI then lhe unit normal vector !.!. is !aken 
pointing lowards Ihe positive side 01' 2. Observe that generally .SEu will no! be delined on 
2, since ti and its derivatives may be discontinuous. Thus, in this article, il is llnderstood 
that integrals over n are carried out excluding 2. Conscquently, differential operators will 
always be underslood in an elementary sense and not in a distributional sensc. 

In Ihe general thcory of partíal diffcrential equations, Green's formulas are used exten­
sivcly. For thc construction of such formulas it is standard to introduce a dccomposition 01' 
lhe bilinear function ffia (see, for example, Lions and Magencs [50]). Indicating transpuses 
of bilinears forms by means of an asterisk, lhe general form of sllch decomposition is 

ffi¡¡(u, w) ~(u, w) '!l ~1(U, w) - C(&"(u, w). (2.5) 

where m(u, w) and (€(w,u) = C(&*(u, w) are lwo bilinear functions. When considering 
initíal-boundary value problems, the detinitiol1s of these bilinear forms depend on Ihe 
type of boundary and initial conditions lo be prescribed. A hasic property reqllired of 
~(u, w) is that for any u that satisfics Ihe prcscribed boundary and initial conditions, 
~(u, w) is a well-defined linear function of w, independent of lhe particular choice 01' u. 
This linear function will be denoted by ga [thllS ils value for any given function w will be 
gr1(w)1, and the boundary conditions can be specificd by requiring tha! m(u. w) = ga(w) 
for every w E D2 (or more briet1y: ~1(U, .) = g,)). For example, for the Dirichlct problem 
of the Laplace equation, it will he seen Jater that m(u, w) can be taken lo be uawj un on 
ano ThllS, if UiI is lhe prescribed value of u on an, one has ~1(U, w) = uadWjdn for any 
function El that salisfies lhe boundary conditions. Thus g,,(w) U"r1wjan in this case. 

The linear function C(&*(u,'), on Ihe other hand, cannot be evaluated in terms of lhe 
prescrihed boundary values, but il also depends cXc\llsively on certain boundary values of 
ti (lhe "complcmentary bOllndary values"). Generally, such boundary values can only be 
evaluated after lhe initial-boundary value problcm has becn solved. Taking the example 
of the Dirichlet problem for the Laplace eqllatíon, as before, C(¡5*(u, w) = wr1u/un and the 
complementary boundary vallles correspond lo the normal derivative 011 ano 

In a similar fashion, convenienl formlllatíons of boundary value problcms with pre­
scribcd jumps requíres constructing Grcen's formulas in díscontinllOllS riclds. This can 
be done by introducing a general decomposition of the bilinear funcHon 9R::i, (u, w) whose 
definition is pointwise. The general theory íncludes the treatmen! of differentíal operators 
wíth discontinuous coefficients [51. Howevcr, in this ar!iele, only continuolls coeflicicnts 
will be considered. In this case, sllch decompositíon is easy to obtain, and it stems from 
the algebraic identity: 

[ ~(u, w)] = ~([u], IV) + ~(ü, [w]), (2.6) 

where 

(2.7) 

The desíred decomposition is obtained by combining the second of Eqs. (2.4) with (2.6): 

ffil;{U, w) = :J(u, w) ~*(u, w), (2.8) 
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with 

:]i(u, w) -!!IJ([u], }v) . !l (2.9a) 

X*(U, w) X(w, U) = !!IJ(u,[W]) . !l. (2.9b) 

An important property of lhe bilinear funetion ,~(u, w) is that, when lhe jump of u is 
specilled, il dellnes a unique linear function of w, which is indcpendent of the particular 
choice of u. When considering initial-boundary value problems with prescribed jumps, lhe 
linear functíon defined by Ihe prescribed jumps in this manner will be denoted by h [thus 
its value for any given function w will be h (w)] and lhe jump conditions al any point of ~ 
can be specified by means of Ihe equalion :]i(u, .) = h. In problems wilh prescribed jumps, 
the linear fllnctional X*(u,') plays a role similar !o lha! of lhe complcmcnlary houndary 
vallles «6*(u, '). It can only bc cvalualcd aftcr lhe initial-boundary vallle problem has heen 
solved and cerlain information ahoul lhe average of the solution and its derivatives on ~ 
is known. Such information will be called the "gencralized averages." 

Introducing lhe notation 

(Pu, w) = r w:iu dx, (Q*u, w) r u:i*w dx, (2.10a)Jo Jo 
(Bu,w)=f ~)(u,w)dx, (c·u,w) = f ((/,(w,u)dx (2.lOb) 

aH aH 

(Ju, w) = J1 :]i(u, w)dx, and (K*u,w) = JI X(w,u)dx, (2. lOe) 

Eq. (2.3) ean be writtcn as 

(Pu, w) - (Q*u, w) = (Bu, w) - (C· u, w) + (Ju, w) - (K·u, w). (2. ¡ 1) 

This is an identity belwccn bilinear forms and can be writlcn more briefly, after rearranging, 
as 

P-B J Q* - C* - K*. (2.12) 

This is the Oreen-Herrera formula for operators in discolllinuous fields [2,6]. 
The initial-boundary value problem with prcscribed jumps can be formlllated pointwise 

by mcans of Eq. (2.1) together with 

(2.13) 

In ordcr lo associate a variational formulation with this problem, define the lincar 
functionals f, g,j E Di by mcans of 

(j,w) r wfndx, (g,w) = f ga(w)dx, (j, w) = r.)};(W)dX. (2.14)Jn an J}, 
Thcn a variational formulalion of the initial-boundary value problem wíth prcscríbed jumps 
is 

Pu = f, Bu g, Ju = j. (2.15) 

The bilinear functional .1 just construeted, as wcll as B, are boundmy operators for P, 
which are ful/y disjoint. (Por lhe definitions of lhe conccpls that appcar in italies here, lhe 
reader is referred lo Hcrrera's original papers [2-6]). When this is lhe case, thc systcm 
of equations (2.] 5) is equivalent lo lhe single variational equation 

«P - B - J)u, w) U - g - j, w) 'ti w E D2 • (2.16) 
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This ís saíd to be "the variational formulation in terms of the data of the problem," because 
Pu, Bu, and Ju are prescribed. Making use of formula (2.12), the variational formulation 
(2.16) is transformed into 

«Q* c· - K*)u,w) = (J - g - j,w) \iw E D 2 • (2.17) 

This is said lo be ".the varialional formulalion in terms of the sough! informalion," because 
Q'"u, C· u, and K* u are not prescríbed. The varialional formulations (2.16) anu (2.17) are 
equivalent by virtue of the identity (2.12). The linear functionals Q*u, C* u, and K*u 
supply information about the sought solution at points in the interior of the region n, lhe 
complcmentary boundary values at an, and lhe generalized averages of the solution al 
2" respectively, as can be verificd by inspection of Eqs. (2.1 O), and as will be íllustrated 
in thc examplcs that follow. 

Localizcd adjoint methods are buscd on lhe foIlowing observations. When lhe method 
of weighted residuals is applied, an approximate solution u E D¡ satisfies 

a = 1, ... ,N, (2. J8) 

where {w J , ••• , w N } e D2 is a given system of weighting functíons. However, thcsc 
equatíons, when they are expressed in terms of Ihe sought information, becomc 

A

«Q* C· - K*)u , wa ) -- (f g - j,. W a\1, a = 1, ... , N . (2.19) 

Since the cxact solution satisfies (2.17) it must be tha! 

«Q* - C· K*)U, w a >= «Q* - C* - K*)u, w"), a = 1, ... , N . (2.20) 

Eitber in this form or in tbe form 

«Q* C· K*) (ú - u), wa ) = O, a 1, ... , N , (2.20') 

Eqs. (2.20) can be used to analyze the information about lbe exact solution Ihat is containcd 
in an approximate onc. In localized adjoint methods, these observations have beell used 
as a framework for selecting more convenient test functions. 

111. ILLUSTRATIVE RESULTS 

As has already been mcntioned, K* u supplies information abou! the avcrage of Ihe 
solution and ils dcrivatíves aéross tlle surface of disconlinuity ¡. Such information can be 
classified furthcr. In particular, it is useful to decompose the averagcs K* u ¡nto avcrages 
of lhe functíon, lhe firsl dcrivative, etc. This is achievcd by writing K* as lhe sum of 
opcrators KO*, K 1*, ••• , each one containing the infarmation about the average of Ihe 
derivalive of the corresponding order. Such dccomposition is induced when ir'(u, w) is 
decomposed pointwise into lhe sum of bilinear functíons ~·(u, w), ~J'(u, w), ... , cach 
one containing the corresponding information pointwise. Similarly, J will be written as lhe 
sum of operators JO, JI, ... , each containing the jump of the derivative of corresponding 
order, and :J(u. w) will be the sum of :J°(u, w), j.,J (u, w), etc. Whcn this is done, 

(3.1 ) 

In vicw of Eqs. (2.20), íl is c1ear that the information about the exact solution contained 
in an approximate one depends in an essential manner on the system of wcighting functions 
chosen. The systematic classification of such information introduced by lhe algcbraic 
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theory can be used to develop weighting functions tllat concentrate the information in 
a dcsired manner. In very general terms, if one wishes to eliminate aIl tlle information 
about tlle sougllt solutíon in the interior of the region n ¡ (thus concentrating it in 
the compJementary boundary values and averages across ¡), lhe weighting functions mus! 
be chosen so that O = (Q*u, w"') = (Qw"', u). This condition is satisfied ir Qw" = O, 
i.e., .!t*w<l' = O. Similarly, the information aboul lite complementary boundary values can 
be eliminated if the weighting functions satisfy Cw<l' = O globally, Le., ~(w''',') O 
pointwíse. Elimination of the average of the function requires ~(w<l', .) O; elimínalÍon 
of the average of tite first derivative requires that :?el (w<l' , .) = O, cte. Note that boundary 
methods are obtained when ::¡;*w'" == O and simultaneously :?e*(w<l', .) == O. Also, if all 
the ínformation is lo be concentrated at one point, Green's funclÍons must be conslructed. 
However, development of such weighling functions requires solution of nonlocal problems. 
As a further general comment, it should be mentioned that, for partial differenlial equations 
of second order with continuous cocftkicnts, the condition :?el (w a ,') () is equivalent lo 
[w] = O (Le., w is eH). This result, which will be shown later in t!lis section for the 
special case of ordinary dif1'erential cquations, implics that eO methods conccntrate lhe in­
formation on the values 01' lhe function, hoth al the interelcment houndaries and in ¡he 
interior of the finite elements. 

As an ilIustration of lhe procedurc, Jet us review the results for general second-order 
differential equations lhat are linear, which were derived by Herrera and co-workers 
[5,7-9J for one-dimensional equations. Actually, the mctltodology is applicablc lo 
l11ultidimensional equations 01' any order which may be time dependent, and lo systems 
of differential cquations, as is explained in Seco VII. However, for partial differential 
equatiolls (i.e., when more than one independent variable is involved), the implemclltation 
of lhe proccdures is cOllsiderably more complicated and it is not possible lo predíct thc 
exact valucs 01' the solution in general. 

A physical situationthat the general ordinary differential cquation of sccond order 
mimics is transport in the presencc of advection, diffusion, and lincar sources; a notalion 
related with such processes will be adopted. Tlle general equation to be considercd is 

d(du )- dx D dx Vu + Ru = In, in n == [0,1]. (3.2a) 

Attentíon will be restricled lo the case when D and Vare continuous (discontinuous 
coefficients have been treated previously [5 D. Whell the 1'unction u is assul11ed to he 
continuous, so that 

[u] = O on ~, (3.2b) 

the smoothness condition implied by conservation 01' mass [49] 

dU 
[ VU - D ] O on ¡ (3.2c)ax 

reduces lo 

(3.2d) 

by virtue 01' lhe assumed continuity of V alld D. 
A partition {O = X(), XI,' .. ,XE-I, XI; = l} ís íntroduccd, whích for simplicíty is assumcd 

to be uniform, i.e., X<l' - X,,_I = /¡ is indepcndent of a. Trial and test funclions will be 
assumed to be sufficiently differelltiable in the interior of each of lhe subintervals 01' the 
partition, so that the differential operator is dcfincd thcrc and the jump discontinuitics can 
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only occur al internal nodes. This corresponds to taking L = {XI, ... ,XE-l} in the general 
framework presented in Seco n. Observe that lhe normal vector !1. 1 at 1, and !1. = ~ I 
al O. On L the choice !1. 1 is convenient, because in Illis manner tlle positivc side 01' 
L is lhe side that is determined by Ihe sense of lhe x axis. Suitahle hOllndary conditions 
are assumcd lo be satisficd at () and 1 in order lO have a well deflned bOllndary vallle 
problcm. The boundary conditions can he Dirichlet, Neumann, or Robín 15], hut lhcy are 
left llnspecifled, since the following devclopmcnts accommodate any 01' them. 

The formal adjoint of lhe operator ;;E, as defined 	by (3.2a), is 

dwU)·
eLW _~(DdW)

dx dx 
V 

dx 
+ Rw. (3.3) 

Thercfore 

w;;Eu - u:t w * == u D- + Vwd { (dW ) 
dx dx 

- wD dU} 
dx 

(3.4) 

and 

91J(u, w) 
-

== U(D dw
dx 

+ vw) - wD~~ .
dx 

(3.5) 

Application of Eqs. (2.9) yiclds 

jiO(u,w) = [uJ(D dx + V}V). jil(U,W) = }VD[~;J. (3.6a) 

gro(w,u) = Ú[D~: + Vw J. 2C1(w,u) -[w]D ~ , (3.6b) 

from which ji and 2C are obtaincd by means of Eqs. (3.1). In Eqs. (3.6), an overbar is lIsed 
lo indicate that lhe dot on IOp refers lo the whole expression covercd by tlle bar. 

The definitions of the bilinear functions m(u, w) and C€( w, u), .depend on tite type of 
boundary conditions to be satísfied. For Diríchlet problcms, u is prcscribed and one 
possibility is 

( dw 	 () dum(u, w) + vw) . !l, (~w,u = wD- !1.. (3.7)u D dx dx 
Anolher possibility is 

dw
m(u, w) -uD • !1., ~(w,u) = w(D~; - VU) . !1..dx 

To be specifie, only Eq. (3.7) will be used here. For Neuman problems, du/dx is the 
datum, so thal 

du
m(u w) = _wD . n (~(w,u) = _U(DdW 	+ vw) (38). _11. , dx -' dx 	 .. 

In the most general form 01' Robin's boundary conditions, a linear combination 01' the 
dcrivative and the value 01' the solution are prescribed. This general case was developed in 
[5]. Herc, attention is restricted lo the case when lhe total flux Ddu/dx Vu is prescribed. 
Then 

m(u,w) = -W(D~: - vu) '!1., ~ (w,u) = 	 UD~:'!l. (3.9) 

In Ihe case of ordinary differential equations, Herrera el al. 15] dcvelopcd algorithms 
for which all the information was concentratcd in the values of the solution al internal 
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nodes; by so doing, they were able lo obtain algorithms lhat yield lhe exact values of 
lhe solution al thase nades. Using lhe developments already presented, derivation 01' such 
algorithms is a simple exercise. The ínformation aboul the soughl solution supplied by lhe 
weighled system 01' equations is exhibited in Eqs. (2.20). In particular, the information tha! 
is supplied al internal nodes refers lo lhe averages ol' lhe solution and its firsl derivalive 
thefe, given by X*u [see Eqs. (3.6b)1. Thus, in order lo concentrate lhe informalion there, 
it is necessary to rcmove (Q*u, w") and (Cu. w") in Eqs. (2.20). This is achievcd jI' 

Qw'" = O and Cw'" O. The first of these conditions is equivalent to ~*w == O, and 
the other is the boundary condition (6:(w, .) == O, which in ¡hc case considered hcre musí 
be satisflcd at ao. {O, l}. In view of Eqs. (3.7)-(3.9), lhe boundary conditions lo be 
satisl1ed by Ihe tesl functions are 

dw dlv 
w = O, D + Vw = O D- =0, (3.10)

dx. ' dx 

wherever Dirichlct, Neuman, and llux conditions, respectivcly, are prescribed on u. 
Observe the "symmelry": 

To eliminale the complementary boundary values from the weighted equations, thc value 
of the test funetions must vanish wherever the value of lhe sought solution is prcscribed. 
Howcver, it is lhe "reserve flux" (Ddw/dx + Vw) whích must vanish, wherever the 
first derivative of the sought solution is prescribed and convcrsely, ít is lhe dcrivativc 
(dwldx) which must vanish wherever lhe llux (Ddu/dx - Vu) is prescribed. 

Since our goal is lo concentrate the information on lhe value 01' tite sought solution al 
internal nodes, taking into aecount that 2r(w, u) = 2r0(w, u) + 2r' (w, u), it is clear tha! 
it is still neeessary lo remove lhe information about the first derivative. This will be 
achieved if the eondition 2r' (w, .) O is imposed 011 lhe test funetions. In vicw of (3.6b) 
litis condition is [wJ = O, on ¡. 

In summary, lhe weighting functions that concentrate all the informalÍon in lhe valucs 
of the sought solution al internal nodes are solutions of lhe homogencous boundary value 
problem with prescribed jumps: 

~*w = O on 0., ~(w,') O on ao. = {O,l}, 

[w] = O 011 ¡.. (3.lJ ) 

Clearly, the condition [wJ O on 2: implies that w E Cll . Su eh weighting functions can 
be taken having local support, bccause [dW/aX] :1= O is admissiblc [5,8]. Gcnerally, lhe 
dimension of the space of solutions of Eqs. (3.11) is E - 1, and if tha! space is used 
to form tite system of weighting functions in Eq. (2.18), an (E - ~) (E - 1) system of 
equatioIls possessing a unique solutioIl is obtained for lhe average u of lhe approximate 
solution al internal nodes. The uniqueness of solution of this system of equations implies 
that lhe averages predicted in this manner are equal to the averages of lhe exact solution al 
internal nodes, since 2r°(u - u) = O in that case, by virtuc of (2.20'). Abo, al any internal 
node, the value of lhe sought solution is equal to its average there, since it is continuous 
(Eqs. 3.2b), so lhat the exact value of lhe solution at internal nodes is predictcd in t!lis 
manncr. 

A rigorous discussion of the conditions under which the rcsulting system 01' equations 
possesses a unique soJution requires the use of the concept of TH completeness. This 
concept was introduced by Herrera in [2,51 l, where he presented a rigorous discussion of 
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this question in an abstract sening allowing considerable generalily, sincc lhe conclusions 
that he obtailled are illdependellt of the order of lhe differential equations and the nurnber 
of independent variables illvolved. However, attentioll was restricted lo the case when 
lhe differelltial operator is syrnrnelric and Ihe corresponding analysis for nonsyrnrnetric 
operators is wanting. This rnatler is beillg studied at present and will be addressed 
elsewhere. 

A similar procedure can be developed for obtaining lhe exact values of Ihe r1rst derivative 
al internal nodes, lhe main difference being thal one musl reqllire thal Wl(W, .) = Oinstead 
of ;;rl(w,') = O. In view of Eq. (3.6b), Eq. (3.11) ís replaccd by 

,5E*w = O on n, ~(w,·) = O on an {O, [}, 

[Ddwjdw] O on2.. (3.12)
dx 

The corrcsponding algorithm was dcvclopcd in [5,8]. Combinations in whicll lhe value 
of lhe solution is obtained al sorne nodes and its derivative al others, or algorithrns thal 
simultaneously yield lhe exact values 01' the solution and its dcrivativc al internal nodes 
(with a correspondíngly larger system of equations lO be solved), are also possible [5[. 

Until now, no specific representalion of the approximate Sollltion has been adopted. 
Let {<I>0, tI> 1, ... , cjJN} be a syslem 01' trial functions, generally fully discontinuous (Le., 
the function and its derivative have jump discontinuities at internal nodes), and \et 
u= L:Aj<l>j be an approximate solution satisfying Eqs. (2.J8) or, equivalently, (2.19). 
When the system of weighting (or test) functions fulfilling (3.11) is TH complete, then 

(3.13a) 

whcre u(x) is lhe exact solution. Correspondingly, if the syslern of weighting funclions 
satisrles (3.12) and is TH complete, lhen 

fJú (x) 1.... ,E-I. (3.13b)dx J 

lt is important to observe tllat either Eq. (3.13a) or (3.13b) holds indepcndently of the tri al 
functions used. In particular, lhey can be fully discontinuous and they can also viola te the 
prescribed boundary conditions, althollgh this would produce poor approximations, except 
al lhe nodes. This is discusscd further below. 

It is worth exploring sorne of the implications 01' these results. To relate the results 
thus far obtained to standard variational formulalions uscd in f1nite elernent rneth­
ods, let us consider the one-dirnension (1 D) version 01' the Poisson equation [i.c., 
Eq. (3.2a), with D == 1, V R 01, subject lo homogeneolls Dirichlet boundary condi­
tions [u(O) = u(l) = O]. A standard variational formulation for this problem is as follows: 
u E Hci([O,I]) is a weak solution if and only if 

(' du dw (1
Jo dx dx dx = Jo fn w dx V w E H¿([O,l]), (3.14) 

whcrc HÓ([O, L]) is lhe subspace of lhe Sobolev space H 1([0,1]), whosc members have 
vanishing traces. 

Let us look for an approxirnate solution Uusing tria! functions {<I> 1, ..• , <l>E-I} which are 
locally linear and globally continuous [Fig.l (a)]. In addition, use the samc collection as test 
functions, as is usuaJly done whcn applying Galerkin method. Let u(x) L:f::¡1 Uj<l>i(x). 
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(a) 

( h) 

FIG. L (a) Base function: Locally linear. globally conlinuous. (b) Base function: Locally linear, 
discontinuous. 

Then <l>j, for j 1, ... ,E - 1, as well as U, belong to HJ([O.IJ). Observe that for this 
c1ass of functions one has 

¡I da dw ¡I d 2a E-I [dU]-··~-dx = w dx + ¿, w,- «P - B - J)U, w) (3.15)
o dx dx o dX2 )=1 J dx j 

Here, Eqs. (3.6a) and lhe facls that u and x are continuous and vanish on the boundary 
were used. Equation (3.15) illustrates lhe fact tha! lhe standard variational formulation 
for the Laplace operator is a particular case of the general variational principIe (2.16) in 
terms of the data of lhe problem. However, lhe standard variational formulation can only 
be applied when both tri al and test functions are continuous, whilc Ihe algebraic theory 
supplies a systematic manner 01" extending it to cases where trial amI test functions are 
fully discontinuous. 

For the case where lhe prescribed boundary conditions are nonhomogcneolls. a slIitablc 
representation of the approximatc sO)lItion is 

E-I 

u(x) Uo<l>° + U/l<I>E + ¿ Uj<l>j(x). (3.16) 
j=1 

Let us apply lhe variational formulation (2.18) using the wcighting fllnclíons 
{<I> l•...• <l>E-I} associated with internaJ nodcs. This systcm concentrates allthe ínformation 
al intcrnalnodcs because ít satisiies Eqs, (3.1 1); morcovcr, it is TH complete. Thc resu Iting 
system of equations is 

U",+I + U a - 1 - 2U--=~--~-'---_:::..'" = ¡'<O'" .f fi w'" dx , a=2•... ,E-2. (3,17a)
Il X"'_I 

U2 - 2U1 ¡X2 U UE-2 - 2U¡,_1 UE _...----- fn w1dx - ~. 
h o h h h ' 

(3.l7b) 

where Uo and Uf: are lhe prescribed valllcs for ti at O and 1, rcspectively, and bear no 
relation with Uo and UE, which are unknown. Sincc the same system of cquations is 

http:HJ([O.IJ
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fulfilled by the exact solution, one has 

+ + 
~~--~~------ a = 2, ... ,E 2 (3.18a)

h h 
logcthcr with 

U2 - 2U, 
(3.18b)

h h 

which implies Ua u(x,,) for a = 1, ... , E I (i.e., al all Ihe interior nodes), as 
predicted by lhe theory. 

The above properties depend solely on lhe weighling functions and are indepcndent 01' 
lhe trial functíons used. In particular, when the boundary values are nol salísfkd by Ihe 
trial functions [Le., Uo * UO, UI, * U¡ in Eq. (3.16)], one would expect lo obtain an 
(E + 1) (E - 1) system of equations tha! would be undetcrmincd, since the number nf 
unknnwns is greater than lhe number of cquations. However, Uo and UE do nol occur in the 
system tha! is obtaíncd, and the resulting system ean be interpreted as an (E - 1) (E - 1) 
system for {Uf, ... , Uli - t }, whose only solution, as already mentioned, is lhe values 01' lhe 
exact solution al the internal nodes, leavíng Uo and UE undetermined. This latter faet is 
natural, since Ihe system of equations (3.18) was derived using lhe varíalional principie 
(2.17), in terms of lhe sought information, and the values of the sOllght sollltion al Ihe 
boundary are not included in lhe sought information. Indeed, in lhe bOllndary only lhe 
derivative is íncluded in the sought informalion. 

Moreover, the trial functions themselves can be changed arbitrarily and still lhe 
nodal values wíll be predicled correctly. In particular, lel us illustrale the use 01' fully 
discontinuous trial functions by exhibitíng these results when such trial funclions are used. 
To this end, keeping lhe same wcighting 1'unctions as bcfore, change lhe trial functions in 
lhe representation (3.16) of the approximate solution, lo [see Fig. I(b)] 

3(x 

h 
<!>J(x) = x - Xj+l (3.19) 

h 
0, elsewhere. 

Then lhe same syslem of equatíons (3.17) is oblained. Observe tI~al lhe averages 01' Ihe 
trial funelions given by (3.19) are zero at internal nodes, exeepl <I>j(Xj) which is equal to 
one. Thus (3.17) is equivalent lo 

¡X

a 

¡, fnw'" dx, a = 2, ... ,E - 2, (3.20a)
h Xf) ,,1 

Un ÜE-2 - 2ÜE-1 Xli fnwE-' dx _ UE 
h' h ( 

• Xi>2 h ' 
(3.200) 

whose only solution ís fi(xa ) = u(xa ) for a = 1, ... , E 1 [Le., Eq. (3.13a)]. Thus, even 
if díscontinuous trial functíons are used, the values of the exact solution are predicted 
corrcctly by Ihe averages al internal nodes of the discontinllolls approximate solutíons. 

Although very simple examples were chosen to iIIuslrate Ihe results presented in this 
scction, (he eonclusions are valíd for Ihe general Eq. (3.2a) and also for the diffcrenl kinds 
01' algorithms thal werc introdllced. They exhibít the general fact tha! lhe informalion abolll 
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lhe sough! sollltion contained in an approximatc one is indcpendcnt 01' lhe trial fllnctions 
uscd. However, ¡he readcr must not be misled lo concluJe that lhe ehoice 01' tfial funclions 
is irrclcvant. On lhe contrary, as is well known, a judicious choice 01' Ihe tria! functíolls is 
essential lo develop satisfactory approximale solutions. For cxamplc, if lhe trial funclions 
(3.19) are used as interpolators in prescnt examples, vcry poor cstimations of Ihe solutions 
would be oblained in lhe interior of the subintervals [x¡--J.x¡J, in spite 01' lhe raet that its 
values at internal nades are prcdictcd with unlimited precision. 

However. an importan! concIusioll that can be drawn from the prcceding examplcs is tha! 
in lhe construction of approximate solutions, there are two processes, equally important 
but different, that must be c1early distinguished. They are (i) gathering information about 
the sought solution, and (ii) interpolating the information aboul the sought sollllion which 
is availablc. 

These two processes are distinct, althollgh in many numerical methods thcy are nol 
differentiated dearly. The information that is gathered is detcrmincd by thc weighting 
functions, while the '.11lmncr in which it is interpolated depcnds 01' the Irial functions 
chosen. A pcculiaríty of Ihe cxamples that havc bcen given in this section is thal here, 
those processes are not only independent, bul lhey need not be carriee! out simultaneously. 
Indeed, since the exacl valllcs at the nodcs are obtained independently 01' Ihe tria! funclions 
used, given that the requirements in Eq. (3.11) are satisfled, one can obtain thcm first and 
choose lhe inlerpolator aftcrwards. 

AIso, the two processcs mentioned aboye are lo a large cxtcnt independenl, exhibiling 
some 01' lhe severe Iímitations associated with methods sllch as the Galerkin method, 
in which trial and test functions are rcquired lo be lhe samc. The conditions that lest 
functions mus! satisfy in order lo be effective for gathering information, in general, wil! be 
quite different fmm ¡hose tha! mus! be satisfied by tri al fllnctions in order lO be effective 
interpolators. 

A poiot that deserves further attention is lhe criteria that must be lIsed lo judiciously 
select effective trial fllnctions. Taking into account their role as interpolators, it is clear that 
approximation Iheory mus! be applied. However, in many cases the matters il1volved may 
go beyond approximation theory. For example, in lhe illustralions presented thus far in 
this scclion, which in sorne sen se are. extreme cases since the exacl valucs oí' the solution 
are obtained at Ihe nodes, a very efficient way 01' Ínterpolating lhe availahle information 
would be to solve the boundary value problem that is delined by that information on each 
of the subintervals [x¡_ ¡, x;]. These questions, althollgh important, are complcx, and it 
would no! he appropriate to explore them in all their generality at this point. Thus we 
leave the matter hefe, but intcnd to resume it elsewhere. 

IV. ADVECTION-DIFFUSION EQUATION 

When app!ying the methods of Seco 11 lo time-dependen! problcms, il will be necessary 
lo consider a region n in space-time. Also, the surface :t on which discontinllities can 
occur will be a surfacc in space-time, and a suitable notation will be fN]uircd. Space-time 
vectors M will be written as pairs: 

M = (m,m,), (4.1 ) 

where m is lhe vector made by its spatíal components and mI corresponds lo ils temporal 
componenl. Lel V ¡ be the vectorial velocily of the discontinuity :t(t), whcre :tÚ) is the 
sel of points of :t whose lime coordinate is t. This is a vector in space, which can be 
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written as 

(4.2) 

where fl is the unil normal vector lO l':(t). Gencrally, VI can bc positivc or ncgative, 
depcndfng on the sense of moHon of I(t) and lhe choice of !!: In particular, in the onc­
dimensional case, n will oc takcn lo be equal lo 1 on I. Observe tha! the space-timc vector 
<yI ,1) = (VI!!.. 1') is tangent lo I. Using this fact, it is casy lo scc thal a spacc-timc unit 
normal veclor N lo I is given by 

2)-112N= ( I+V1 C!l,-V!), (4.3) 

In this section, we consider thc one-dimensional transient advection-diffusion cquation 
in conservative form: 

a (BU ). D- - Vu + Ru = fn(x,t) in n, (4.4)
iJx iJx 

x E fix = [O, lJ , 
t E nI = [t l

\ tn+1J, 

(x, 1) E n fixXfi l , 

subject lo initial conditions 

u(x, t") = u"(x) (4.5) 

¡¡nd suitab)e boundary conditions al x = O and l. The following development accommo­
dates any combination of boundary conditions. Thc manner in which lhe regíon n and 
lhe initial conditions were choscn in Eqs. (4.4) and (4.5) is convenicnt when appJying a 
numerical intcgration procedure step by step in timc. 

Thc adjoint operator is 

;t*w == iJw a (D dW) V VW + R w, (4.6)dt . - dX iJx dX 

and qJ)(u, w) as dcfined by Eq. (2.2) is 

f:iu }qJ)(u, w) = {U(D ~: + vw) wD ,UW. (4.7)ox 
Thercforc 

-[qJ)(u, w)] . N = (1 + vD- '12 [ u(D ~: + (V VI)W) - WD:; J. 
(4.8) 

Assuming that the physical process which Eq. (4.4) mimics is lhat of tr¡¡nsport with Fickian 
diffusion of a solute whosc conccntration is u in a free fluid moving with velocity V, the 
smoothncss conditions implied by mass balance are 148] 

[u(V - VI) D :~ ] = O on I. (4.9) 

In addition, Fickian diffusion implies 

[u] = O on I. (4. lOa) 
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When the coefficients V and D are continuous, Eq. (4.9) in lhe presencc of (4.1Oa) can 
be replaced by 

[ :: ] = O on 2:. (4.lOb) 

Using Eqs. (2.9), it is seen that 

:¡O(u, w} -(1 + vi}-lf2[U] {D -: + w(V - V¡)} , (4.1 la) 

(4.1 lb) 

(4.12a) 

(4.12b) 

It will be useful lo decompose the boundary aO inlo aoo, diO, allo, and dn+IO, 
which are defined as lhe subsets of O for which (x, t) satisfles x = O, x = 1, t = (", 
and t = tn+ l , respectively. The initial conditions givcn by Eg. (4.5) are to be satisfied 
.at dnO, and the boundary condítíons pertain to doO U diO. These lalter conditions can 
be of Dirichlet (u u,,), Neuman [D(ou/ox)n. = q], or Robín lype, or a combination 
of them. Becausc of lhe spedal role that the total flux Dou/ox - Vu plays in mass 
conservatíon, the only boundary conditíons of Robín type that will be considered will be 
those for which (DíJujax - Vu)n. F) is prescribed. In what follows, Ihe notations 
doO, aNO, and dpO refer to tha! part of the boundary where Dirichlet, Neuman, ancl 
total-flux boundary conditions are prescribed, respectively. 

The bilínear functions 5!:\(u, w) and C(i;(w, u) implied by the initial and boundary 
conditions are 

5!:\(u, w) = -uw on anO, (4.13a) 

(4.13b) 

(4. 13c) 

5!:\(u, w) (4.13d) 

dU aw
5!:\(u, w) W(D (i¡(w, u) = -uD . n on ilpO , (4.13e)

dX OX ­

wherc lhe unit normal vector n can take lhe values + I or - 1. Observe that (t¡* (u, .) O 
on anO, while 5!:\(u,') == O on On+10, Le., no information is sought at t = 1", which is 
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natural for an initial value problem. Also, in Ihe case 01' Dirichlet bounJary conditions, 
alternatíve expressions to (4.l3c) are 

i1u 
((\(11' u) = wD~1l on a¡)o . (4.J3f). ax-

However, in this paper, we use (4.l3c) only. In view of (4.11) and (4.13), il is clear that 

(4.14a) 

-wq '!l on aNO, g,,(w) = -wF '!l on apn, (4.14b) 

while h(w) o on 2:. The expressions for lhe bilíncar functíonals B. C,.I, and K, are 
obtained by integratíon of íB, «5, ¡j, and :?r, respectively, the tirs! two on an and the lalter 
two on 2:. Similarly, according lo (2.17), lhe expressions for J, g, and j are ohtained by 
integratíng In, g,J, and jy., in n, an, and 2:, respectively. In the present case h O, 
so that j = O also. 

As in Seco 111, a partition of [O, II is introduced and lhe region n is decomposed 
into a colleclion of subregíons nI. ... , nE (Fig. 2), Iimited by space-lime curves 2:;. 
i 1, ... , E, whose parametric representations are given by the functions Ui (1); ít wi 11 be 
assumed that discontinuities occur exclusively on these Iines i.e., 

¡:; 

¡ = U2:¡. 
;=! 

In additíon, it is assumed that each such curve passes through its corresponding node at 
time I"fl [i.e., U¡(t"fl) x¡] and lhe notalion x7 = Ui(l") is adopted. The velocity of 
propagation V¡ of each of these lines of discontinuity is du¡jdt. 

Using Eqs. (4.11) and (4.12), Ihe expressions for.l and K* can be obtained by integration; 
lhey are the sum 01' the conlributions of each of Ihe curves 2;. Thus, one can write 

¡; 

J = I Ja and K* (4.15) 
a=1 

X¡-2 Xi 


F1G. 2. Spacc-timc supports of wcighting functions. 
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wherc 

(Jau,w) = f:r.a ![uJD OX - \V(D[!:] - (V - Vl)[UJ)L dI, (4.16a) 

(K;u, w) = fla {ú[ D:: J [W:{D ~~ - (V - Vl)ü) LdI. (4.16b) 

Here the subindex ka means that the line integral is to be earried out on k,r' To obtain 
Eqs. (4.16), use has been made of the faet that on eaeh line klf, the ciernen! 01' lime dI is 
(1 + vD -1/2 limes the length of the element in spaee-time. 

In a similar fashion, it is convenient to decompose the bilincar functions 13 and e* ínto 
lhe contributions which stem from onil, On+lil, ovil, aNil, and aFilo In t!lis manner one 
can write 

B = Bit + Bo + BN + Bp and e* e:+ 1 + e;) + e~ + e;., (4.17) 

where 

(Bllu, w) - lo! (uw)t=t n dx, (4.18a) 

(Bou, w) = { uD aw . !I dt. Vu) . I! dI,Ja,,!} ax 
(4.18b) 

au - f wD- . ndt, (e~u,w) = -f U(D~~ + VW)dt,
aNH ax- ilNH ¡h 

(4. 1 8e) 

( au aw 
(B"u, w) = - f w D Vu) . !Idl, (e;u,w) = -f uD . !ldf. 

a,.. n ax rl,..n dX 

(4.18d) 

To complete the formulation of the problcm, il remains lo define the linear funetionals 
f, g, and j. The last one is zero, while g gil + go + gN + g/., with 

( Ui/(D a~ + vw) .!l dI, (4. 19a)
JI)"n ax 

f wF' !Id! . (4.19b) 
<1"n 

V. EULERIAN-LAGRANGIAN LAM 

In what follows, the variational formulation in lerms of the sought information, Eq. (2.17), 

«Q* - e· - K*)u,w) = <J - g - j,w), (5.1 ) 

will be applied. In addition, weíghting functions w will be chosen satisfying Qw 0, Le., 

* aw a ( <3W) ()w:;e w ---¡¡¡ - iJx D-¡¡; - V ax + Rw = o in il. (5.2)E 

In this case (5.1) bccomcs <Ce· + K*)u, w) = (g + j - J, w). 

----_._--~ ---- -_._­.............. 
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Two important differences belween lhe present case and Ihe simple devclopments for 
ordinary differcntial equations that wcre prcsented in Seco III dcserve aUention. In lhe 
case of ordinary differential cqualions, obtaining information ahou! the sought solution (or 
possibly its derivative) at internal nodes was our main goal. Thus algorithms [Of which 
all the information was concentrated al internal nodes were devcloped, and by doing so, 
it was possible to predict lhe exact values 01' lhe sought solulion al such nodes. This was 
feasible because TH-complete systems for 10 problcms are finite dimensional. As opposed 
to such simple developments, TH-complete systems for a partíal di1'1'erential equaliol1 sueh 
as (4.4) are infinite dimensional. However, onIy a finite number 01' test functions can be 
used. Di1'ferent choices 01' test functíons that satis1'y Eq. (5.2) lead to different classes 01' 
approximations, inc1uding optimal spatial methods and general characteristíc methods. 

On the other hand, when a numerical intcgration procedurc is applicd lo Eq. (4.4), step 
by step in time, the objective is to predict lhe values of u at time t"+ I , when the values 
al time t" and the boundary conditions are given. Ideally, all lhe information about the 
sought solution should be concentrated in Ihe value 01' the solulion u al eaeh olle of the 
subíntervals [X¡-l, Xi], i = 1, .... , E, al time 1"+ l. For example, our goal could be obtaining 
the ,;:g2([O, ID projection ol' lhe exaet solution u(x, t"+l) on lhe subspace of píecewise linear 
interpolators that are globally continuous. This subspace of ,;:g2 ([0,1]) is generated by the 
system of functions 

X ­
Xi-I $ X $ X¡

dx (5.3)X¡+I - x
{ X$X Xi+l.

dx ' 
This requires elimination of all information about lhe sought solution except al such 
subinterval and time. The weighting 1'Ullctions that do such job, in addilioll lo satisfying 
,;:g*w i = O in n, must be smooth (Le., [w i ] = [awijdX] O) in the interior (O,e) X 
(t n ,t"+ I ) 01' n and must fulfill lhe boundary conditions ~(w,') O on the lateral 
boundary of n, where «6(w,') is given by Eqs. (4.13c)-(4.13e). Also, wi(X,t,,+I) = O, 
except when x E [Xi-l,Xi+l]. In the interval [Xi-¡,Xi+IJ, one requires that wi(X,t"+I) 
be given by Eq. (5.3), by virtue of (4.13a). Then lhe resulting initial boundary value 
problem generally will be well posed [49], but sueh a weighting funclion would be 
nonlocal. 

GcnefalIy, in numerieal applications, Joculizcd weighting l'unctions are sought. At 11 

general interior node Xi, as (hc one ilIustrated in Fig. 2, such !ocalizalion can be achieved 
by introducing nonsmooth weighting functions. Thus, if lhe eondition ,;:g*w i 

=.; O ís 
sustaíned, lhen eilher [aw1jax] ::/= O, or [w] ::/= O, or both, and some information about 
the solution u, or its normal derivative, or both, on lhe curves 2,j. where discontinuilics 
oceur, will be incorporated in the final system of equations. This is so in spite of the 
faet that the actual objective is to obtain informalion about the sought solution al time 

lt n + • The classifieation of numerical methods inlo OSM aod CM can be related lo the 
speed of propagation of diseontinuity lines. If time-independent solutions of Eq. (5.2) 
are chosen as weighting functions, then V:2, = O necessarily, and one is led to optimal 
spatial methods, to which several papers have been dcvoted using the LAM approach 
[12-18]. On Ihe other hand, if the I¡nes 2,j satis1'y Vl: = V, characteristic methods are 
obtained. 

As rnentioned above, there are also several possibilities ror the degree 01' smoolhncss 
of the weighting functions. In Paper 1, weighting functions satisfying the eondition 
[wJ = O were chosen. In view of Eq. (4.12b), it is cJear that for this special choice, 
2e1(w, u) vanishes identically, and that, in the lines of discontinuity 2,¡ (i = 1, ... , E), 
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al! lhe inforrnation is eoneentraled in the soughl solution u. In this case Eq. (4.12a) 
bccomes 

<Mil ( 2)-112 . [ aWJ~ (w, u) = 1 + V~ u Da; . 	 (5.4) 

Assurne that our goal ¡s, as beforc, lo obtain lhe :;e2([0, ID projection of lhe exact 
solution u(x, [11+1), on lhe subspace of pieeewise linear interpolalors lhat are globally 
eontinuous. In the spiril of lhe previous developrnents and taking into aceount lhe lirnítation 
[awjaw] ::1= 0, whieh is unavoidable, a suitable set of properties for lhe lest functions 
wi(x, t), is lhe following: 

(a) Support of wi is ni = n; u nt where ni = ni and n~ = nHl (i = 1, ... , 
E - 1). Scc Fig.2. 

i(b) 	w satisfies Eq. (5.2), Le., *w i = O in n. 
(e) 	Al t 1"+ 1, w i reduces lo lhe pieeewise linear interpolator given by Eq. (5.3). 
(d) 	w i is continuous. 
(e) 	The jurnp [awijdX] ís constant on ¡j. 
(f) 	Al lhe lateral boundary of n, boundary conditions which elirnillale all the boundary 

inforrnation lLe., c(6(w i ,.) = O] are irnposed. 

By inspectíon of Eqs. (4.13e)-(4.13e), ít is seen lhat Ihe last eondition is 

wi O on don, 	 (5.5a) 

dW i 
D + Vw i = O on aNn, (5.5b)

éJx¡ 

i.lw i 

-=0 on iJpn. 	 (S.Se) 
ax 

Observe that in lhe case of Diríchlel boundary eonditions, Eq. (5.5a) is lo be applied even 
if lhe option (4.13f) for defining mand C(6 is used. 

The developrnent of test funclions wíth these properties is nol easy, in general, when lhe 
coeffieients are nonconstant, even if lhe dornain ni does not interseet the lateral boundaries, 
but may beeorne parlicularly involvcd when the dornain inlersects one 01' the lateral 
boundaries. For lhe case when tlle eoefficients of Eq. (4.4) are eonstant, the source terrn 
vanishes (R == O), and lhe partition is uniforrn, the test functions uscd in Papcr 1, were 

(,,+1x­
+ V (x,t) E n; 

~x ~x 
w;(x,1) = X¡+I x tt/+l 	 (5.6)+ (x, t) E n~ 

~x Lix 
O, all other (x, t) . 

If the dornain ni does nol intersecl the lateral boundaries, thcse weighting functions satisfy 
all the required properties, (a)-(!') aboye; however, if lhe lateral boundary is inlerseeled 
by the eorresponding dornain, then (f) is violated. 

An important advantage of tlle ELLAM approach is precisely its ability to deal with 
boundary conditions effectively. As was dernonstrated through nurnerical exarnplcs in 
Paper 1, the ELLAM approaeh provides a systernatie and consistent rnethodology for 
lhe proper incorporation of boundary eonditions. This allows construction of an overall 
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approximation Ihal possesses the conservative properly, thereby assuring conservalion 01' 
mass in the numerical solution. 

Observe that for such weighting functions, ;} and 2f do not vanish on three lines of 
discontinuity, al most ¡, 2,1, and 2,1+). Thus 

1+1 

(K*u. w i ) I (K;u. w l ). (5.7) 
j=i-l 

The jumps are 

-2 
[ 

dW ] [ aw ] (5.8)
dX 1-) ax' dX j ax' 

When the regíon ni, which includes Ihe support of wi , does no! intersect Ihe lateral 
boundaries, lhe boundary terms vanísh and Ihe varialional principie in terms of lhe sought 
informatíon (5.1) reduces lO Eq. (9) of Paper 1: 

~ (r u di - 2 r. u dI + r u dI) 
u.X } kl- 1 } 2.1 } 2.1+, 

¡ XII! f 
= • u(x,t")wi(x,¡")dx + lnwldxdt. (5.9) 

x,-, n 

When the region ni does intersect the lateral boundary, as illustraled in Fig. 3, for .m 
inHow boundary, lhe equation associalcd wilh node Xi in Ihe figure, is 

.XH' u(X,t"+I)Wí(X,t,,+I)dx - :x( r. udt 2 ( udt + f Udt)f J~I-f Jlt.\,·-1 Jk¡11 

f ('(vu - D 
au ) 1_ wi(O,t)dt 

tn ax x-o 

t'+ ~ f u(O,t)dt + f fnwidxdl. (5.10) 
u.X t" n 

This equation follows from Eq. (15b) of Paper L The additional terms relativc to Eq. (5.9) 
are due lo nonzero w l al x = O [Le., they are due lo violation of property (f) above]. 
However, this Icads naturally lo lhe prcscnce 01' the total flux ICfm (iJVu - DdU/x) al 
the inftow boundary. This is physically appropriatc, Icading to global mass conservatiol1, 

FIG. 3. Case whcn Ihc slIpporl uf w i inlcrsccls Ihe inflow hUlIndary. 
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and Ihe rcsulting set of cquations yiclds accurale numcrical results (11. An altcrnativc 
formulation with very similar propertics, bascd on intcgrating by parts once inslead of 
twice, is developed in 1191, also with accuraté numerical rcsuIts; error estimales of oplimal 
order based on Ihis formulation are proved in [52]. As mentioned in Paper 1, the integrals 
thal appear in t!tese equations may he approximaled in many different ways. DitIerenl 
approximations of these integrals !cad lo differenl CM algorithms reported in lhe literalure. 

VI. MULTIDIMENSIONAL ADVECTION-DIFFUSION EQUATION 

Application of the algebraic theory lO multidimensional problems is slraightforward. 
Only slight moditications have lO be made in Eqs. (4.4)-(4.12). The region nx is 
mullidimensional in Ihis case, and the equations are 

au¡¡¡ + V . (Vu) - Ru - V . (D . Vu) = ¡n (x. t} in O. (6.1) 

The initial conditions (4.5) are sustained. The adjoint operator is 

dW
;;e'w '= - V . Vu Rw V· (D . Vw). (6.2)al ­

~(u. w), as defined hy Eq. (2.1), is 

~(u. w) = {uDVw + Vw) - wDVu. uw}. (6.3) 

Therefore 

[ ( 
aw ) au J9JiI(U, w) = -[~(u, w)] . N u D + (V - VI)W - wD- , (6.4)an an 

with lhe same assumplions as berore. The smoothness conditions implied hy mass balance 
and Fickian díffusion are 

[u] = [ :: J O on ¡. (6.5) 

Using Eqs. (2.8), il is secn tha! 

jO(u, w) = -(I + V~rI/2[u] ID . + ~v(V - V}'J} , (6.6a)- an 

jl(U,W) = (1 + VD- 1/2 wD[ :~], (6.6b) 

geO(w,u) = (1 + virll2{Ú[D~:J + (V - VI)[W J} , (6.7a) 

(6.7b) 

FinalIy, the bilincar functionals m(u, w), and (fo(w, u), associated with initial and houndary 
conditions, are 

m(u, w) = -uw on a"o, «&(w, u) = -uw on a1l + 10, (6.8a) 

m(u, w) = uD aw, Cf,(w, u) = W(D au - vu) on dDO, (6.8b)an an 

http:4.4)-(4.12
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dU ¡¡w )m(U w} = -wD- ~(w, u) -u( Da;; + Vw (6.8c), drz' 

aW 
m(U, W) = -W(D :~ - VU)' ~(W. u) = -uD dn (6.8d) 

Although the theoretical extension to multiple dimensions has been straighlforward, the 
numerical ímplementation for this case is considerably more complicated. 

VII. SYSTEMS OF EQUATIONS: MIXED METHODS 

As mentioned above, localized adjoint methods are very general. In particular, they are 
applicable lo systems of equations. This section is devoted lo explaining such applications 
and to developing mixed methods as an illustration. 

A. Systems of Equations 

Let u be a vector valued function defined in the region n. A linear system of equations 
can be written as 

.!Eu = fn in n, (7.1) 

where is a linear differentiaJ transformation. The adjoint of is defined by the 
condition 

w· .!Eu - U· .!E*w = V· {2I>(u,w)}, (7.2) 

where 2I>(u, w) is a vector-valued bilinear function. 
Application of generalized divergence thcorem yiclds 

{{w.;;eu-u.;;e*w}dX=! ffi,,(u,w)dx+ (ffi~(u,w)dx, (7.3)Jo m JI 
where 

gr,¡¡(u, w) = !!lI(u, w) '!1. and ffiI(u, w) = !!lI(u, w)] . !1.. (7.4) 

Thcsc equalions are very similar to Eqs. (2.2) and (2.3), and the other equations of Seco JI 
[(2.4)-(2.8)1 are essentially the same. Thus, associated with every kind of boundary 
conditions, onc has a decomposition 

ffiñ(u, w) !!lI(u, w) . !1. = m(u, w) - <(i¡(w. u), (7.5) 

where m(u, w) and <t:(w, u) are two bilinear functions. Using lhe identity 

[ !!lI(u, w)] = !!lI([u], w) + !!lI(ñ, [w]), (7.6) 

¡tis seen that 

ffi~(u, w) = J(u, w) - g{;(w, u), (7.7) 

with 

J(u, w) = -!!lI([u], w) . !1., (7.8a) 

~(w. u) !!lI(ñ, [wJ) . !1.. (7.8b) 
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B. Mixed Methods 

As an íllustration of how LAM can be used lo provide insight into mixcd methods, considcr 
the steady statc of tite general advcction-diffusion equation of Seco IV, 

V . (OVu) - V . (Vu) + Ru = fn(x) in n. (7.9) 

This can be replaced by the systcm of cquations 

/2 01/2VU + 0- lI2 VU O, (7.10a) 

V . (0 1/2/2) + Ru = fne!.). (7.lOb) 

In three spalial dimcnsions, Eqs. (7.10) conslitutc a system of four equations (underlincd 

quantitics are 3 D vcctors). Thus, a four-dimensional vector u = te.. u} wi1l be considcrcd, 
and lhe linear differential operalor :;e 

,:eu {/2 O Il2Vu + 0- 1I2
y-U, V· (0112e) + Ru}. (7.1]) 

Let w be a function whose va)ues are the rour-dimensional vectors {g, w}. Then the 
adjoint differential operator is dcfincd by 

,:e*w == {g - 0"2Vw, V· (01/2g) + 0- 1/2V . g + Rw}. (7.12) 

The idcntity 

(7.]3) 

implics that 

2D(u,w) = wO I12/2 u0 1/2g. (7.14) 

Thc smoothness conditions implied by conservation of mass are 

[u]=O and [OIl2/2J'!l=O. (7.15) 

When the coefficients are continuous, the latter of these equations IS equivalent to 
[/2] . !l = O. Use of Eqs. (7.8) and (7.14) Icads 10 

1(u, w) = [U]OI12q. !l - WO I12 LeJ .!l, (7.16a) 

2e(w, u) [W]0!!2j:'!l - úO I/2 [g] '!l. (7.16b) 

Equation (7 .16b) has interesting implications. Because the exact solution u {/2' u} 
satisfies (7.15), one has p . !l = P . !l and ú = u. If it ís desíred ta concentratc al! 
the infarmation in the flux at ínterelement boundaries, Ihen the weighting funcHons 
w = {g, w}, in addition to satisfy the complcmentary boundary conditions (~(w,') O, 
mus! satisfy the adjoint system of differential cquatíons ,:e*w O, which is 

q - 01/2VW = O, (7.17a) 

O. (7.17b) 

By inspcction of Eq. (7.16b), it is seen thal. elimination of the information about the 
funetíon u requíres that [q] . !l = O, Le., that the normal component of q be continuous. 
Howcver, the weighting function w must be discontinuous. This is essentrnlly the Raviart­
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Thomas [521 rcsult, which constitules lhe basis of mixcd methods. This result has been 
quite useful fOf approximating lhe lolal flux directly as an independcnt variable. In 
particular when D = 1, V = 0, and R = .fn = 0, Eq. (7.9) becomes the Laplace equation 
while (7.17) can be written as 

CJ.. = Vw, V· CJ.. = O. (7.1H) 

Thus q must be incompressible wilh continuous normal component across inlerc!ement 
boundaries, while w is discontinuous. 

VIII. OISCUSSION ANO CONCLUSIONS 

In a sequence of two papers, localized adjoint method has been applicd in space­
time lo problems 01' advectíve-diffusive transport. The approach is based on space-time 
discretizalions in which specialized test functions are applied. Thesc functions satisfy 
the homogenous ad.ioint equation locally within cach elcment. The resulting method is 
referred lo as the Eulerian-Lagragian Jocalized adjoínt method. The ELLAM approach, in 
addition lo providing a unification of characteristic methods (CM), supplies a syslematic 
framework for incorporation of boundary conditions in CM approximatíons. Any type of 
boundary conditions can be accommodated in a mass conservative manner. This seems 
to be the first complete trealment of boundary conditions in Eulerian-Lagragian methods 
tllal leads to a conservative scheme for the general transport equations. Additionally, the 
ELLAM approacll provides a framework within which LAM concepts can be applied lO 
advection-dominated problems, handling time-dependent situations more accuralely than 
OSM. Thus ELLAM combines Eulerian-Lagrangian ideas and the LAM framework lo 
their mutual henefit. 

In Paper 1 [1], Ihe numerical implementation was developed and discussed thoroughly. In 
Ihis second paper of the series, the theoretical aspects are covered in a more complete form, 
and Ihe ELLAM procedures are more clearly related with the general LAM framework. 
This provides a more systematic development of the ELLAM melhodology, making it 
possibJe lo establish a more complete picture of the possibilities that should he explored 
and tlle problems that must be tackled in order lo make ELLAM a more effectivc modeling 
too!. In particular, the LAM framework has been demonstrated lo be very suitable for 
motivating specialized test functions. Thc effect that different boundary and continuity 
(or smoothness) conditions, satisfied by test functions, llave on approxímate solutionsis 
clearly exhibited. AIso, the LAM framework leads in a natural manner lo a definition 
of suitable unknowns for a given problem. For exampJe, whcn developing the numerical 
implementation of ELLAM in Papcr 1, it became apparent that in sorne cases it was 
necessary to introduce lhe total flux as an additional unknown al the boundaries, in spite 
of the faet that the main goal was to predict lhe value of lhe function al time tl!+ I . 

The generality of lhe theory was corroborated, once more, by applying it lo systems of 
cquations and deriving mixed methods. 

However, there are many points tllat should be studied in more depth. We need a more 
extensive study 01' both the theory and implementation of ELLAM techniques for variable 
coefficients, particularly in mullidimensional applications. Implementation of boundary 
conditions for variable-coefficient problems in multiple dimensions is also an important 
problem. In addition, Ihe treatment of nonlinear problems deserves further sludy. Sínce 
lhe unknown variables appear in nonlinear coefficients that are usually evaluateu in lhe 
interior of mesh blocks vía numcrical quadrature, greater attentíon must be placed on 
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lhe full approximatíon-theoric properties 01' the trial funetions in these applieatíons. The 
potential of local refinement in both space and time holds cnormous potential for ELLAM 
and is lhe object of ongoíng research. 

Finally, we want to emphasize that ELLAM forms a general and powerful framework for 
investigating and comparing a wide variety of numerical methods for problems that have 
important advective properties. The framework motivates different choiees 01' test 1'unetiolls 
to approxímate diffcrcnt propcrties 01' the unknowns or evcn di1'1'ercnt unknowns, such as 
f1uxcs. The general theory is expanding to provide more insight. These teehniques appear 
lo have enormous l1exibility and potential for treating general adveetion-di1'fusion-reactiol1 
problems. 

This work was partially supported by the International Atomic Energy Ageney ullder 
Contrae! No. 6088!RB, by Ihe International Devclopment Researeh Centre, Olllada, undcr 
Contraet Nos. 89-1029-02, and by the NationaJ Science Foundation undef Contraels 
Nos. DMS8712021, RIJ-8610680, DMS8821330, and CES8657419. 
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