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This is the sccond of a sequence of papers devoted to applying the localized adjoint method (LAM),
in space-time, to problems of advective-diffusive transport. We refer to the resulting methodology
as the Eulerian-Lagrangian localized adjoint method (ELLAM). The ELLAM approach yiclds a
general formulation that subsumes many specific methods based on combined Lagrangian and
Eulerian approaches, so-called characteristic methods (CM). In the first paper of this series the
cmphasis was placed in the numerical implementation and a carcful treatment of implementation of
boundary conditions was presented for one-dimensional problems. The final ELLAM approximation
was shown to posscss the conscrvation of mass property, unlike typical characteristic mcthods.
The emphasis of the present paper is on the theoretical aspects of the method. The theory, bascd
on Herrera’s algebraic theory of boundary value problems, is presented for advection-diffusion
cquations in both onc-dimensional and multidimensional systems. This provides a generalized
ELLAM formulation. The generality of the method is also demonstrated by a treatment of systems
of cquations as well as a derivation of mixed methods.  © 1993 John Wiley & Sons, iInc,

i. INTRODUCTION

This is the second of a sequence of papers devoted to the application of the localized
adjoint mecthod (LAM) to problems of advection-diffusive transport [1]. The LAM is a
new and promising methodology for discretizing partial differential equations. It is based
on Herrera’s algebraic theory of boundary value problems [2-6]. Applications have been
madc successively to ordinary differential equations, for which highly accurate algorithms
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were developed [5, 7-9], multidimensional steady-state problems [10], and optimal spatial
methods for advection-diffusion cquations [11-18]. Finally, this article and the companion
one [1] (to be referred to as Paper 1) provide generalizations of characteristic methods that
we refer to as the Eulerian-Lagrangian localized adjoint method (ELLAM). Related work
has been published separately by some of the authors [19-22] and some more specific
applications have already been made [23-28].

The numerical solution of the advective-diffusive transport cquation is a problem of great
importance because many problems in science and cngincering involve such mathematical
models. When the process is advection dominated the problem is especially difficult. In
Paper I a brief review of the methods available was presented, from which we draw
here. The mcthods derive from two main approaches: optimal spatial methods (OSM) and
characteristic mcthods (CM).

The first of these procedures employs an Eulerian approach and develops an accurate
solution of the spatial problem. For example, in the pioneering work of Allen and Southwell
[29], a finite difference approximation was developed for the advection and diffusion terms
that gives cxact nodal values for the simplified case of onc-dimensional, stcady-state,
constant-coefficient advective-diffusive transport without sources, sinks, or reaction terms,
More general and systematic results in this direction have been developed using the LAM
approach [5, 7-10]. However, this kind of approximations tend to be incffective in transient
simulations because of the strong influence of the time derivative. The salient features of
this class of approximations may be summarized as follows: (i) Time truncation crror
dominates the solutions; (ii) Solutions are characterized by significant numerical diffusion
and some phase crrors; and (iii) The Courant number (Cu = VAr/Ax) is gencrally
restricted to be less than 1, and sometimes much less than 1. A gencral comparison
of some of thesc methods was provided by Bouloutas and Celia [30].

Other Eulerian methods can be developed that perform significantly better than OSM
approximations. These methods attempt to use the nonzero spatial truncation crror
(thereby differing from OSM) to cancel temporal errors and thereby reduce the overall
truncation error (sce, for example, [31-33]). While improved accuracy results from these
formulations, they still suffer from strict Courant number limitations.

Finally, characteristic methods include many related approximation techniques that arc
called by a variety of names, such as Eulerian-Lagrangian methods (ELM) [34-37], trans-
port diffusion method [38], characteristic Galerkin methods [39], method of characteristics
(MOC) {40}, modified method of characteristics (MMOC) [41-43], and operator splitting
methods [44—~46]. Each of these methods has in common the feature that the advective
component is treated by a characteristic tracking algorithm (a Langrangian frame of
reference) and the diffusive step is treated separately using a more standard (Eulcrian)
spatial approximation. These methods have the significant advantage that Courant number
restrictions of purely Eulerian methods are alleviated because of the Langrangian nature of
the advection step. Furthermore, becausc the spatial and temporal dimensions are coupled
through the characteristic tracking, the influence of time truncation error present in OSM
approximations is greatly reduced.

This paper and its companion [1] provide a gencralization of charactcristic methods
using the approach of the localized adjoint method. In Paper 1, a specific space-time LAM
formulation that naturally leads to generalized CM approximations (to be referred to as
Eulerian-Lagragian LAM:ELLAM) was introduced that is consistent and does not rcly
on any operator splitting or equation dccomposition. In addition, all relevant boundary
terms arise naturally in the formulation; a systematic and complete treatment of boundary
conditions was presented which was shown to possess the global mass-conservation
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property. The numerical treatment and boundary conditions implementation was developed
with considerable detail.

The present Paper 1T dwells more on the general LAM theory, placing ELLAM more
thoroughly in the gencral perspective of LAM. This contributes to a more complete picture
of the possibilitics that should bc explored and the problems that must be tackled in
order to make ELLAM a morce cffective modeling tool. The present paper begins by
reviewing Herrera’s algebraic theory as well as the LAM procedure. Then a general
discussion of the approach is presented, including illustrations of its application to ordinary
differential cquations. After this, the LAM formulation of the spacc-time of advection-
diffusion equation is derived in one space dimension, and the choice of continuity and
boundary conditions to be satisfied by test functions is briefly discussed. The ELLAM
formulation is then extended to several space dimensions, To illustrate the generality of
LAM, the manner in which systems of cquations are incorporated in this framework is
explained, and as an example, mixed methods arc developed in this sctting.

ll. GENERAL BACKGROUND

In this section, Herrera’s algebraic theory of boundary value problems [2-6] is briefly
explained.

Consider a region {3 and the lincar spaces Dy and D, of trial and test functions defined
in {1, respectively. Assume further that functions belonging to D; and D, may have jump
discontinuitics across some internal boundaries whose union will be denoted by . For
example, in applications of the theory to finite clement methods, the set % could be the
union of all the interclement boundarices. In this setting the general boundary value problem
to be considered is one with prescribed jumps across 2. The differential cquation is

Pu=fo inQ, Q2.1

where {1 may be a purely spatial region or, more generally, a space-time region. Certain
boundary and jump conditions are specified on the boundary 4} of Q and on X,
respectively. When () is a space-time region, such conditions generally include initial
conditions. In the literaturc on mathematical modeling of macroscopic physical systems,
there are a variety of examples of initial-boundary value problems with prescribed jumps.
To mention just one, problems of clastic wave diffraction can be formulated as such
[47,48]. The jump conditions that the sought solution must satisfy across %, in order to
define a well posed problem, depend on the specific application and on the differential
operator considered. For example, for clliptic problems of sccond order, continuity of the
sought solution and its normal derivative is usually required, but the problem in which
the solution and its normal derivative jump across 2 in a prescribed manner is also well
posed [48].

The definition of a formal disjoint requires that a differential operator £ and its formal
adjoint £* satisfy the condition that w¥u — us*w be a divergence, i.c.,

wfu — uf'w =V {D(u, w)} 2.2)
for a suitable vector-valued bilinear function @(u, w). Integration of Eq. (2.2) over  and

application of the generalized divergence theorem [49] yields

f{wiﬁu - u.SE*w}dxz] Ralw,u)dx + [ Ry (u, w)dx (2.3)
QO ay b3

&
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where
Ro(,w) = Bu,w) - n and Rxlu,w) = —[Du,w)] - n. 2.4)

Here the square brackets stand for the “jumps” across 2 of the function contained inside,
i.c., limit on the positive side minus limit on the negative side. Here, as in what follows,
the positive side of % is chosen arbitrarily and then the unit normal vector n is taken
pointing towards the positive side of 2. Obscrve that generally £u will not be defined on
3., since u and its derivatives may be discontinuous. Thus, in this article, it is understood
that integrals over {1 are carried out excluding 2. Consequently, differential operators will
always be understood in an elementary sense and not in a distributional scasc.

In the general theory of partial differential cquations, Green’s formulas are used cxten-
sively. For the construction of such formulas it is standard to introduce a decomposition of
the bilincar function R, (sce, for example, Lions and Magenes [50]). Indicating transposcs
of bilincars forms by means of an asterisk, the genceral form of such decomposition is

R, w) = B, w) - n = Blu,w) — € (u,w), (2.5)

where B(u, w) and G(w,u) = €*(u,w) arc two bilinear functions. When considering
initial-boundary value problems, the definitions of these bilinear forms depend on the
type of boundary and initial conditions to be prescribed. A basic property required of
B{u, w) is that for any u that satisfics the prescribed boundary and initial conditions,
B{u, w) is a well-defined linear function of w, independent of the particular choice of u.
This linear function will be denoted by g, [thus its value for any given function w will be
go(w)], and the boundary conditions can be specified by requiring that Blu, w) = ga(w)
for cvery w € D, (or more briefly: B(u, -) = g,). For example, for the Dirichlet problem
of the Laplace equation, it will be seen later that B(u, w) can be taken to be udw/on on
3Q. Thus, if u, is the prescribed value of u on 9Q), one has Bu, w) = u,0w/dn for any
function u that satisfics the boundary conditions. Thus g,(w) = uzdw/an in this casc.

The linear function 6*(u, -}, on the other hand, cannot be cvaluated in terms of the
prescribed boundary values, but it also depends exclusively on certain boundary values of
u (the “complementary boundary values”). Generally, such boundary valucs can only be
cvaluated after the initial-boundary valuc problem has been solved. Taking the example
of the Dirichlet problem for the Laplace equation, as before, €*(u, w) = wou/dn and the
complementary boundary valucs correspond to the normal derivative on d€).

In a similar fashion, convenicnt formulations of boundary valuc problems with pre-
scribed jumps requires constructing Green's formulas in discontinuous fields. This can
be done by introducing a general decomposition of the bilincar function Ry (i, w) whose
definition is pointwise. The general theory includes the treatment of differential operators
with discontinuous coefficients [S]. Howcever, in this article, only continuous cocfficicnts
will be considered. In this case, such decomposition is easy to obtain, and it stems from
the algebraic identity:

[ B(u, w)] = B(u], W) + B, [w]), (2.6)
where

Clul=wy —u., w={(uu)/2. 2.7
The desired decomposition is obtained by combining the second of Eqs. (2.4) with (2.6):

Ry (o, w) = Flu, w) — X (u, w), (2.8)
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with
Flu,w) = ~D([ul,w) - n (2.9a)
X (u,w) = Xw,u) = D, [w]) - n. (2.9b)

An important property of the bilincar function $(u, w) is that, when the jump of u is
specified, it defines a unique lincar function of w, which is independent of the particular
choice of u. When considering initial-boundary value problems with prescribed jumps, the
lincar function defined by the prescribed jumps in this manner will be denoted by js [thus
its valuc for any given function w will be jy(w)] and the jump conditions at any point of %
can be specified by means of the equation $(u, -) = js. In problems with prescribed jumps,
the linear functional &*(u, -) plays a role similar to that of the complementary boundary
values €*(u, ). It can only be cvaluated after the initial-boundary valuc problem has been
solved and certain information about the average of the solution and its derivatives on 3,
is known. Such information will be called the “gencralized averages.”
Introducing the notation

(Pu,w) = f wSudx, {(Q"u,w)= f uf wdx, (2.10a)
0 Q

(Bu,w) = / Bu, wydx, (C'u,w) = f @(w, u)dx (2.10b)
an a§}

Ju,w) = / $(u,w)dx, and (K'u,w)= j X(w,u)dx, (2.10¢)
3 %
Eq. (2.3) can be written as
(Pu,w) — (Q"u,w) = (Bu,w) — (C*u,w) + {Ju,w) — {K"u,w). (2.1

This is an identity between bilinear forms and can be written more briefly, after rearranging,
as

P-B-J=0Q - C"—K" (2.12)

This is the Green-Herrera formula for operators in discontinuous fields |2, 6].
The initial-boundary valuc problem with prescribed jumps can be formulated pointwisc
by means of Eq. (2.1) together with

Blu, ) = goand  Pu,*) = jx. (2.13)

In order to associatc a variational formulation with this problem, define the lincar
functionals f,g,j € D; by mcans of

(f,w)—‘—‘fQ wfq dx, (g,w)—":fmg,’,(w)dx, {j, w)=[2j>;(w)dx. (2.14)

Then a variational formulation of the initial-boundary value problem with prescribed jumps
is

Pu=f, Bu=g, Ju = j. (2.15)

The bilinear functional J just constructed, as well as B, are boundary operators for P,
which are fully disjoint. (For the definitions of the concepts that appear in italics here, the
reader is referred to Herrera’s original papers [2—6]). When this is the case, the system
of equations (2.15) is equivalent to the single variational cquation

(P —B~Nuwy=(f—-g—jw VYwED,. (2.16)
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This is said to be “the variational formulation in terms of the data of the problem,” because
Pu, Bu, and Ju are prescribed. Making use of formula (2.12), the variational formulation
(2.16) is transformed into

O" — C* = KNu,wy={f —g — j.,w)y VYw € D;. 2.1

This is said to be “the variational formulation in terms of the sought information,” because
Q*u, C"u, and K"u are not prescribed. The variational formulations (2.16) and (2.17) arc
equivalent by virtue of the identity (2.12). The linear functionals Q*u,C*u, and K*u
supply information about the sought solution at points in the interior of the region (1, the
complementary boundary values at 9{), and the gencralized averages of the solution at
3., respectively, as can be verified by inspection of Egs. (2.10), and as will be illustrated
in the cxamples that follow.

Localized adjoint methods arc based on the following observations. When the method
of weighted residuals is applied, an approximate solution @ € D, satisfics

(P —-B—DNaw)=(f-g—jw? a=1,.,N, (2.18)

where {w', ..., wN} C D, is a given system of weighting functions. However, thesc
cquations, when they arc expressed in terms of the sought information, become

Q" — C" = KYa,w*)={(f —g—jwY, a=1,..,N. (2.19)
Since the exact solution satisfies (2.17) it must be that
(" - C" = KNa,w*) ={(Q" - C" ~ Ku,w™), a=1,....,N. (2.20)
Either in this form or in the form
(" - C*" =K@~ u,w*)=0, a=1,...,N, (2.20")

Eqgs. (2.20) can be used to analyze the information about the exact solution that is contained
in an approximate one. In localized adjoint methods, these obscrvations have been uscd
as a framework for sclecting more convenient test functions.

. ILLUSTRATIVE RESULTS

As has alrcady been mentioned, K*u supplies information about the average of the
solution and its derivatives across the surface of discontinuity 2. Such information can be
classified further. In particular, it is useful to decompose the averages K*u into averages
of the function, the first derivative, etc. This is achieved by writing K* as the sum of
operators K%, K', ..., each one containing the information about the average of the
derivative of the corresponding order. Such decomposition is induced when %*(u, w) is
decomposed pointwisc into the sum of bilincar functions X% (1, w), X'*(u, w), ..., cach
one containing the corresponding information pointwise. Similarly, J will be written as the
sum of operators J°, J',..., each containing the jump of the derivative of corresponding
order, and $(u, w) will be the sum of $%(u, w), $'(u, w), etc. When this is donc,

K=2W,J=Zﬁ,%=2%,g=2y. 3.1

In view of Egs. (2.20), it is clear that the information about the exact solution contained
in an approximatc onc depends in an csscntial manner on the system of weighting functions
chosen. The systematic classification of such information introduced by the algebraic
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theory can be uscd to develop weighting functions that concentrate the information in
a desired manner. In very genceral terms, if onc wishes to climinate all the information
about the sought solution in the interior of the region {3 — % (thus concentrating it in
thc complementary boundary values and averages across 2,), the weighting functions must
be chosen so that 0 = (Q*u, w*) = (Qw*, u). This condition is satisfied if Qw* = 0,
i.c., £*w® = 0. Similarly, thc information about the complementary boundary valucs can
be climinated if the weighting functions satisfy Cw® = 0 globally, i.c., €(w®,*) = 0
pointwise. Elimination of the average of the function requires Xwe, -} = 0; elimination
of the average of the first derivative requires that ¥ (we, ) = 0, etc. Note that boundary
methods are obtained when £*w® = 0 and simultaneously X*(w?®,:) = 0. Also, if all
the information is to be concentrated at onc point, Green’s functions must be constructed.
However, development of such weighting functions requires solution of nonlocal problems.
As a further general comment, it should be mentioned that, for partial differential equations
of second order with continuous cocfficicats, the condition & (w®,+) = 0 is cquivalent to
[w] = 0 (i.e.,, wis C°). This result, which will be shown later in this section for the
special case of ordinary differential equations, implies that C? methods concentrate the in-
formation on the values of the function, both at the interelement boundarics and in the
interior of the finite elements.

As an illustration of the procedure, let us review the results for general sccond-order
diffcrential equations that arc linear, which were derived by Herrera and co-workers
[5,7-9] for onc-dimensional equations. Actually, the mecthodology is applicable to
multidimensional equations of any order which may be time dependent, and to systems
of differential cquations, as is cxplained in Sec. VII. However, for partial differential
cquations (i.c., when more than one independent variable is involved), the implementation
of the procedures is considerably morc complicated and it is not possible to predict the
exact valucs of the solution in general.

A physical situation .that the general ordinary differential cquation of sccond order
mimics is transport in the presence of advection, diffusion, and lincar sources; a notation
related with such processes will be adopted. The general equation to be considered is

d du

fu= - (DZI}_ - Vu) + Ru = fq, inQ =[0,1]. (3.2a)

Attention will be restricted to the casc when D and V are continuous (discontinuous
cocfficients have bcen treated previously [5]). When the function u is assumed to be
continuous, so that

[u] =0 on 3, (3.2b)
the smoothness condition implicd by conservation of mass [49]
du
Vu—-D—|=0 on3 3.2¢
[ u ax} n 3, (3.2¢)
reduces to
du
— =0 2 2d
[ o } on (3.2d)
by virtue of the assumed continuity of V and D.
A partition {0 = xg,x,,...,xg-,xg = I} is introduced, which for simplicity is assumed

to be uniform, i.c., x4 — Xo-1 = # is independent of «. Trial and test functions will be
assumed to be sufficiently differentiable in the interior of cach of the subintervals of the
partition, so that the differential operator is defined there and the jump discontinuities can
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only occur at internal nodes. This corresponds to taking 2 = {x;,...,xg_1} in the general
framework presented in Sec. II. Observe that the normal vector p = 1 at/, and p = —1
at 0. On 2, the choice n = 1 is convenient, because in this manner the positive side of
% is the side that is determined by the sense of the x axis. Suitable boundary conditions
are assumed to be satisfied at 0 and / in order to have a well defined boundary valuc
problem. The boundary conditions can be Dirichlet, Neumann, or Robin [5], but they are
left unspecified, since the following developments accommodate any of them.
The formal adjoint of the operator &, as defined by (3.2a), is

d dw dw
w=——|D— ]| - V— + . 3.z
Fw P <D dx) dx Rw 3.3)
Therefore
d dw du
— wos — — + — — 3.
wlu — udlw dx{u(D Ix Vw) wD dx} 3.4
and
dw du
= y|D— + - wD— 3.5
Du, w) u( I VW) wD— (3.5)

Application of Egs. (2.9) yields

Iu, w) = —[u] (D%f— + Vv'v), I, w) = WD[%:I, (3.6a)

Xw, u) = L'l[D"!lV“ + Vw}, X (w,u) = -[w]D@ , (3.6b)
dx dx
from which $ and & are obtained by means of Egs. (3.1). In Egs. (3.6), an overbar is used
to indicate that the dot on top refers to the whole expression covered by the bar.
The definitions of the bilincar functions B(u, w) and 6(w, u), depend on the type of
boundary conditions to be satisfied. For Dirichlet problems, « is prescribed and one
possibility is

d [
Bu, w) = u(D—W + Vw) “n,  Glw,u) = wa_u -n. (3.7)
dx dx
Another possibility is
, dw du
Bu,w) = —uD— - n, b(w,u) = —-w|D— — Vul}- n.
dx dx

To be specific, only Eq. (3.7) will be used here. For Neuman problems, du/dx is the
datum, so that

du )
dx
In the most general form of Robin’s boundary conditions, a linear combination of the
derivative and the value of the solution are prescribed. This general case was developed in

[5]. Here, attention is restricted to the case when the total flux Ddu/dx — Vu is prescribed.
Then

Blu,w) = —wD n, Glw,u)= —u(D% + Vw) “n. (3.8)

du dw
Blu,w) = “W(DE - Vu) n, 6 {w,u) = “‘MDE “n. 3.9

In the case of ordinary differential equations, Herrera et al. |5] developed algorithms
for which all the information was concentrated in the values of the solution at internal
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nodes; by so doing, they were able to obtain algorithms that yield the exact values of
the solution at those nodes. Using the developments already presented, derivation of such
algorithms is a simple exercisc. The information about the sought solution supplicd by the
weighted system of equations is exhibited in Egs. (2.20). In particular, the information that
is supplied at internal nodes refers to the averages of the solution and its first derivative
there, given by &*u [see Egs. (3.6b)]. Thus, in order to concentrate the information there,
it is necessary to remove {Q*u,w®) and (C*u,w®) in Egs. (2.20). This is achicved if
Ow® = () and Cw® = 0. The first of these conditions is equivalent to £*w = 0, and
the other is the boundary condition €(w, ) = 0, which in the casc considered here must
be satisfied at 901 = {0,/}. In view of Egs. (3.7)—(3.9), thc boundary conditions to bc
satisfied by the test functions are
dw dw

w = (, Ddx- + Vw = 0, Ddx 0, 3.10)
wherever Dirichlet, Neuman, and flux conditions, respectively, are prescribed on w.
Obscrve the “symmetry™

To eliminate the complementary boundary values from the weighted equations, the value
of the test functions must vanish wherever the value of the sought solution is prescribed.
However, it is the “reserve flux” {Ddw/dx + Vw) which must vanish, wherever the
first derivative of the sought solution is prescribed and conversely, it is the derivative
(dw/dx) which must vanish wherever the flux (Ddu/dx — Vu) is prescribed.

Since our goal is to concentrate the information on the value of the sought solution at
internal nodes, taking into account that X(w,u) = ¥%(w,u) + X' (w,u), it is clear that
it is still necessary to remove the information about the first derivative. This will be
achieved if the condition XH{w,-) = 0 is imposed on the test functions. In view of (3.6b)
this condition is [w] = 0, on 2.

In summary, the weighting functions that concentrate all the information in the valucs
of the sought solution at internal nodes are solutions of the homogencous boundary value
problem with prescribed jumps:

Lw=0 onf), %w,)=0 onaod=1{01}
[w]l=0 onZX. (3.11)

Clearly, the condition [w] = 0 on Y. implies that w € C°. Such weighting functions can
be taken having local support, because [dw/dx] # 0 is admissible [5, 8]. Generally, the
dimension of the space of solutions of Egs. (3.11) is £ — 1, and if that space is used
to form the system of weighting functions in Eq. (2.18), an (E — 1) (E — 1) system of
equations posscssing a unique solution is obtained for the average & of the approximate
solution at internal nodes. The uniquencss of solution of this system of equations implics
that the averages predicted in this manner are equal to the averages of the exact solution at
internal nodes, since °(4 — u) = 0 in that casc, by virtue of (2.20'). Also, at any internal
node, the value of the sought solution is equal to its average therc, since it is continuous
(Egs. 3.2b), so that the cxact valuc of the solution at internal nodes is predicted in this
manner.

A rigorous discussion of the conditions under which the resulting system of cquations
possesses a unique solution requires the use of the concept of TH completeness. This
concept was introduced by Herrera in [2,51], where he presented a rigorous discussion of
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this question in an abstract setting allowing considerable generality, since the conclusions
that he obtained are independent of the order of the differential equations and the number
of independent variables involved. However, attention was restricted to the casc when
the differential operator is symmetric and the corresponding analysis for nonsymmetric
operators is wanting. This matter is being studied at present and will be addressed
elsewhere.

A similar procedure can be developed for obtaining the exact values of the first derivative
at internal nodes, the main difference being that one must require that X%w, ) = 0 instead
of £(w,-) = 0. In view of Eq. (3.6b), Eq. (3.11) is replaced by

Lw=0 onf), bw,)=0 onad ={0,1}
[de/i“j] =0 onX. (3.12)
dx

The corresponding algorithm was developed in [5,8]. Combinations in which the valuc
of the solution is obtained at some nodes and its derivative at others, or algorithms that
simultancously yicld the exact values of the solution and its derivative at internal nodes
(with a correspondingly larger system of equations to be solved), are also possible [5].
Until now, no specific representation of the approximate solution has been adopted.
Let {®° ®!,..., "} be a system of trial functions, generally fully discontinuous (i.c.,
the function and its derivative have jump discontinuitics at inicrnal nodes), and ict
4 =) A;®/ be an approximate solution satisfying Egs. (2.18) or, equivalently, (2.19).
When the system of weighting (or test) functions fulfilling (3.11) is TH complete, then

alx)) =ulx;)), j=1,..,E~1, (3.13a)

where u(x) is the exact solution. Correspondingly, if the system of weighting functions
satisfies (3.12) and is TH complete, then

dagy_ ey _
dx(x,) dx(x,), i=1...,E—-1. (3.13b)

It is important to observe that cither Eq. (3.13a) or (3.13b) holds independently of the trial
functions uscd. In particular, they can be fully discontinuous and they can also violate the
prescribed boundary conditions, although this would produce poor approximations, except
at the nodces. This is discussed further below.,

It is worth exploring some of the implications of these results. To relate the results
thus far obtained to standard variational formulations uscd in finite clement meth-
ods, let us consider the one-dimension (1D) version of the Poisson equation [i.c.,
Eq. (3.2a), with D = 1, V = R = 0], subject to homogencous Dirichlet boundary condi-
tions [u(0) = u(l) = 0]. A standard variational formulation for this problem is as follows:
u € Hy([0,1]) is a weak solution if and only if

f

" du dw
()dx dx

!
dx = f fawdx Vo € HI(0,1]), (3.14)
0

where H([0,1]) is the subspace of the Sobolev space H'([0,]), whose members have
vanishing traces.

Let us look for an approximate solution # using trial functions {®',..., ®¥#~!} which arc
locally lincar and globally continuous [Fig.1 (a)]. In addition, use the samc collection as test
functions, as is usually done when applying Galerkin method. Let a(x) = f,__—l' U;®/(x).
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(b

FIG. 1. (a) Basc function: Locally lincar, globally continuous. (b) Base function: Locally lincar,
discontinuous.

Then &/, for j = 1,...,E — 1, as well as i, belong to Hy ([0, []). Obscrve that for this
class of functions one has

" di dw f’ d*i E-1 [dﬁ
- = et 2w | =W B d 3.15
/() dx dx o 0 w dx? dx j=1 Wi dx L {« Ya,wy  ( )

Here, Eqs. (3.6a) and the facts that « and x are continuous and vanish on the boundary
were used. Equation (3.15) illustrates the fact that the standard variational formulation
for the Laplace operator is a particular case of the general variational principle (2.16) in
terms of the data of the problem. However, the standard variational formulation can only
be applied when both trial and test functions are continuous, while the algebraic theory
supplics a systematic manner of extending it to cases where trial and test functions are
fully discontinuous.

For the case where the prescribed boundary conditions arc nonhomogencous, a suitable
representation of the approximate solution is

E—-t
i(x) = Ug®® + Up®® + > U;d/(x). (3.16)

j=1

Let us apply the wvariational formulation (2.18) using the weighting funclions
{®!,..., ®E "} associated with internal nodes. This system concentrates all the information
at internal nodes because it satisfies Eqs. (3.11); morcover, it is TH complete. The resulting
system of equations is

U b Uy — 2U Xavy ’
+1 p i o =f fow®dx, a=2,....E -2, (3.17a)
X1
U, — 2U, fx: i gy Ug-g — 2Up- fl E-1 il
Yo = 20 ix — =, —A——t = Codx = o
h 0 fQW @ h h A’l:«zfnw h
(3.17b)

where ug and ug are the prescribed values for u at 0 and [, respectively, and bear no
relation with Uy and Upg, which arc unknown. Since the same system of cquations is
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fulfilled by the exact solution, one has
Uger + Up—y — 2U, _ Uas + Ug—1 — Uy
h h ’

a=2,. . E-2 (3.18a)

together with

Up-y — 2Ug-) _ Up-2 T 2“154’ U, — 2U, o 2uy ) (3.18b)
h h h h

which implics U, = u(x,) for a = 1,...,E — 1 (ic., at all the interior nodes), as
predicted by the theory.

The above properties depend solely on the weighting functions and are independent of
the trial functions used. In particular, when the boundary values arc not satisficd by the
trial functions [i.c., Uy # uo, Ug # u, in Eq. (3.16)], one would expect to obtain an
(E + 1)(E — 1) system of cquations that would be undetermined, since the number of
unknowns is greater than the number of equations. However, Uy and Uy do not occur in the
system that is obtained, and the resulting system can be interpreted as an (E — 1) (E — 1)
system for {U, ..., Ug_}, whose only solution, as alrcady mentioned, is the values of the
exact solution at the internal nodes, leaving Uy and Ug undetermined. This latter fact is
natural, since the system of cquations (3.18) was derived using the variational principle
(2.17), in terms of the sought information, and the values of the sought solution at the
boundary are not included in the sought information. Indeed, in the boundary only the
derivative is included in the sought information.

Morecover, the trial functions themsclves can be changed arbitrarily and still the
nodal values will be predicted correctly. In particular, let us illustrate the usc of fully
discontinuous trial functions by cxhibiting these results when such trial functions are uscd.
To this end, keeping the same weighting functions as before, change the trial functions in
the representation (3.16) of the approximate solution, to [sce Fig. 1(b)]

3(x — xj-1)
) h
Ol(x)=| X hxj'**l’ X = xS X 3.19)

0, elsewhere.

, Xj-[SXSXj

Then the same system of equations (3.17) is obtained. Obscrve that the averages of the
trial functions given by (3.19) are zero at internal nodes, except ®/(x;) which is equal to
onc. Thus (3.17) is equivalent to

fosr + ligoy — 28 Xat
- > - = fowTdx, a=2,...E -2, (3.200)
II Ko -t
i, — 20 2 ' Uy fp—y ~ 205, XE . ug
A Jaw' dx — —, —————— = ‘fQWL Vdx — —,
h 0 h h XE-2 h

(3.20b)

whose only solution is #(x,) = u(x,) fora = 1,...,E ~ 1 [i.c., Eq. (3.13a)]. Thus, cven
if discontinuous trial functions arc used, the values of the exact solution are predicted
correctly by the averages at internal nodes of the discontinuous approximate solutions.
Although very simplc cxamples were chosen to illustrate the results presented in this
section, the conclusions are valid for the general Eq. (3.2a) and also for the different kinds
of algorithms that were introduced. They exhibit the general fact that the information about
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the sought solution contained in an approximate onc is independent of the trial functions
used. However, the reader must not be misled to conclude that the choice of trial functions
is irrclevant. On the contrary, as is well known, a judicious choice of the trial functions is
essential to develop satisfactory approximate solutions. For example, if the trial functions
(3.19) are used as interpolators in present examples, very poor estimations of the solutions
would be obtained in the interior of the subintervals [x;-y, x;], in spite of the fact that its
values at internal nodes are predicted with unlimited precision.

However, an important conclusion that can be drawn from the preceding examples is that
in the construction of approximate solutions, there arc two processes, cqually important
but diffcrent, that must be clearly distinguished. They are (i) gathering information about
the sought solution, and (ii) interpolating the information about the sought solution which
is availablc.

These two processes are distinct, although in many numerical methods they arc not
differentiated clearly. The information that is gathered is determined by the weighting
functions, while the manner in which it is interpolated depends of the trial functions
chosen. A peculiarity of the examples that have been given in this scction is that here,
those processes are not only independent, but they need not be carried out simultancously.
Indeed, since the exact values at the nodes arc obtained independently of the trial functions
uscd, given that the requirements in Eq. (3.11) are satisfied, onc can obtain them first and
choose the interpolator afterwards.

Also, the two processes mentioned above are to a large extent independent, exhibiting
some of the severe limitations associaled with methods such as the Galerkin mcthod,
in which trial and test functions arc required to be the same. The conditions that test
functions must satisfy in order to be effective for gathering information, in general, will be
quite different from those that must be satisfied by trial functions in order to be cffective
interpolators.

A point that descrves further attention is the criteria that must be used to judiciously
sclect effective trial functions. Taking into account their role as interpolators, it is clear that
approximation theory must be applied. However, in many cascs the matters involved may
go beyond approximation theory. For example, in the illustrations presented thus far in
this section, which in some sensc are extreme cases since the exact values of the solution
arc obtaincd at the nodes, a very efficient way of intcrpolating the available information
would be to solve the boundary value problem that is defined by that information on cach
of the subintervals [x;-, x;]. These questions, although important, arc complex, and it
would not be appropriate to explore them in all their generality at this point. Thus we
leave the matter here, but intcnd to resume it clsewhere.

IV. ADVECTION-DIFFUSION EQUATION

When applying the methods of Scc. H to time-dependent problems, it will be necessary
to consider a region {) in space-time. Also, the surface 2 on which discontinuitics can
occur will be a surface in space-time, and a suitable notation will be required. Space-time
vectors M will be writien as pairs:

M = (m,m,}), 4.1

where m is the vector madc by its spatial components and m, corresponds to its temporal
component. Let YV be the vectorial velocity of the discontinuity X(r), where Z(r) is the
sct of points of % whose time coordinate is « This is a vector in space, which can be
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written as
Vs = Vsn, 4.2)

where n is the unit normal vector to 3{t). Generally, Vs can be positive or ncgative,
depending on the sense of motion of Z(¢) and the choice of a. In particular, in the onc-
dimensional case, n will be taken to be equal to 1 on 3. Observe that the space-time vector
Vs, 1) = (Vsn, 1) is tangent to 3. Using this fact, it is casy to scc that a space-lime unit
normal vector N to 2 is given by
N=(1+V3)

1/2

-Vs), (4.3)

In this section, we consider the one-dimensional transient advection-diffusion cquation
in conservative form:

Su = %lti — %(Dg—; - Vu) + Ru = folx,1) in (), 4.4)
x € Q, =1[0,1],
reQ, = [1" "],
(x,1) € O = Q. XQ,,
subject to initial conditions
ulx,t") = u"{x) 4.5)

and suitable boundary conditions at x = 0 and /. The following development accommo-
dates any combination of boundary conditions. The manner in which the region ( and
the initial conditions were chosen in Egs. (4.4) and (4.5) is convenient when applying a
numerical integration procedure step by step in time.

The adjoint operator is

ow d ow
O T W T |
e ar - ax \" ax ax R (4.6)
and @(u,w) as defined by Eq. (2.2) is
aw du
a0 = (D2 + 1) D2 ] |
D(u, w) {u P Vw wD Pt 4.7
Therefore
- 0
Rl w) = —[Dw)] - N = (1 + V2) "2[ (D%‘ﬁ v - vz)w) - wog”}
X
(4.8)

Assuming that the physical process which Eq. (4.4) mimics is that of transport with Fickian
diffusion of a solute whosc concentration is u in a free fluid moving with velocity V, the
smoothness conditions implied by mass balance are [48]

[u(V - Vy) — D%} =0 onl. | (4.9)

In addition, Fickian diffusion implics

[u] =0 on3. , (4.10a)
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When the coefficients V and D are continuous, Eq. (4.9) in the presence of (4.10a) can
be replaced by

Ju
[a} =0 on3. (4.10b)

Using Eqgs. (2.9), it is scen that

Flu,w) = —(1 + V%)_”Z[u] ‘E% + w(V — V)

: (4.11a)
;l)‘(u,w) = (I + V%)"IIZWD[%} (4.11b)
LOw,u) = (1 + v§)""2a{[1)‘2—ﬂ + (V- V;;)[w]}, (4.122)
% (w,u) = —(1 + Vé)_llz[w]D%, (4.12b)

It will be useful to decompose the boundary 3} into 9,8}, 8,1, 9,£}, and 8,.,(},
which are defined as the subsets of Q for which (x,7) satisfiecs x = 0, x = [, 1 = (",
and 1 = "*!, respectively. The initial conditions given by Egq. (4.5) arc to be satisfied
at 9,€), and the boundary conditions pertain to dof U 8,£). These latter conditions can
be of Dirichlet (¢ = u;), Neuman [D{(du/dx)n = q], or Robin type, or a combination
of them. Because of the special role that the total flux Ddu/dx ~ Vu plays in mass
conservation, the only boundary conditions of Robin type that will be considered will be
those for which (Ddu/dx — Vu)n (= F) is prescribed. In what follows, the notations
ap Y, on§}, and 3p€) refer to that part of the boundary where Dirichlet, Neuman, and
total-flux boundary conditions are prescribed, respectively.

The bilincar functions B(u, w) and @(w,u) implied by the initial and boundary
conditions arc

Bu,w) = —uw on 3,8, (4.13a)
C(w,u) = ~uw on d,+8, (4.13b)
. aw du
Blu,w) =uD-— - n, Gw,u) = w(D—— - Vu) “n ondpQ), (4.13¢c)
ax dx
du aw
Blu,w) = —wD:}; ‘n, Gw,u) = ~u(D~a-; + Vw) ‘n on IyQ), (4.13d)

0
Bu, w) = —w(Dg-lf — Vu) ‘n, G{w,u) = -—uDa—w -n on drQ}, (4.13¢)
X X

where the unit normal vector n can take the values +1 or —1. Observe that €*(u,-) = 0
on 8,8}, while By, ) = 0 on 9,4+, i.e., no information is sought at 1 = ", which is
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natural for an initial value problem. Also, in the case of Dirichlet boundary conditions,
alternative expressions to (4.13c) are

: d
By, w) = u(DZ—: + VW)Q, Cw,u) = WDE%[L on dp{). (4.130

However, in this paper, we use (4.13c) only. In view of (4.11) and (4.13), it is clear that

d
golw) = —u"w ona,Q, gilw)= u,;(ng:f + Vw) “n ondpdd, (4.14a)

gow) = —wqg -n onayQd, gsw)=-wF-n onadQ, (4.14b)

while js(w) = 0 on 2. The expressions {or the bilinear functionals B, C, J, and K, are
obtained by integration of 8,€, $, and &, respectively, the first two on 8€) and the latter
two on 2. Similarly, according to (2.17), the expressions for f, g, and j arc obtained by
integrating fq,ga, and jy, in 1, 982, and 3, respectively. In the present case jy = 0,
so that j = 0 also.

As in Scc. IIl, a partition of [0,[] is introduced and the region 1 is decomposed
into a coliection of subregions (,..., Q¢ (Fig. 2), limited by space-time curves 3,
i = 1,...,E, whose parametric representations are given by the functions o;(1); it will be
assumed that discontinuities occur exclusively on these lines i.c.,

E:

=

E
2.
=1
In addition, it is assumed that cach such curve passes through its corresponding node at
time "' [i.c., oy(t"*") = x;] and the notation x; = (") is adopted. The velocity of
propagation Vs of cach of these lines of discontinuity is do;/dt.
Using Egs. (4.11) and (4.12), the expressions for.J and K* can be obtained by integration;
they arc the sum of the contributions of cach of the curves 3;. Thus, one can write

E I
J=>J, and K" = K., (4.15)
a=] a=|
11‘
i ol
e Q'=0,U8>
Zi1
i
Q:lt Q’z *
A/
1" * % 3
X7 L X4
> X
Xi-3 X -2 X4 Xi Xi+)

FIG. 2. Space-time supports of weighting functions.
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where

o u,w) = f}:,, l[u]ﬁ%_’;—)— - \b(l)[g—g} - (V — VE)[M])J dt, (4.16a)
(Kiu,w) = L (L}[DZ—‘;’] — [w] (5—2% - (V — vz)z;)‘ dt. (4.16b)

o
Here the subindex %, means that the line integral is to be carried out on 2. To obtain
Egs. (4.16), usc has been made of the fact that on cach line 2,, the clement of time dr is
(1 + V2™ times the length of the clement in space-time.
In a similar fashion, it is convenient to decompose the bilinear functions B and C* into

the contributions which stem from 9,82, d,+,€}, 9p£), ox{}, and 8. In this manner onc
can writc

B=B,+Bp+By+ By and C" =C,,, +Cj, +Cy + Cr, .17
where
! 1
(Bou,w) = —-f (uw)=p dx, (Ciou,w) = —f (uw)—pnr i dx (4.18a)
0 0
aw N du
(Bpu,w) = f uD=— - ndt, (Chu,w)= [ w(D,— — Vu) - ndt,
3 ax , Al ax
(4.18b)
du " ' aw
{(Byu,w) = —/ wD— - ndt, (Cyu,w) = —/ u(D—~ + Vw)dt,
anQl ax il ax
(4.18¢)
u J
{(Bru,w) = —[ w(D—u - Vu) s ndt, (C;u,w) = —~f uD—w - ndt.
Q) ax P ax
(4.184)

To complete the formulation of the problem, it remains to define the lincar functionals
[, g, and j. The last one is zero, while g = g, + gp + gv + gr, with

!
(gn, W) = ~f0 w'w(t"ydx, {gp,w) =[

3

9
u,,(D—K + VW) cndt,  (4.19)
nQd dx

(gn,w) = —f wqg - ndt, {gr.w)= —f wF - ndt. (4.19b)
and

A}
V. EULERIAN-LAGRANGIAN LAM

In what follows, the variational formulation in terms of the sought information, Eq. (2.17),
Q" = C" = KYuw) =(f — g — j,w), (5.1

will be applicd. In addition, weighting functions w will be chosen satisfying Qw = 0, i.c.,
Py o= I i(Da_W

at dx dx

In this case (5.1) becomes ((C* + K u,w) ={g + j — f,w).

>~Va—w+Rw=0 in {). (5.2)
dax
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Two important differences between the present case and the simple developments for
ordinary differcntial equations that were presented in Sec. Il deserve attention. In the
case of ordinary differential equations, obtaining information about the sought solution (or
possibly its derivative) at internal nodes was our main goal. Thus algorithms for which
all the information was concentrated at internal nodes were developed, and by doing so,
it was possible to predict the cxact values of the sought solution at such nodes. This was
feasible because TH-complete systems for 1D problems are finite dimensional. As opposed
to such simple developments, TH-complete sysiems for a partial diffcrential cquation such
as (4.4) are infinite dimensional. However, only a finite number of test functions can be
used. Different choices of test functions that satisfy Eq. (5.2) lead to different classes of
approximations, including optimal spatial methods and general characteristic methods.

On the other hand, when a numerical integration procedure is applicd to Eq. (4.4), step
by step in time, the objective is to predict the values of u at time "*!, when the values
at time " and the boundary conditions are given. Ideally, all the information about the
sought solution should be concentrated in the value of the solution u at cach one of the
subintervals [x;_y, x;], i = 1,..., E, attime "*!. For cxample, our goal could be obtaining
the $£2([0, 1]) projection of the exact solution u(x, "*!) on the subspace of piccewisc lincar
interpolators that arc globally continuous. This subspace of $2 ([0,1}) is generated by the
system of functions

X = Xi-
w1 Ay 0 T ErES
, )z Xivy — X (53)

Ax N XSXS.X,'+|.

This requires elimination of all information about the sought solution except at such
subinterval and time. The weighting functions that do such job, in addition to satisfying
L*wi =0 in , must be smooth (i.c., [w'] = [dwi/dx] = 0) in the intcrior {0, £) X
(t", "ty of Q and must fulfill the boundary conditions 6{w,:) = 0 on thc lateral
boundary of 1, where €(w,-) is given by Egs. (4.13¢)~(4.13¢). Also, w'(x, ") = 0,
except when x € [x;_y,x;+1]. In the interval [x;—y, x;4+1], one requires that w'(x,"*!)
be given by Eq. (5.3), by virtue of (4.13a). Then the rcsulting initial boundary valuc
problem generally will be well posed [49], but such a weighting function would be
nonlocal. , '

Generally, in numcrical applications, localized weighting functions are sought. At a
general interior node x;, as the onc illustrated in Fig. 2, such localization can be achieved
by introducing nonsmooth weighting functions. Thus, if the condition £*w' = 0 is
sustained, then cither [dw'/dx] # 0, or [w] # 0, or both, and some information about
the solution u, or its normal derivative, or both, on the curves % ;, where discontinuities
occur, will be incorporated in the final system of cquations. This is so in spitc of the
fact that the actual objective is to obtain information about the sought solution at time
1"*1, The classification of numerical methods into OSM and CM can be related to the
speed of propagation of discontinuity lines. If time-independent solutions of Egq. (5.2)
are chosen as weighting functions, then Vs = 0 neccessarily, and onc is led to optimal
spatial methods, to which several papers have been devoted using the LAM approach
[12-18]. On the other hand, if the lincs X; satisfy Vs = V, characteristic methods are
obtained.

As mentioned above, there arc also scveral possibilitics for the degree of smoothness
of the weighting functions. In Paper I, weighting functions satisfying thc condition
[w] = 0 were chosen. In view of Eq. (4.12b), it is clear that for this spccial choice,
%'(w, u) vanishes identically, and that, in the lines of discontinuity %, (i = 1,...,E),

Wi(X],l
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all the information is concentrated in the sought solution u. In this casc Eq. (4.12a)
becomes

®w,u) = (1 + v3) " [ ZW} (5.4)
x
Assume that our goal is, as before, to obtain the £%([0,/]) projection of the exact
solution u(x, t"*'), on the subspace of piecewise linear interpolators that are globally
continuous. In the spirit of the previous developments and taking into account the limitation
[ow/dw] # 0, which is unavoidable, a suitable set of propertics for the test functions
wi(x, 1), is the following:

(a) Support of w' is Q' = Qi u (22, where Qi = Q; and Q5 = Q. (i = 1,...
E — 1). See Fig. 2.

(b) w' satisfies Eq. (5.2), i.e., £*w’ = 0 in ().

(c) Atr = ""' w' reduces to the piccewise lincar interpolator given by Eq. (5.3).

(d) w' is continuous.

(¢) The jump [dw'/dx] is constant on ;.

(f) At the lateral boundary of (), boundary conditions which climinate all the boundary
information [i.c., ‘@(w',-) = 0] are imposed.

By inspection of Egs. (4.13¢)—(4.13c¢), it is seen that the last condition is

wi =0 onapl, (5.52)
D L Vi =0 onoyQ, (5.5b)
ax;
aw!
— =40 3. 5.5
Py on 9, (5.5¢)

Observe that in the case of Dirichlet boundary conditions, Eq. (5.5a) is to be applied cven
if the option (4.13f) for defining B and 6 is used.

The development of test functions with these properties is not casy, in general, when the
coefficicnts are nonconstant, even if the domain {1/ does not intersect the lateral boundarics,
but may become particularly involved when the domain intersects one of the lateral
boundaries. For the case when the coefficients of Eq. (4.4) are constant, the source term
vanishes (R = 0), and the partition is uniform, the test functions used in Paper I, were

X = Xi_ -y ,
+V , (x,n) € Q
Ax Ax (1) !
wilx,1) = 1 x4 — x - : (5.6)
+ V R ¢, 1) € Q)
Ax Ax Cx, ) 2

0, all other (x,1).

If the domain O does not interscct the lateral boundaries, these weighting functions satisfy
all the required properties, (a)—(f) above; however, if the lateral boundary is intersected
by the corresponding domain, then (f) is violated.

An important advantage of thc ELLAM approach is preciscly its dbl]lly to deal with
boundary conditions effectively. As was demonstrated through numerical examples in
Paper 1, the ELLAM approach provides a systematic and consistent methodology for
the proper incorporation of boundary conditions. This aliows construction of an overall
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approximation that possesses the conservative property, thereby assuring conscrvation of
mass in the numerical solution.

Observe that for such weighting functions, $ and & do not vanish on three lines of
discontinuity, at most %,_;, X;, and X;;;. Thus

i+l
(K*u,w') = Z <K;-‘u,w">. (5.7)
j=i=1
The jumps arc
aw 1 aw -2 aw 1
— = — — | = —, — =, 5.8
[ ax :|i—l Ax [ ax ]‘ Ax |: ax i|i+l Ax (58)

When the region Qf, which includes the support of w', does not intersect the lateral
boundaries, the boundary terms vanish and the variational principle in terms of the sought
information (5.1) reduces to Eq. (9) of Paper I:

Xivt
[ wle, " Nwie, " Y dx — —Q—(f udt — 2/ udt + f udt)
Xioy Ax it 5 Zin

= f ulx, tMw'(x, ") dx + f faw'dxdt. (5.9
X1 0

When the region QY docs intersect the lateral boundary, as illustrated in Fig. 3, for an
inflow boundary, the cquation associated with node x; in the figure, is

Xi4t . D
[ wle, " Dwi, 1" Y dx — -~ [ wdt — 2[ udt + ] udt
iy Ax\Js,_, 3, Yo

I a . -ri’il .
- f (Vu - D—Lf) I w0, 1) dt = f ulx, tw' (x, 1" dx
[ ox x=0 ¥

" X0

D (" .
+ —~f u(0,t) dr + [ faw'dx d:. (5.10)
Ax m 0

This equation follows from Eq. (15b) of Paper 1. The additional terms relative to Eq. (5.9)
are duc to nonzero w' at x = 0 [i.e., they are due to violation of property (f) above].
However, this leads naturally to the presence of the total flux term (8Vu — Dou/x) at
the inflow boundary. This is physically appropriate, leading to global mass conscrvation,

Xo X ¥y

FIG. 3. Case when the support of w' intersccts the inflow boundary.
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and the resulting sct of equations yields accurate numerical results [1]. An alternative
formulation with very similar properties, based on integrating by parts once instcad of
twice, is developed in [19], also with accuraté numerical results; error estimates of optimal
order based on this formulation are proved in [52]. As mentioned in Paper I, the integrals
that appear in thesc equations may be approximated in many different ways. Different
approximations of thesc integrals lead to different CM algorithms reported in the literature.

VI. MULTIDIMENSIONAL ADVECTION-DIFFUSION EQUATION

Application of the algebraic theory to multidimensional problems is straightforward.
Only slight modifications have to be made in Eqs. (4.4)-(4.12). The region {1, is
multidimensional in this case, and the equations arc

Py = %-L; + V- (V) — Ru—V-(D:Vu)= folx,t) inQ. 6.1
The initial conditions (4.5) arc sustaincd. The adjoint ()pcrzitor is
i’*WE—%—-Z-Vu-Rw—V'(D-Vw). 6.2)
D(u, w), as defined by Eq. (2.1), is
BD(u, w) = {uDVw + Vw) — wDVu, uw}. (6.3)
Therefore
Ry, w) = ~[Du, w)] - N = [u(DZ—’“; (V- Vg)w) - wngﬂ, (6.4)

with the same assumptions as belore. The smoothness conditions implicd by mass balancc
and Fickian diffusion are

du
[u]-—[%] =0 onZ. 6.5)
Using Egs. (2.8), it is scen that
Flu,w) = —(1 + v "] [55)'—7"; + w(V - v;)], (6.6a)
$'u,w) = (1 + v§)*"2»&z1)[§%], (6.6b)
LOw,u) = (1 + V§)"’2{i¢[1)%%] +(V - V;;)[w]}, (6.7a)
X'w,u) = —(1 + v§)“’2[w]1)%. (6.7b)

Finaily, the bilincar functionats B(u, w), and 6(w, u), associated with initial and boundary
conditions, arc
Blu,w) = —uw  on 8,0, G{w,u) = —uw on d,,Q, {6.8a)

Blu, w) = u[)%ﬁ, @w,u) = w(D—g—g - Vu) on dp), (6.8b)
n
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By, w) = —-ng—%, G{w, u) = —u(D%K:- + Vw) on oy (), (6.8¢)

Blu,w) = ‘W(Da—lﬁ - Vu), @(w, u) = -—uDﬁg on dp0). (6.8d)
on on

Although the theoretical cxtension to multiple dimensions has been straightforward, the
numerical implementation for this case is ¢onsiderably more complicated.

VIl. SYSTEMS OF EQUATIONS: MIXED METHODS

As mentioned above, localized adjoint methods are very gencral. In particular, they arc
applicable to systems of equations. This section is devoted to explaining such applications
and to devecloping mixed methods as an illustration.

A. Systems of Equations

Let u be a vector valued function defined in the region (. A lincar system of equations
can be written as

§_£u =fo inf}, (7.])

where £ is a linear differential transformation. The adjoint £ of £ is defined by the
condition

w-%u-—u-Lw=V-{Du,w)}i, (7.2)
where @(u, w) is a vector-valued bilinear function,

Application of generalized divergence theorem yields

w-%u—u-Lwldx = f R{a,wydx + / Rs(u, w)dx, (7.3)
) an b
where
Rau,w) = B(u,w)-n and RPs(u,w) = —[BDlu,w)]-n. (7.4)

These equations are very similar to Egs. (2.2) and (2.3), and the other cquations of Scc. 11
[(2.4)—(2.8)] arc essentially the samc. Thus, associated with cvery kind of boundary
conditions, onc has a dccomposition

Ralu,w) = D(a,w) - n = Blu,w) — G(w,u), (7.5)
where B(u, w) and @(w,u) are two bilinear functions. Using the identity
[ B(u,w)] = B([u]w) + Da.[w]), (7.6)
it is seen that
Rs(a,w) = $(u,w) — ¥(w,u), 1.7
with
J(a,w) = —D([ul.w) - n, (7.8a)

Z(w,u) = Du,[w)) - n. (7.8b)
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B. Mixed Methods

As an illustration of how LAM can be used to provide insight into mixed methods, consider
the steady state of the general advection-diffusion equation of Sec. 1V,

V-(DVu) =V - (Vu) + Ru= falx) in{},. (7.9

This can be replaced by the system of cquations
p — D"™Vu + D™"Vu =0, (7.10a)
V- (D"p) + Ru = falx). (7.10b)

In three spatial dimensions, Egs. (7.10) constitute a system of four cquations (undcerlined

quantities are 3 D vectors). Thus, a four-dimensional vector u = {p u} will be considered,
and the lincar differential operator &

Pu = {B - D"Vu + D"yu, V- (D"2p) + Ru}, (7.11)

Let w be a function whose values arc the four-dimensional vectors {q,w}. Then the
adjoint differential operator is defined by

L'w=1{g - D'?Vw, V- (D'?q) + D72V - g + Rw}. (7.12)

The identity
w-Pu—u-Lw=V- {wD”zp_ - uD”z_q} (7.13)

implies that
D(u,w) = wD'"p — uD'"?q. (7.14)

The smoothness conditions implied by conservation of mass arc

[u] =0 and [D"p]-n=0. (7.15)

When the coefficients are continuous, the latter of these equations is equivalent to
[p] - n = 0. Use of Egs. (7.8) and (7.14) lcads to

$(u,w) = [u]D"?g - n - WD'Q[B:I en,’ (7.16a)
%w,u) = [WID'?p - n — iD"[q] - n. (7.16D)

Equation (7.16b) has interesting implications. Becausc the exact solution u = {B,u}
satisfies (7.15), one has p - n = p - n and u = u. If it is desired to concentrate all

the information in the flux at interclement boundaries, then the weighting functions

= {g,w}, in addition to satisfy the complementary boundary conditions 6(w, ) = 0,
must satisfy the adjoint system of differential cquations £*w = 0, which is

g~ D"Vw =0, (7.17a)

V-(D"q) + D'®V - g + Rw = 0. (7.17b)

By inspection of Eq. (7.16b), it is seen that climination of the information about the
function u requires that [¢] - n = 0, i.e., that the normal component of ¢ be continuous.
However, the weighting function w must be discontinuous. This is essentially the Raviart-
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Thomas [52] result, which constitutes the basis of mixed methods. This result has been
quite uscful for approximating the total flux dircctly as an indcpendent variable. In
particular when D = 1,V = 0,and R = fo = 0, Eq. (7.9) becomes the Laplace cquation
while (7.17) can be written as

g=Vw, V-g=0. (7.18)

Thus ¢ must be incompressible with continuous normal component across intcrclement
boundaries, while w is discontinuous.

VIil. DISCUSSION AND CONCLUSIONS

In a scquence of two papers, localized adjoint mcthod has been applied in space-
time to problems of advective-diffusive transport. The approach is based on space-time
discretizations in which specialized test functions arc applied. Thesce functions satisfy
the homogenous adjoint equation locally within cach clement. The resulting method is
referred to as the Eulerian-Lagragian localized adjoint method. The ELLAM approach, in
addition to providing a unification of characteristic methods (CM), supplics a systcmatic
framework for incorporation of boundary conditions in CM approximations. Any type of
boundary conditions can be accommodated in a mass conservative manner. This scems
to be the first complete trcatment of boundary conditions in Eulerian-Lagragian methods
that leads to a conservative scheme for the general transport equations. Additionally, the
ELLAM approach provides a framework within which LAM concepts can be applicd to
advection-dominated problems, handling time-dependent situations morce accurately than
OSM. Thus ELLAM combincs Eulcrian-Lagrangian ideas and the LAM framework to
their mutual benefit.

In Paper 1[1], the numerical implementation was devcloped and discussced thoroughly. In
this second paper of the series, the theoretical aspects are covered in a more complete form,
and the ELLAM procedurcs are more clearly rclated with the general LAM framework.
This provides a more systematic development of the ELLAM mecthodology, making it
possible to establish a more complete picture of the possibilities that should be explored
and the problems that must be tackied in order to make ELLAM a more effective modeling
tool. In particular, the LAM framework has been demonstrated to be very suitable for
motivating specialized test functions. The effect that different boundary and continuity
(or smoothness) conditions, satisfied by test functions, have on approximate solutions ‘is
clearly exhibited. Also, the LAM framework lecads in a natural manner to a definition
of suitable unknowns for a given problem. For example, when developing the numcrical
implementation of ELLAM in Paper 1, it became apparcnt that in some cases it was
necessary to introduce the total flux as an additional unknown at the boundaries, in spite
of the fact that the main goal was to predict the valuc of the function at time "%
The gencrality of the theory was corroborated, once more, by applying it to systems of
cquations and deriving mixed methods.

However, there are many points that should be studied in more depth. We nced a more
extensive study of both the theory and implementation of ELLAM techniques for variable
coefficients, particularly in multidimensional applications. Implementation of boundary
conditions for variablc-cocfficicnt problems in multiplc dimensions is also an important
problem. In addition, the treatment of nonlincar problems deserves further study. Since
the unknown variables appear in nonlinear coefficients that are usually cvaluated in the
interior of mesh blocks via numerical quadrature, greater attention must be placed on
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the full approximation-theoric properties of the trial functions in these applications. The
potential of local refinement in both space and time holds enormous potential for ELLAM
and is the object of ongoing rescarch.

Finally, we want to emphasize that ELLAM forms a gencral and powerful framework for
investigating and comparing a widc variety of numerical methods for problems that have
important advective propertics. The framework motivates different choices of test functions
to approximate different properties of the unknowns or cven different unknowns, such as
fluxcs. The general theory is expanding to provide more insight. Thesc techniques appear
to have enormous flexibility and potential for treating general advection-diffusion-reaction
problems.

This work was partially supported by the International Atomic Energy Agency under
Contract No. 6088/RB, by the Intcrnational Development Rescarch Centre, Canada, under
Contract Nos. 89-1029-02, and by the National Science Foundation under Contracts
Nos. DMS8712021, RII-8610680, DMS8821330, and CES8657419.
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