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CHAPTERG U T 7T

Localized Adjoint Mcthods A New stcretlzauon AR
Methodology

Ismael Herrera* e

ABSTRACT. Localized Adjoint Method is a new and promising methodology
of wide applicability, based on Herrera's Algebralc Theory of Boundary
Value Problems. Thus, the general theory is briefly explained and then its
application is illustrated with transport diffusion problems for which the
Eulerian-Lagrangian Localized Adjoint Method (ELLAM) has been formulated by
the LAM group (M.A.Celia, R.E. Ewing and T.F. Russell, In addition to the
author). The ELLAM development unifies characteristic methods, treats
boundary conditions systematically, yielding conservative schemes.

; ! : P RESEN : i Con
1. INTRODUCTION. The Localized  Adjoint Method (LLAM) is.a new and
promising methodology for discretizing partial. differential equations which

~ has been introduced by Herrera [1-7] and coworkers, and which is being

K

applied to a wide range of problems [8-19].. The basic algebralc theory was
developed by Herrera et. al. in ([I-~5] and then appplied to develop highly
accurate algorithms for ordinary differential equatxons in [4, 8, 9]. Celia
et. al. [12]- developed efficient algorthms for  multi-dimensional steady
state problems as well as one-dimensional advection-dispersion problems
110, 11i]. More recently, the LAM group (M.A. Celia, R.E. Ewing, 1. Herrera
and T.F. Russell) developed the Eulerian-Langrangian Localized Adjoint
Method (ELLAM) [6, 7, 17, 18L. Muitiphase flow .simulation has been dealt
with by Herrera and Ewing [13] and Ewing and Celia [i4]. Contaminant
transport has been considered by Celia et. al. {11, ., 16, 171.
Multi~-dimensional nested grids are being developed by Neuman {i9). In the
present article the general methodology, is briefly explained, Introducing
new explicit formulas for the case when the coefficients of the
differential operators are continuous. The application of the procedures
are illystrated with the transport diffusion equations 16, 7}.

The numerical solution of the advective-diffusive transport equation

*Instituto de Geofisica, UNAM. Malling, Addr‘ess’: . Apdo. Postal 22-582,
14000 México, D.F., México
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is a problem of great importance because:' many problems 'in’ science and
engineering involve such madhematical: model. - The ' numerical® treatment of
derive - from two main approaches: standard semidiscretization and
Eulerian~Lagrangian. The main distinguishing feature of the 'latter is the
use of characteristics to carry out the discretization in ‘time. Most
formulas that bhave been developed using a standard semidiscretization
approach have been based on up-stream weighting techniques, whose
development is essentially ad-hoc. This is in contrast with LAM approach
which is very systematic.

There is a point on terminology, that must be men&xoned In some past
work "Localized Adjoint Methods" were called "Optimal Test Function
Methods”, and it has been only more recently that the new terminology has
been used, since it is more precise and also, it more clearly dxstmguxshes
this method from other procedures.

The starting point of Localized Adjoint Methods 'Is a very slmple but
fundamental question. What is the relation between an approximate solution
and the exact one. To be more precise, we proceed to give an answer to this

question in a very simple situation. Consider the problem of solving the
equation

fu = fq s in 0 wn
subjected to homogeneous boundary condltxons for: whxch Green s formula
J' vPudx = J‘ uﬁe vdx ’ (l 2)

1

applies, when 2 ~is the formal adJomt of JE In the method of wenghted
residuals, one usually considers a system of wexghtmg (or test) functions
(wl,....wN). Then, a function u’ is’ said to be .an app_roxgmatel solution of

this problem when P

‘

Jleu” - fQ)wadx =0, o= L.,No (L3) ‘
Generally, the system of N equations (1.3) has many sqluiions, but in order
to obtain a system possessing a unique solution, it is customary to
introduce a representation u’ = ZAa¢a‘°r the approxima.t_e“sol.ution in terms

of the system (¢1....,¢N) of "base (or trial) ‘*functions.”w'l-lowever,v.this

g
representation is an artifice that bears little relation  with' the exact
solution u.

The following observations permit establishing:!the “actual relation
that exists between an approximate solution and the exact one and derive .
the actual information about the exact solution which is contalned In an
approximate one. From (l.1), it Is clear that " the vxexact. solution u,
satisfies ' ’ o '

Joltu -flw dx =0, . «=L..N (1.4)
Equations (1.3) and (1.4) together imply .
. X . [T .
J‘Qwaﬂu dx = j‘nwai’;udx o= 1,..,N ‘ (1.5)’
or R
fu!wdx-.futwdx o = 1,...,N. . (1.6)

2
by virtue of Green’s formula. (L.1).'!Consider the ‘Hilbert space' L™, of
square integrable [unctions and In, which , the inner product of two
functions,” u and v, is given by fnuvdx. Then, . thgsystem:pf ;f:quat_ions {1.6)

H

allows the following interpretation: : T


http:fO)wa.dx
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A function u’ Is an approxlmate solution.lf and only if, lts
projection on the space spanned: by.the system of  functions

(.Y."wl,...,Z.W'N). colncldes w(th_'thét,.t'-of':v{fx,e'i:{._vc:ac't“s_c‘;lg.tlgn u.
As a matter of fact this is all t‘ne information abnut the
exact solutton contalned tn an approx[mate one .
In this light, the representatxon u’.!‘— ZA‘ ¢ can..be . lnterpreted as a

procedure for extrapolating the actual inf_ormation contalned in the
approximate solution. '

The very simple and precise result’ Just presented clamﬁes much the
nature of approximate solutions and it would be desirable to apply it, in a
systematic manner, to analyze discrete’ methods. i':For this purpose it is
necessary to have available Green’s formulas similar to (1.2}, but that can
be applied even when the functions consldered are not smooth, since in most
numerical applications the weighting functions  are  localized (i.e., they
have local support) and they wusually do not satisfy the smoothness
requirements at the boundary of their support. Even more, the development
of a theory applicable to carry out the analysis when both base and test
functions are fully discontinuous, is most desirable since standard theory
of distributions is not applicable to that case.

Herrera [1-5], recently developed an ‘“algebraic theory of boundary
value problems” with precisely that property; that is, in which the
analysis can be ‘carried out when both trial and test functions are fully
discontinuous. Such setting Is Ideal for localizing the adjoint equation
(1.6). ' ' f

"Localized adjoint methods (LAM)", In whose development the LAM group
(M.A Celia, R.E. Ewing, 1. Herrera and T.F. Russell) has been working and
it is being applied at present to many problems [8-19], consist in making
systematic use of that theory to analyze the information contained in
approximate solutions. Since the quahty of the results obtained with a
numerical method depends, In an important _manner, on the weighting
functions used, one of the main goals of’ localized ‘ad joint methods, thus
far, has consisted in developing improved weighting functions. In this
paper the LAM methodology is explained :in connection with transport
diffusion problems. ' '

2. GREEN-HERRERA FORMULAS. The main ingredients of the author’s
Algebraic Theory of (initial) boundary value problems are e

i).- General Green-Herrera formulas, for''differential operators in
discontinuous fields; and ‘ T .

ii).- The operator extension (purely ' algebraic) Induced by such
formulas. '

. ey

For simplicity, attentlion will’" be restricted to 'the case when the
differential operators possess continuous: 'coefficients,: but' such formulas
have been developed for the general case of differential operators with
discontinuous coeflicienys (2,4,20]. By definition,  a differential operator
and its formal adjoint £ , satisfy ‘

» .
vEu-uf v = V+{D(u,v]} S AV
where D(u v} is a vector-valued bxlinearx xunction, defined at- every point

of the region f. When considering tlme-dependent problems, Qg"\‘nlll. be a
region in space-time. Generally, I will be divided in many’ subregions (the
elements), In each of which welghting and test .functions ,will be assumed to
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be sufficiently differentiable for the operators 1to-.be well defined in its
interior. The union of the interelement boundaries will be denoted by Z.
Trial and test functions will be taken from two linear spaces D and D

and » they together with their derivatives may have Jump ‘dlscontlnumcs
across Z. -

Integration of equation (2.1) and application ‘of  generalized
divergence (Gauss) theorem [21], yields: '

L]
,[‘Q(vl’u-uﬂ vidx = § D{u,vlen dx - J [D{y,v)len dx . (2.2)
an z '

Generally, 2u as well as £ v may not be defined on X, where the [lunctions
may be discontinuous. . Thus, here as in what follows, Integrals over Q are
carried out excluding £ and differential operators are understood in an
elementary sense and not in a distributional sense. In equation (2.2), the
square brackets stand for the “jumps" across X of the function contained
inside; l.e. value on the plus side minus value In the minus side (the plus
side is defined as that one towards which the unit normal on I points to).

Green-Herrera formulas are obtained by carrying out suitable
decompositions of the bilinear functions D(u,v)*n on the boundary 8Q of Q1

and of -{D(uy,v)l*n on the interelemnt boundaries E. The decomposition of
Dlu,v)en is standard ({see, for example, Lions and Magenes [22]) and leads
to the definition of two bilinear functions B(u,v) and G(v,u) such that
D{y,v)en = Bly,v) -G(v,u) " (2.3):

whose definitions depend on the type of boundary and initial .c'ondltlons,
which are prescribed. The function B{(u,v) is such that, when considering
boundary (initial) value problems, for any u which satisfies the prescribed
"boundary conditions, B{u,v) is a well-defined linear function of v,

independent of the particular choice of u. This linear function will be
denoted by g, (thus, its value for any given function v, will be ga(v)).

The decomposition of -{D(u,v)jen Is easily carried out using the
identity .

(D(u,v)] = D (u vl - D (uv) = Dlu oA ) - D(u W) l.(2 4)

which holds when the differential operators have' continuous coefficients.
Let the average u of any function u be defined by

= (u*+ u )2 '.(2.5)

SN

Then it is easy to verify that

u, =0+ lul g u= 1 - ful (2.6)
which allows writing : g
Dlu,v) = DLV + 206D + 2D(IL¥) + DMlukv) . " (@.72)
D(u_,v) = D& - 2D, 1VD) - 2DUul¥) + JDUuLvD) . (z 7b)

Equations (2.4) and (2.7) together, yield T

[D(u,v)] = D, [v])*+ Dllul,¥) L ey
Defining ‘ T
Ju,v) = -D((ul,v)+n Kiv,u) = D(G,IvDen . 0 -(2:9)

it is clear that : ' . : L
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~[D(y,v)]=n = FHu,v) - K(v,u)- - St .{2.10)
This is the desired decomposxtlon of the* blllnear functxon -[‘D(u v)l-n. The

basic properties which lead to this choice of % and X, have been developed
more thoroughly in the author’s algebraic theory (2], In particular, at a
given point of Z, {u] and u, can be varied independently. When [u] takes a
given - value, J(u,v) is a well defined functional of v, independent of the
specific choice of wu. In connection with boundary (initial) value problems
with prescribed Jumps, the linear function of v which Is obtained when
Hu,v) is evaluated keeping [u]l equal to the prescribed jumps, will be
denoted by ja (thus, its value for any given v, will be ja(v)).

At this point It Is convenient to introduce the following bilinear
functionals: - )

Pu,v> = J‘bv.'ﬂudx ;o <Qv,w B <Q u,v> = J‘ uiﬂ vdx o (2.11a)

vt

<Bu,v> = fénﬂ(u,v)dx, <C u,v) = J‘ t?(u v)dx 0 (2.11b)

Uu, vy = J‘z}(u.y)dx; and <K u, v> = J‘ K{v, u)dx (2.1lc)

By means of these definitions, using (2.3) and (2.10), equation (2.2)
becomes - . S : o .
P-Q =B-~-C +J-~K (2.12}

This is,Gr‘een—lHerrera formula for operators in 'dlscor;xtinuous‘ fields (2,5].
1t can be applied when both trial and test functions are. discontinuous,
something: which is  not possible when wusing standard theory of

distributions.

Rearrangmg (2. 12), it is possible to write R b
. :
P—B-—J Q-C—K ‘ (2.13)
The left-hand side of equation (2.13) can be interpreted as-an extension of
the differential operator &, which  was . originally deflned for
differentiable functions only, to fully discontinuous lunctions. Indeed:

The differential operator £, when applled to a
smooth function u which stisfles homogeneous.
boundary conditions, ylelds the linear functional
Pu However, when appl(ed to a fully dlscontlnuous
functton u, which does not satlsfy homogeneous
boundary conditions, it ylelds the llnear‘ I unctlonal

(P-B-J)u.

The - general boundary (initial) value' problem :to be considered s one
with prescribed, jumps. The differential equation is ’

2u=fﬂ in@ . (214)

\l

In addition, some boundary condmons (and - initial conditions) are
specified on 80, while jump conditions ‘are 'specified - at " 2. When  modelling
continuous systems, such Jjump conditions stem {rom basic conservation or,
more generally, balance laws of continuous mechanics![20]).iue. 10 =Y oo o

" Using the bilinear (functlonals thus far intx;oduced such boundary
(initial) value problem with prescribed jumps.' can be formulated
variationally as .

Pu,v> = (,v; Buyy = g vy Juvy = v ¥ veD 16(2.15) -

where {, g and j, are linear functionals defined by '~


http:1(\(2.15
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L,V = J‘Q vfﬂdx s <g, V> = J‘an ga(v)dx 3 <L = J‘zja(v) dx (2.16)
All they can evaluated using the data of ‘the problem.

Generally, the bilinear [functionals J 'and "B, are boundary operators
for P, *which are fully disjoint (For the definitions ol the concepts that
have been underlined here, the reader is referred to the author’s original
papers (2,5]. Further details can also be found in those publications).

When this is the case, the system of equatxons (2.15), is equivalent to the
single variational equation

(P ~B~Duw=<=-g-jw ¥yvd (217

This is said to be “the variational formulation In terms of the data. ol the
problem"”, becuase Pu, Bu and Ju are prescribed. Making use of Green-Herrera
formula (2.13), the variatiopal formulation (2.17) is transformed into

”» - »” N
Q -C ~-Khuw=<«q-~g-jwny vc:D2 (2.18)
- This is said to be "the variational formulation in ter'ms of the sought
| I - e
information”, because Q u, C u and K u are not prescmbed It can be seen,

»

by virtue of equations (2.i1), that Q u, C u and K u- supply in(‘ormatlon
about the sought solution at the interior of the region 1 (where the
problem is defined), the complementary boundary values at -8Q ‘and - the
average of the solution (and its derivatives) across the surfaces I of
discontinuity. ‘ -

Making use of the variational formulation In terms: of the' sought
information, the arguments that lead to the formulation vof  Localized
Adjoint Methods, constitute a mere repetition of those presented .in the
Introduction. Given a system of weighting functions ‘(wl,...,wN)ch, an
approximate solution 1s again any function u’ ch which satisfies

<(Q -C —K )u W > = (f-g- jw >, a=l,. N (2.19)

Clearly, this equatlon togcther thh (2 18) lmphes
((Q —C ~-K )u ,wa> = <(Q -C -K )u,wa>, a=l1,...,N {2.20) -

since an exact solution also satisfies (2.19). Equation {(2.20), is the
basis for the analysis of the information contained in an approximate
solution and constitutes the starting point of Localized /\djoln't Methods.

3. EULERIAN-LAGRANGIAN LAM. When applying the methods of Section 2 to
time dependent problems, it will be necessary to- consider a :wregion' 1 in
space-time. Also, the surface I on which discontinuities: can occur, will be
a surface in space-time and a suitable notation 'will be:required. The :set
of points of 2 whose time value is t, will be denoted by Q(t) :and
correspondingly, Z(t) stands for the set of points of X whose time value is
t. Space-time vectors M will be written as pairs: C

ey :

L .
T i B i

=(m,m) (3.0 - -

where m is the vector made by its spatial components and while m,

corresponds to its temporal component. Let the Y-z be thev\{ectglriall'.v‘el‘ocity

of the surface of discontipuity Z(t). This Is a space vector > which can - be
written as

¢ = ‘ l 3.
Ve = Vgd (3.2)

."41.
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where n is the unit normal vector to Z(t). Generally, Vz

negative, depending on the sense of motion of Z(t) and the,choice of n. .

can be positive or

3.1.- One Dimensional ELLAM.- For this case,in can be 'chdsen as equal to
one and this will be done In what follows. Observe that the 'space-time
vector (Vz,l) is tangent to Z. Using this fact, it is easy to see that a

space~time unit normal vector N to I, Is given by '
2,-1/2 ,
= (1+Vz) (1, -V2) (3.3}
Consider the one~dimensional transient advection—dxf f usion equation
subject to appropiate initial and boundary condxtions :
8u du 8%y

B L I

fu = o=+ Vax - D———z f (x t) rin n st (3.‘})'«‘

. ax . R - L
u(x,0) = ux(x). on axﬂs Q('O): e (3.5a)
u{0,t) = u‘;(t). on aon L .‘('3:$b) .
-"?-‘i (L) = gy, on 8,0 S s

' ‘;- i v
Here, the space—time region Q—Q xrz . with Q-—[O 1] and Qt=2 [0,T]. In
addition, 8 Q and aln are the subsets of Q for x—*O and x—l; réspecti\)ely,
First and second type boundary conditions are assumed: ‘for' demonstration
purposes only; the following development accomodates any combination of
boundary conditions.

The adjoint operator is

2
» __aw _a 3w TR
and D(u,v) as defined by (2.5) is ‘ ‘
) - 3w _ i‘_‘ - . Lo C
Dlu,w)= {uDge - w(Dgy -Vu),uw} e N e A
Therefore i ,‘ - . o ;

Bu <
‘ax

Assuming that the physical process which * equation (3 4) mimics is that of
transport with Fickian diffusion, of a solute whose concentration is u, In
a free fluid moving with velocity v, the smoothness' conditions 1mplied by
mass balance are : B : O

(v -v )u)] (3 8)

& M;, Uie

-[D(u,w)]*N = =(1+V, )"’z[ul}—- w(
5

du . . RS
ulv - Vg = Dyl = 0, on £ ‘(3.9‘a)>
In addition, Ficklan diffusion implies ‘ , )
{u] = 0, ‘ ‘ on .. (390 .

When the coefficients V and D are continuous, equations .(3.9) are
satisfied, if and only if, u and its spatial'‘derivative are 'continuous

across I. Application of equation (2.9} yields i RPRETER

2 (uw) = —(1+Vz)_l/2{(u]Dé—)—c— - w(ordy - - (v -V ){u])} (3.11a)
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K ww) = (1+v2 ™ a[p8¥) - wi(pZ2 (—56 v -V, P @)

It is clear now that jz(v)EO on' Z, since the sought solutxon is required to
satisfy the condition [ul= [5—] =0 on I. .

The bilinear functions &(u,w) and  B(u,w), to  be  defined ‘on the
boundary, must be constructed taking into’ account ‘the kind of boundary
conditions to be satisfied. For the kind of boundary condntions glven by
equations (3.5), they are

Blu,w) = u(D—— +Vw), 6wu) =WDH, ongQ - v {3.12a)
— — aw y .
Blu,w) = wD—a—, B{w,u)= U(DH +V w), on 8,Q {(3.12b) |
Blu,w) = -uw  on R (3.12¢)
Blw,u) = -uw  on 4R . (3.12d)

where 8 QEQ(T). Observe that the decomposition of Dy, i')-N in D(O)UQ(T)

does not have a point-wise character. This reflects the fact  that, this is
an initial-value probiem. From (3.5) and (3.12), it f‘ollows that .

_ aw
gylw) = uo(D—a—x + \Z w) on 20 (3. 13&) |
golw) =-wDg, ~ ondQ (3.13b)”
golw) = -uw . on 80 o (3.13e) -

The expressions for the bilinear functmnals B, C,.t1J and K, are
obtained integrating B, €, ¢ and K, on the boundary and on'Z. Asuming ‘that
¥ is the union of the set of curves (IZ1 22 .,“;251) in, space-time (Fig 1),

T

t4 L

n+i

Fxgure 1.~ The surface of dxscontinmty E.
AR TR 0

the expressions for J and K are the summ of the contributions of .each one
of these curves. Thus, one-rcan write o
E « ET g 0o
J= Z1J and K= ZK , (3.14)
« a R

=1 o=1 AT S

PN A



74 HERRERA

where v
Juw =J'B[u]Dg¥ (D[ -V -V )[u])} deeti (3 15a) ECNREREE
L . . o
K w> =[$U[DFR] - (wi(D5Y - (v ~vp)i) }adt (3asy)

: to e
Here, the subindex « means that the value of the integrand is taken on E

To obtain equations (3.14), use has been made of. the fact-that, on each E

the element of time dt, is (1+V )Vzt;m,es, the “‘length element in

space-time. : .
In a similar fashion, it Is convenient to decompose the bilinear

. »
functionals B and C into the contributions which stem from axn, aTn, a0
o

and 81Q. The corresponding expressions are:

» . » - .
= B1+ B°+ Bl and C = CT+ C°+ Cl (3.16)

In view of (3.12), it is clear that

T, (nOW '
<B_u,w> :fp(u(Da +V w)) At Buw = -7 (WDE;)X dt  (3.17a)
L
<Blu,w> = -J”o(uw)t=°dx, <CTu,w> = -‘ro(UW)t:de A(3.l7b)
€ uw = [Twbdh) dt; «Cluw = T 4 v w)) dt (3170
o ' o X'x=0 ' L' o NTgx . T x=ln i

! " 1 Ty T I P TR .
To' complete the formulation of  the problem, it remains to define the
linear functionals f, g, and j. The first one is given by (2.16), while the
latter one is zero, because the sought solution together with its normal
derivative is required to be continuous. On the other hand, one can write
g=g +g *g,, with
' bey

_ T aw Y e el o,
g w> = J {u (Dg= + V w)_)mdt, g w> = ‘{o(qul)ledt ' (3.18a)

<g w = -J‘l(u w) dx; ‘(3’18b) f

The variational formulation in terms. of : the data of’ the problem is now
given by (2.17), while that in terms of the sought information .is given by
(2.18). This equation was applied to analyze the Information contained in
approximate solutions. In this manner a generalization of Characteristic
Methods, called Eulerian- Lagragian Locahzed AdJomt Methods (ELLAM), has
been developed by the LAM group [6,7].

Many numerical methods use charactenstlc analysis to accomodate the
advective component of transport. Such Characteristic Methods include
Eulerian-Lagrangian Methods (ELM) [9-11], : ‘Modified Method of
Characteristics {MMOC) [12,13), and operator splitting methods [14,15). The
ELLAM approximations provide a systematic framework for development of
Characteristic Methods for numerical approximation of advective-diffusive
transport equations. The Localized Adjoint Method (LAM) procedures lead
naturally to the definition of special space-time .’test functions that
produce the generalized CM approximations. The ° resulting set of |
approximating equations subsumes many of the CM approximations proposed in
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the literature. It therefore unifies these methods. :: In ..addition, the
development inherently provides a - systematic = procedure-. :fory/. proper
incorporation of all types of boundary. conditions in a mass conservative
manner. o '
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