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EUCLIDEAN CONJUGATE GRADIENT: AN ITERATIVE
ALGORITHM FOR LARGE UNSYMMETRIC MATRICES®

ISMAEL HERRERA! AND GRACIELA HERRERA!

Abstract. A Conjugate Gradient method (ECG) which minimizes the error with respect to the
Euclidean norm, is here proposed for the solution of large unsymmetric systems of linear equations.
The method is here derived starting from first principles. Then, it is tested, comparing its perfor-
mance with ORTHOMIN(m) and GCR(m). The preliminary results here presented indicate that
the method is promising, specially for matrices whose condition number is not too close to 1, and
deserves further study.

1. Introduction. A class of very effective procedures for solving large sparse
symmetric and unsymmetric linear systems of equations is derived from the conjugate
gradient method (CG) and its variants, such as ORTHOMIN(m) [13]), GCR(m) [5)
and GMRES(m) [12], combined with some preconditioning technique.

The main idea of CG associated procedures is to generate a search space conve-
niently and then to chose the approximate solution of the system, as the vector of
such space that minimizes the residual with respect to a suitable norm.

The CG method, as originally formulated by Hestenes and Stiefel [10] (see also [11],
(9] and [4]), applies to symmetric positive definite matrices (A) and possesses the fol-
lowing features:

i) The search space is generated by applying the matrix A and its powers to the
residual of the system;

ii) At every iteration the residual is minimized with respect to the norm induced
by A™1 [3].

In general the minimization of the error leads to an orthogonalization process.
The main advantage of CG, in its original formulation is that such orthogonalization
has to be carried out with respect to the last search direction, only. However, for non
symmetric matrices this advantage is lost and in order to save computational effort and
memory requirements, modifications in which at each iteration the orthogonalization
is not completed, have been introduced.

Recently, the authors have proposed (8], [7] a modification of CG, here called
Euclidean Conjugate Gradient (ECG), applicable to non-symmetric systems with the
following features:

1) The search space is generated by applying the matrix A* A and its powers to
the residual of the system;

ii) At every iteration the error (exact solution minus approximate one) is min-
imized with respect to the Euclidean norm. The name ECG was chosen,
because this is the main distinguishing feature of the method here proposed.

The main advantages of our procedure when applied to non-symmetric matrices
are:

a) The orthogonalization has to be carried out with respect to the last search
direction only, as in CG. This is a feature that none of the procedures most
extensively used for non-symmetric matrices, possesses.
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b) The minimization of the error is achieved in the Euclidean norm and not in
the norm induced by A® A, as it is done in many other approaches that are
being used for non-symmetric matrices. Actually, in standard presentations
of such methods [12] the Euclidean norm of the residual is minimized, but
this is equivalent to minimize the A® A-norm of the error as defined above.
However, the main disadvantage is that the search space is generated using the
matrix A*A, which is generally thought to be inconvenient [1]. Since, on the other
hand, the Euclidean norm is used, it is natural to inquire to what extent this fact
might compensate the above mentioned shortcoming. These considerations lead the
authors to carry out preliminary computations oriented to compare the efficiency
of ECG with other well established methods. Preliminary results obtained during
the Thesis work of one the authors exhibitted certain number of cases in which the
new approach have better performance than GCR(m) and ORTHOMIN(m). These
results motivated initiating a project of research, now under way, in which the new
procedures are being compared systematically with well established methods including
GMRES(m) and Tchebychefl, in addition to ORTHOMIN(m) and GCR(m).

This paper is devoted to present such modification of the Conjugate Gradient
Method, as well as some of the numerical results obtained thus far.

2. Formulation of the Conjugate Gradient method. In this Section we
revise the formulation of CG, in order to motivate the modification here proposed. In
what follows P is a non-singular matrix, generally non-symmetric, while the notation
A is reserved for the case when such matrix is symmetric and positive definite.

Consider the equation

(1) Au=c¢
Let u, be the exact solution of (1). Choose u® as any vector and define the error €°
by

e =u, -u’.

For every m = 1,..., N the Krylov space K,, is
K., =span{Ae®,...,A™e’} =span {x°, Ar®, ,A™ %)
where r? = Ae? = ¢ — Au®. It is easy to see that dim K,,, = m. Define
et =u, - ut, k=1,...,N

where u* is the projection of u, on K; It is well known that when A is positive
definite [7]

Kmi = Km + Ae™

unless

Also
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Due to this facts, if p! is defined by
(2) p! = Ae® = ¢ — Au®,
then u* can be constructed recursively using the formulas

3) pk+1 Aet — ﬂnlpk =rf - ﬂk+lpk
(4) uk+l - uk + ab+lpk+l

where r* = Ae*

k41 _ (f'-Pk)
(5) ~ (ptpY)’

and

'S (ek.P'“)
T (ptH,pitl)
(e*, Aet)

(pt+1, pt+l)

The results presented up to now are valid irrespectively of which inner product
(, ) is considered. Unfortunately, a**! as given by (6), can not be evaluated in
general. This is because e* = u, — u* is not known since so is u,. However, Eq. (6)
is computable for some special choices of the inner product (, ).

If the inner product is defined by

(6)

(u,v) = Ausv
where the star stands for the Euclidean inner product, then

b4l _ rtert

a prHls Apt+l

3. Formulation of the Euclidean Conjugate Gradient method. Consider
the equation

Pu=b.
Its associated “normal” equation is
(@) P*Pu=Pb.

The developments of Section 2 up to Eq. (6) can be applied with A = P*P. Then
the Krylov spaces corresponding to Eq. (7) are

Km =span{P°Pe’,...,(P"P)"e°}

and the construction of u* can be carried out applying formulas (2) to (6), using the
Euclidean inner product, i.e.,

(u,v)=usv.
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In particular,
(e",Ae") = (e*,P'Pe") = (Pe',Pe") = st s s*,
where
s* = P(u, —u?) = b - Put

Then Eqs. (2) to (6) yield the following
ALGORITHM:
1. Start: Choose u® and compute s! = b — Pu®. Set p! = 0.

2. Iterate: For k = 0 until convergence do:
pi+l = pegt — gi+iph

k+1 E+1, k41

u =ut+a P

sttl = b — Put#!
with

G+l = Pest + pt/pt 4 pt
and

ak+l = gk 4 g [phtl 4 phl

4. Numerical results. The numerical experiments were performed in a 386
IBM PC compatible machine (MS DOS 3.3 and MS FORTRAN compiler) using double
precision. The test problems were the linear systems of equations derived applying the
cell method to the 3D differential equation governing the steady-state of advective-
diffusive transport:

v-Ve—-V-(KVe)=0.

This problem was solved in a cubic region, for the case when v is a constant velocity
field pointing in a diagonal direction of the cube. The velocity was varied, so that
the Peclet number changed from 10? to 10%. The diffusion coefficient was set to be
one (i.e., K = 1). A partition of the cube was introduced dividing each side into
ten elements, so that the dimension of the resulting matrices was 512. The boudary
conditions were

¢ = 1 forz=00ry=00rz=0,
¢ = 0 forz=1lory=1lorz=1.

Such linear systems of equations were solved applying successively ORTHOMIN(m)
and GCR(m), with m = 1,2, 3, in addition to ECG. The stopping criterium was

lir*ll2 < 1074,

For the purpose of comparison the results of such numerical experiments are presented
in Tables 1 and 2. In this Tables the formulas given in Table 3 were used. For
ORTHOMIN(m) and GCR(m) they were taken from Ref. [5], while for ECG were
derived by the authors on the basis of well established methods [2].

It may be observed in Table 1 that ECG becomes more competitive as Pe in-
creases. This can be correlated with an increase in condition number. In particular,



SESSION 11: METHODS FOR NONSYMMETRIC SYSTEMS 253

Thble 1
Iterations and operations (x108) for different Peclet nwmbers. Matrizr dimension N = 512
ORTHOMIN GCR
Pe (1) (2) 3) (1) (2) (3)
It Op It Op It Op It Op It Op It (0}
102 | 27 1.94 30 2.61 271 276 48 3.07 36 2.58 27 2
10| 45 3.23 43 3.74 43 4.4 66 4.22 56 4.01 44 3
10* | 275 19.71 305 26.55 316 32.36 | 592 37.89 490 35.12 408 32
10% | 600 43.01 1556 13543 752 77 | >1990 > 1274 >2132 > 15282 >2978 > 2
See below for the complete results. (Editor’s notﬂ
Thblke 2
Work per loop and storage reguirements.
ORTHOMIN GCR ECG
n @ @ 1m @ @6
Work/iteration | 7168 8704 10240 | 6400 7168 7936 | 9728
Storage 2560 3584 4608 | 2560 3584 4608 | 2048

for Pe = 104 it is better than any other of the options considered, requiring only less
that one-half of the best alternative (ORTHOMIN(1)). For Pe = 10°, the difference
is even greater, since ECG requires about one-fourth the work required by the best

of the other procedures compared.

5. Conclusions. On the basis of the numerical results presented in Table 1 and
additional numerical work to be published, in which preconditioners are incorporated,

our preliminary conclusions are:
i) ECG is competitive when the condition number is not very close to one;
ii) The Euclidean Conjugate Gradient method (ECG), deserves further study.
In particular, it is important to include in the comparisons GMRES and Tcheby-
cheff, and the use of preconditioners.
Work along the lines of ii) is being performed by the authors, including applica-
tions to test problems derived from oil reservoir simulation [6).

Table 3
Work per loop and storage reguirements formules. my = matriz-vector product.

ORTHOMIN(m) GCR(m) Proposed method
Work/iteration (3m+4)N+1mv ((3/2)m+4)N +1 mv 5N +2mv
Storage (2m+ 3)N (2m + )N 4N
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Table |

Iteretions and operstions (X103} for different Peclet numbers. Matriz dimension N = 512,

ORTHOMIN GCR ECG
Pe (1) (2) 3) (1) (2) (3)

k. Op It Op It Op It Op It Op It Op | It Op
100127 194 30 261 27 276 | 48 3.07 36 2.58 27 204 | 56 5.45
10| 45  3.23 43 3.74 43 44 66 4.22 56 4.01 44 3.49 40  3.89
104 [ 275 19.71 305 2655 316 32.36| S92 37.89 490 3512 408 3238 | 98  9.53
10% | 600 43.01 1536 133.43 752 T > 1990 > 1274 > 2132 > 152.82 > 2978 > 236.23 | 121 11.77
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