
~ ~,.,... ,.

SESSION 11: METHODS FOR NON SYMMETRIC SYSTEMS 279

EUCLIDEAN CONJUGATE GRADIENT: AN ITERATIVE
ALGORITHM FOR LARGE UNSYMMETRIC MATRICES.

ISMAEL HERRERA' AND GRACIELA HERRERAI

Abstract. A Conjugate Gradjent method (ECG) which minimizes the erTOC with respect to th~
Euclidean nOm1, ia here propoeed for the solution of large unsymmetric systems oC linear equations.
Th~ method i8 here d~rived starting from first principles. Then, it ia teatM, comparing ita perfor-
mance with ORTHOMIN(m) and GCR(m). The preliminary results here preamtM indicate that
the method ia promising, specially Cor matrices whose condjtion number ia not too close to I, and
d~8erve8 further study.

1. Introduction. A class of very effective procedures for solving large sparse
symmetric and unsymmetric linear systems of equations is derived from the conjugate
gradient method (CG) and its variants, such as ORTHOMIN(m) [13], GCR(m) [5]
and GMRES(m) [12], combined with some preconditioning technique.

The main idea of CG associated procedures is to generate a search space conve-
niently and then to chose lhe approximale solulion of lhe syslem, as lhe veclor of
such space that minimizes lhe residual with respect to a suitable norm.

The CG melhod, as originally formulated by Hestenes and Sliefel [10] (see also [11],
[9] and [4]), applies to symmelric poeilive definite matrices (A) and possesses lhe fol-
lowing features:

i) The search space is generaled by applying the matrix A and its powers to the
residual of lhe system;

ii) At every iteration lhe residual is minimized wilh respect to lhe norm induced
by A-I [3].

In general the minimizalion of lhe error leads to an orthogonalization process.
The main advantage of CG, in its original formulation is lhat such orthogonalizalion
has to be carried oul wilh respect to the last search direction, only. However I for non
symmetric matrices this advanlage is l~t and in order to save computational effort and
memory requirements, modifications in which at each iteration the orthogonalization
is not completed, have been introduced.

Recently, the authors have proposed [8], [7] a modification of CG, here called
Euclidean Conjugate Gradient (ECG), applicable to non-symmetric systems with the
following features:

i) The search space is generated by applying the matrix A. A and its powers lothe residual of the system; .

ii) At every iteration the error (exact solution minus approximate one) is min-
imized with respect to the Euclidean norm. The name ECG was chosen,
because this is the main distinguishing feature of the method here proposed.

The main advantages of our procedure when applied to non-symmetric matrices
are:

a) The orthogonalization has to be carried out with respect to the last search
direction only, as in CG. This is a. feature that none of the procedures most
extensively used for non-symmetric matrices, possesses.
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b) The minimization of the error is achi~ved in the Euclidean norm and not in
the norm induced by Ao A, as it is done in many other approaches that are
being used for non-symmetric matrices. Actually, in standard presentations
of such methods [12] the Euclidean norm of the residual is minimized, but
this is equivalent to minimize the Ao A-norm of the error as defined above.

However, the main disadvantage is that the search space is generated using the
matrix A. A, which is generally thought to be inconvenient [1]. Since, on the other
hand, the Euclidean norm is used, it is natural to inquire to what extent this fact
might compensate the above mentioned shortcoming. These considerations lead the
authors to carry out preliminary computations oriented to compare the efficiency
of ECG with other well established methods. Preliminary results obtained during
the Thesis work of one the authors exhibit~ certain number of cases in which the
new approach have better performance than GCR(m) and ORTHOMIN(m). These
results motivated initiating a project of research, now under way, in which the new
procedures are being compared systematically with well established methods including
GMRES(m) and Tchebycheff, in addition to ORTHOMIN(m) and GCR(m).

This paper is devoted to present such modification of the Conjugate Gradient
Method, as well as some of the numerical results obtained thus far.

2. Formulation of the Conjugate Gradient method. In this Section we
revise the formulation of CG, in order to motiva~ the modification here proposed. In
what follows P is a non-singular matrix, generally non-symmetric, while the notation
A is reserved for the case when such matrix is symmetric and positive definite.

Consider the equation

(1) Au= c

Let u, be the exact solution of (1). Choose uO as MY vector and define the error eo

by

eO = u, -UO.

For every m = 1,... I N the Krylov space Km is

Km = span {Aeo,...,AmeO} = span {rO,ArO, ,Am-lrO}

where rO = AeO = c -Auo. It is easy to see that dim Km = m. Define

~ ~e = u, -u , k = 1,...,N

where ut is the projection of u, on Kt
definite [7]

It is "'ell kno"'n that when A is positive

Km+l = Km + Aem

unless

rn - O.e -. .mI.e. U = U..

Also

Aet .l Km; m$k-



Due to this facts, if pI is defined by

pi = Aeo = c -Auo,(2)

then uk can be constructed recursively using the formulas

pk+l
Uk+l

= Aek -pi+lpk = rk _j3k+lpk

= Uk + Ok+lpk+l
(3)
(4)

where rk = Aek

IJi+l = .(!~(pi, pi) ,(5)

and

(ei,pi+l)

(pi+l,pi+l)

(ei,Aei)

(pt+l,pi+l)

ak+l =

(6) =

The results presented up to now are valid irrespectively of which inner product
( , ) is considered. Unfortunately, ok+l as given by (6), can not be evaluated in
general. This is because ek = u, -Uk is not known since so is u,. However, Eq. (6)
is computable for some special choices of the inner product ( , ).

If the inner product is defined by

(u, v) = Au. v

where the star stands for the Euclidean inner product, then

ri. ri

p.+l .Api+l
0.+1 =

3. Formulation of the Euclidean Conjugate Gradient method. Consider
the equation

Pu=b.

Its associated "normal" equation is

p.Pu = P.b,(7)

The developments of Section 2 up to Eq. (6) can be applied with A = p. P. Then
the Krylov spaces corresponding to Eq. (7) are

Km = span {Po Peo,... ,(Po p)meO}

and the construction of u' can be carried out. applying formulas (2) to (6), using the
Euclidean inner product, i.e.,

(u,v)=u.v.



282 ITERATIVE METHODS IN LINEAR ALGEBRA

In particular t

(et,Aet) = (et, p. Pet) = (Pet, Pet) = It .st,

where

s' = P(u, -u.) = b -Pu.

Then Eqs. (2) to (6) yield the following
ALGORITHM:
1. Start: Choose uO and compute .1 = b -Puo. Set pi = o.

2. Iterate: For k = 0 until convergen~ do:

pt+l = p..t -/3t+lpt

ut+l = ut + Qt+lpt+l

.t+l = b -Put+l

with

,Bt+l = p..t .pt jpt .pt

and

Ok+l = .k ..k /pk+l .p'+l

4. Numerical results. The numerical experiments were performed in a 386
IBM PC compatible machine (MS DOS 3.3 and MS FORTRAN compiler) using double
precision. The test problems were the linear systems of equations derived applying the
cell method to the 3D differential equation governing the steady-state of advective-
diffusive transport:

v.Vc-V.(KVc)=O.

This problem was solved in a cubic region, for the case when v is a constant velocity
field pointing in a diagonal direction of the cube. The velocity ~'as varied, so that
the Peclet number changed from 102 to 10!. The diffusion coefficient was set to be
one (i.e., K == 1). A partition of the cube was introduced dividing each side into
ten elements, so that the dimension of the resulting matrices was 512. The boudary
conditions were

c = 1 for or = 0 or y = 0 or z = 0,

c = 0 for or = 1 or y = 1 or z = 1.

Such linear systems of equations ,,'ere solved applying successively ORTHOMIN(m)
and GCR(m), with m = 1,2,3, in addition to ECG. The stopping criterium was

Ilril12 ~ 10-4.

For the purpose of comparison the results of such numerical experiments are presented
in Tables 1 and 2. In this Tables the formulas given in Table 3 were used. For
ORTHOMIN(m) and GCR(m) they were taken from Ref. [5), while for ECG were
derived by the authors on the basis of well established methods [2).

It may be observed in Table 1 that ECG becomes more competitive as Pe in-
creases. This can be correlated with an increase in condition number. In particular,

~



Thb~ 2
Wor~ ,er /00' .~l ,'orale rtf.ireme,,',.

ECG

(1)

6400

(3)

7936

GCR

(2)

7168 9728Work/iteration

Storage 2560 3584 4608 2560 3584 4608 2048

for Pe = 104 it is better than any other of the options considered, requiring only less
that one-half of the best alternative (OR:rHOMIN(l». For Pe = lO~, the difference
is even greater, since EGG requires about one-fourth the work required by the best
of the other procedures compared.

5. Conclusions. On the basis of the numerical results presented in Table 1 and
additional numerical work to be published, in which preconditioners are incorporated,
our preliminary conclusions are:

i) EGG is competitive when the condition number is not very close to one;
ii) The Euclidean Conjugate Gradient method (EGG), deserves further study.

In particular, it is important to include in the comparisons GMRES and Tcheby-
cheff, and the use of preconditioners.

Work along the lines of ii) is being ~rformed by the authors, including applica-
tions to test problems derived from oil reservoir simulation [6).

T~b\t-; 3
Work per loop a"~ ,fora,e r~.ireme"f' form./a,. "'. = ",afrir..ecfor pro~.cf.

ORTHOMIN(m) GCR(m) Proposed method

Work/iteration

Storage

(3m + 4)N + 1 mv

(2m + 3)N

«3/2)m + 4)N + 1 my

(2m + 3)N

5N + 2 mv

4N
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