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ABSTRACT

The treatment of discontinuities Is incorporated in the modeling of
a gas front which Invades undersaturaied liquid oil, allowing in
this manner a more complete treatment of these kind of problems. In
this connection, a methodology' of wider applicabllity is Introduced
with the following features: Systematic formulation of jump
conditions; Finite differences schemes for functions with jumps and
Eulerian-Langrangian approach to front tracking. Using this approach
quite satisfactory numerical results are obtalned.

INTRODUCTON

Several methods have been presented in the literature for
representing saturation fronts i‘ccuratcly. A class of such methods
is based on the method of characteristics and is usually limited to
miscible flow problems (Douglas', Douglas and Russell’, Ewing et
al.>*, Russell’, Herrera and Ewing'). Front tracking methods (GUmm
et 11.7) have someattractive features, but In its present form they
sre restricted to cases in which capillary effects can be ignored
\ (Bratvedt et al®). Buckley-Leverett frontal advance theory together
with a linear approximation of the fractional flow function has been
X applied in simple reservoir studies (Kale?).
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400 Fluid Flow

For the treatment of sharp discontinuities, the equations are
usually separated into pressure and saturations equations and the
diffusion terms associated with capillary pressure are ignored In
the saturation. Then,  Buckley-Leverett Theory is  applied
(Buckley—l.everettm. Kale’).  Another approach due to Glimm’
{Bratvedt et al.a). is to apply the theory of non-linear
conservation laws to the resulting saturation equation.

In this paper, the modeling of discontinuities which occur when
a gas front invades a region of undersaturated liquid oil is
discussed and in this connection, an alternative approach to sharp
fronts is presented. The general formulation is equally applicable
to other sharp discontinuities ("shocks”), such as oil displaced by
a water front. The main contributions are:

a).- A very systematic formulation of jump conditions,
including the velocity of advancing fronts;

b).~ Introduction of finite difference schemes for functions
with jumps and using them, development of an Eulerian-Lagragian
approach to front tracking; and

c).- A rigorous mathematical setting is given for more general
problems.
The case of an advancing front of gas into undersaturated liquid oil
has been treated previously (Raghavan" and Camacho and’
Raghavan‘z'm). but to our knowledge this is the firét time that
Jumps are incorporated in the model. The modeling procedure
followed up to now, which does not incorporate jumps, In what
follows will be called the "traditional approach”.

JUMP CONDITIONS

To give to our developments a sound and firm mathematical basis,
we start from first principles. The basis of the fundamental
equations that govern the flow and transport of fluids In a
reservolr are the balance equations of Continuous Mechanics. The
synthesis of this theory that has been given by Allen, Herrera,
and Plnder“; and by Herrera and Iulen‘s. are very convenient for
our purposes. In the case of multi~phase systems, each phase «
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moves with its own velocity _v_“. The balance laws satisfied by any
intensive property w“ belonging to such phase, are:

w‘: + Vo(;&ay_“)-v-zau & (1a)
and
[w“(x“vxz)— lp = gg (1b)

Equations (la) and (Ib), are the general “"differential balance
law" and the general "jump condition", respectively. The vector
15, Is the flux of y* across surfaces iIn space, while the
quantities g“ and g; represent external supply of nl:a (Allen,
Herrera and Plndcr“; Herrera and Allenxs). per unit volume and

unit time, In the case of g“. while g; represents external supply
of ¢¢ through the discontinuity, per unit area and unit time.

The black oil (or beta) model that will be considered Iis
based on the following hypothesis:

a).- There are three phases: water, liquid oil and gas;

b).~ Water and oil are immiscible, while gas is soluble only in
liquid oil; l.e. the water and gas phases consist of only one
component, while the liquid oil is made of two components:
dissolved gas and non-~volatile oil.

c).- No physical diffusion 1is present (this includes both,
molecular diffusion and that induced by the randomness of the
porous media).

With each one of the components there is associated one
intensive property, which represents the mass per unit volume of
that component. Thus, one can write:

VIS p, BOmgS 5, $CngS B, . WimeS o e
for the Intensive properties associated with water, non-volatile
oil, dissolved gas and gas in the gas phase, respectively. Also,
the flux t corresponding to each one of these intensive properties
vanishes identically, since no physical diffusion Is present.
Applying Equation (1a) to each one of these intensive properties
OR gets

($Sp)+VipSy)=0 3)

(#5p), +V:(ppSy)=0 (4)

e s ., . .
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(9 5p,) + 74 Basog") = g:‘ (sa)

#Sp)+ V(g pSy) =g (5b)
where no extraction terms have been included, so that for each one
of the components the external%_ supply terms vanish, except for
those corresponding to the interchange of mass between gas and
dissolved gas. Thus, g:‘ Is the mass of gas that Is dissolved in
the liquid oil per unit volume per unit time, while g:o is the
mass of dissolved oil that goes into the gas phase per unit volume
per unit time. Clearly

-] } 4 .
Bt B 0 (6)

Adding up Equations (5), one gets
- e ° .
{¢ (Sop d‘+ S‘p'))t + Velolp “Soy_ + p‘s p N}m=o o
Introducing the formation volume factors, Darcy’s Law, as well as
the relation

P _ .
p= —t57¢ R' pc (8)
oSTC

the system of Equations (3), (4) and (7), becomes the familiar
system of equations of black oil:

2 S
v-A_(Vp - 7 V) = ﬁ[ —-E! ] (9a)
w
a ¢So
V-[Ao(Vpo- 1°Vz)] - Ef{ —-§: ] v(9b)

V'[Riko(Vpo- 7°Vz) + A‘(Vp‘- 7‘V2)]

] So S‘
--ﬁ-[é[k'ﬁ—o-*-é:]] » (9C)
In a similar fashion applying Equations (1b), to each one

of the four components, it is obtained:

(8 p,,S, (2 -¥s)ln = 0 (10)
(¢ pS (x*-y)l-n = 0 ~ 10b)
¢ 5 ¢"s‘.(_\f—zx)l-n - g;:t (11a)
(¢ p‘S‘(z‘-!z)l'n =g (11b)

In addition, Darcy's Law requires:
[p‘]-O:l-W. o g (12)
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Above, the quantities g;-g and g;:° stand for the exchange of mass
between the gaseous phase and the component of dissolved gas which

is contained in the liquid oil phase. Mass conservation requires .
that:

-] 4 -
Bt gy, 0 (13}
So that, adding up Equations (13), it Is obtained:
- ° -
. - . - 4
(¢ pusog . ¢ pgsgfl n-{¢ pd‘S° + ¢ pgsgly,z pn=0 (14)
Since the pressures of the different phases are continuous, so is

the porosity ¢ and P, This allows cancelling these factors . in

Equations (10) and (14). Thus, introducing the volume factors,
they can be written as:

(s _lygen - [Swy_wl-n = 0 (15a)
-4
[s/B lgzen - (S /B )x°lon = © (i5b)

RS/B, +S/B Iy D - i(R.S°/B°)1°+ (S‘/B‘)z‘l'n = 0 (1Sc)
Equations (15), together with (12), constitute the desired system
of Jump conditions for the three-phase (four component) oil
reservoir. They relate the Jumps of the physical variables with
the velocity Yo of the advancing front. Observe that, in general,
the jumps of the volume factor B° and of R.may be non-zero since
they are functions of bubble point, in addition to pressure.

THE VELOCITY OF THE ADVANCING FRONT

Thus far the discussion has been completely general. Consider
now an advancing front of gas Into a non-saturated liquid oil. For
this case, taking the unit‘normal p to £ in the opposite sense to
¥ (Le. 1D < 0), it is seen that

S/B]=5/B and [(S/B)efl'p = (S/B)sf>n  (16a)
s T B T 2 | S 4

and
RS /B )¥°len = RI(S /B }’lp + [R IS 7B ) *n (16b)

. o [ s o (-] 1 ] -] -]
Writing

s, B,
Yen=n%en ya=Syen and wepg—g— an

o t
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Equations (1Sb) and (15c) can be written as :

nnl—[Rl[rc—}uu; &-n-u{-%]- (18)

Observe that, in view of Equation (i8), n represents the factor by
which the advancing gas front is slowed down with respect to the
particle velocity of the gas phase. It is similar to the factor
Fw' which occurs in the Buckley-~Leverett frontal advance theorx
(Kale”). In general, 'n)&. since otherwise the gas front is not
really advancing with respect to the unsaturated oll. Therefore,

‘r‘i}m by virtue of the second of Equations (18)

NUMERICAL FORMULATION OF JUMP CONDITIONS

Equations (18) are informative and permit acquiring Insight on the
manner in which the advance of the gas front occurs. However, the
Jump conditions, In the manner In which they are presented In
Equations (i8), are not in their most convenient form to be used
in numerical applications. In this Section they will be

transformed into the form they will be used Iin the numerical
formulations that follow.

Introducing the mobilities, Equations (16) can be written as:

A Vp - 7, V2)l-n + [ 2:—“"; ]xz-n =0 (19a)
¢S
(A (Yp - 7 92)i-n + [ -—§3- ]_v_z-n =0 (19b)
lR.A (Vp - 1072) : A‘(Vp‘- 18\72))-11 +
S S'
[ ¢[ R- -B-: + 'Q: ]]y.z-n = 0 (19¢)

For simplicity, In what follows only two phases will be
considered: oil and gas. In addition, only a 1-D formulation will
be presented, so that gravity effects will be left out and
it will be assumed that the gas moves towards the left (l.e.,
v:<0). In this case Eqﬁations (19) become:

(R pacy FIEPR s

[R'AO;;-E . A;;—'—] . [ ¢[ R, 52+ ;:. ]]vz = 0 (20b)

o ¥
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Since 7\‘-0 on Z-, it is clear that

8
[._p_t )
edx Ix T+

and Equation (20b) can be written as:
ap
©
[R."Jx—] *
[ So S‘ ap‘ )
¢[ R = ¢+ £ ]]v = -[A —-—] (21)
s B° B‘ b 3% £+

Using the general relation [abl=a{bl+{ald, it is obtained:

.

io[;;z] + [ i;f ]vx - [Ao]g (22a)

) i

° z
8p, : 3p_ , o
'(",3;?‘] L [R‘ko]s-x—- (220).
Introducing the notation
P 8p_
o o
o= [;—,;] : mm =2 (23a)
it is seen that
Py
3;‘—-] =m+ a/2 (23b)
I+

Observe that capillary pressure has been neglected when writing
-

Equation (23b). Then, the system of Equations (22) can be easily

transformed into:

. ¢s
Aas [-ﬁf- ]vz + [Ao]m. =0 (24a)

(@R 2 )+ z[¢( R, g": . ;A ]]vz +2(2 + RAJ)m =0 (245)
For the numerical treatment, Eq:mtlons (24) will be used as system
of equations for the unknowns o, s and m, all of them ;deflned, on
the space~time surface of discontinuity Z(t). However, this system

Is not determined since it is 2 by 3. The additional equation'‘that
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is needed, will be obtained weighting the differential equations
(9) in a suitable manner, as it is explained in the next Section.

THE WEIGHTED EQUATIONS

The one-dimensional version of Eduatlons (9b and ¢), is:
8p #S
3 ° a8 ° -
a;["oasz] - 3?["“B°] ° (25a)

ap 8p . S S
8 ° P 8 e s
’5;{“.".,3;2 *"J{] “3‘;{’ [R-Bo ‘B ] } = 0 (25%)
In this Section these equations will weighted wusing convenient

space~time weights, deriving in this manner equations suitable for
discretization. The weights that will be chosen lead to what is
essentially 2 cells method.

It will be assumed that Cu = -VzAt/Axﬂ. The position of the
gas front will be denoted by xz(t). The space interval will be
divided into a finite number of equally spaced cells,
Taking time tn as starting time, a procedure for contructing the
solution at time tnﬂ will be developed. "Ihe index "i® will be
reserved to .denote the cell containing the front at time tn e
Since Cul and vz<o. only two cases must be distinguished. Either,
during the time interval (tn.tn ﬂ) the gas front does not cross
any inter-cell boundary (Case A); or It crosses one inter-cell
boundary (Case B). Observe that in Case B the Inter—cell boundary
that is crossed is x .

1+1/2

Casg A

The system of space-time weights to be used in cell "i" (i.e.;

(S R A

wilx,t) = | (26A)
0., x < xt)

wl(x.t) = K (288)
1.%x> x,‘._(t) o

for the oll and
0., x < x(t)

W0 = = (260)
1.x> xz(t)

for the gas. The resulting equations are:
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[ ap Mz g\
[Aoax"] dt + [¢F°—]dx-
J Jer/2 °
tn 1-1/2
r ot 8p 'xm/z S nel
[7« °] dt + [¢ '§2] dax  (27A)
e t-1/2 ] x o
n -1/2
ot
n+l 8p° f‘mrz S° n
A= dt + ¢ B dx =
Je 1172 ]
n 3t )
tnﬂ
apo s 1+3/72 S° nel
Aax **8 Vs :(3 + ¢ 5 dx  (278)
"t *s(t
nel
o Dol '
8p, 8p_ teasz s, s\
R.Ao'a'—*‘ + A.-é—; dt + ¢ R.E: + F‘- dx =
* tn 14172 x}:(tn)
-t“‘l xlol/? nel
Rxap°+xap‘o¢giﬂ+_s.5v dt + ¢R~s—°-+i-‘- dx
s 0dX 8% 'Bo B‘ z -B° B‘
Tt £(t) X5(1)

(27¢)
In these equations the usual notation for line integrals has been
used. In particular dtn(hV;)'mdo. where da is the length in
space-time.

Equations (27) constitute a system of three equations for
cell "i", which must be coupled with the system of jump conditions
(24) and the equations of the remaining cells { two for each cell,
v}hen a two~phase system Is considered), to obtaln a determined
system. Assume, for the sake of definiteness, that we are solving
for pressure and saturation of the gas.Cells, other than cell “I"/
can be treated In a standard manner, solving for example, r&-‘_;’*éu
pressure and gas saturation at the center of the cell However,
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cell "i” must be treated in a special manner. We have available
the system of five equations constituted by Equations (24) and
{27). A possible choice (and this one was used in the present
study) of the corresponding five unknowns is: the jump and average

of the pressure gradient (& and m, respectively), the velocity v

z
of the gas front (these three unknown functions defined on E(t)),

the saturation and the pressure. Then, one can solve the value
n+l

P, 2t the center of cell "i" and the value S:g of gas

saturation at the gas front, together with a™', m™land !;”. A
special feature of this procedure is that one does not solve for

saturation at the center of cell "i".

Case B
The system of space-time weights to be used In cell "i" (l.e;
(xl-x/z‘xuvz”' is:
wilxt) = | . (28a)
for the oil and ‘
0. x <x(t)
w:(x.t) - g (288)
1.x> x}._(t)

for the gas. The system of space-time weights to be used In cell

"{+1" (i.e.; Ix xbm)). is:

tet/2’
w;(x.t) =] (28¢)
for the ofl and
0., x < x(t) .
w;(x.t) - = (280)
1., x> xz(t)

for the gas. In addition, a space~time welght with support in the
unfon of cells “I" and "I+1", {s applied to the oll equation. It
is defined by

O.X(x’:(t)

wx.t) = { (286)
1.x> xz(t) .

Corresponding to these five weighting functions, five
equations are derived for the union of cells "I* and "I+1",
Putting them together with the jump conditions (Equations 24) a
system of seven equations Is obtained. The corresponding seven
unknowns selected for the applications of the present paper were:

e ————
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the jump and average of the pressure gradient at the gas front at
time 'tmx' the velocity of the advancing front ¥y the values
p::' and p:;il. of the oil pressure at cells "I and “ls1°,
respectively, and the saturations of the gas S: ;:land S':,::l at the
center of cell "i+1" and at the gas front, respectively. Again, as
in Case A, a special feature of the procedure is that one does not

solve for the saturation at the center of cell "i".

NUMERICAL RESULTS

As a test for the formulation presented in this paper, the numerical
results that were obtained wusing {t in a black oil simulator,

neglecting capillary pressure, are presented.

A linear reservoir is considered, producing at a constant ofl
rate of 800 malday at the left boundary, and a no flow boundary at
the right end (L = 550 meters) . This reservoir is composed of two
zones, a left undersaturated oil zone and a right saturated 2one,
where the oil and gas phases coexist. Initially, the pressure is the
same for all positions, Sg¢ = 0.7 in the saturated zone, and the front
is located at x= 275 meters.

The PVT properties for the oil phase consist of constant
viscosity and two values of B’ and R., one at the left side of the
front and another at the right side, respectively. For the gas phase
the PVT properties used, are typical in the oil industry. Straight
line relationships are used for the relative permeabilities,

In order to check the validity of the simulator results, we have
considered two cases: Tirstly, the undersaturated zone was taken as
incompressible, and secondly, a non-zero valllue was given to the rock
compressibility.

The analytical solution for the first case In the undersaturated
zone dictates a constant pressure gradient. Figure 1, shows a
comparison of pressure profiles at differen:t times for this case. Two
kinds of profiles are presented. The solid lines correspond to the
solution obtained when the proposed formulation Is included, and ‘the
dashed lines correspond to the traditional formulation In which jumps
are not considered. As already mentioned, the pressure gradient’ s

o e e ———————
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constant in the incompressible zone.

To correlate the transient {one phase) solution for a slightly

compressible liquid with a multiphase flow solution, Raghavan" and,

Camacho and Raghavanxz'lag _have proposed the use of a functlon of

pressure and saturation, called pseudopressure, which is defined as
follows:

=L

¥hWw Xro 3P
mip) = X2 [ o ] & (29)

=Q

For a linear system containing a slightly compressible liquid,
Nabor and Barham'® have shown that the pressure drop behaves
linearly with time In a log-log plot, with a slope of one-hailf
during the transient period. Once the outer boundary is manifested
in the response, the solution deviates from the straight Iline,
moving up for a closed outer boundary and achieving a constant
value, whena constant pressure outer boundary condition s
prescribed. When, as in the traditional approach, the jumps are not
considered In the formulation, the pseudopressure defined by
Equation (29) will deviate below the straight line for a closed
outer boundary, after the transient period has ended. To over come
this limitation, Camacho and Raghavann’“ have suggested to include
an additional integral in the right hand side of Equation (29). In
this manner, variations in average propertles are taken into
account. '

For a constant pressure ({constant saturation) outer boundary,
Equation (29) yields a constant value, equal to the position of this
boundary.v after the transient period has ended. Figure 2 shows the
behavior of the pseudopressure for the compressible case. The solid
line corresponds to the solution obtained vihen our formulation for
the jumps is used, and the dots correspond to the traditional
formulation. It can be observed the presence a straight line with
one-half slope during the transient period, in the solution for both
formulations. Observe that when the jumps are considered in the
formulation, the pseudo pressure is equal to the position of the
front, since this has a simllar effect to a constant pressure outer
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boundary. For the traditional formulation,
below because of the reason explained above,

the pseudopressure falls

The behavior of pressure at x=0 is shown in Figure 3. In Figure

4 it is presented a comparison of pressure profiles at different
times. The results of Figures 3 and 4 correspond to those of Flgure

2. The solid lines represent the proposed formulation and the dots
the traditional formulation.

Figures 5 to 8 show the behavior of Vg .m o, o, y Xy versus time,
respectively, for both compressible and ([ncompressible Inner zone

cases. The solld lines represent the compressible case and the dots
the incompressible one.
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