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ON OPERATOR EXTENSIONS: THE ALGEBRAIC THEORY
APPROACH

ISMAEL HERRERA
Instituto de Geofisica, UNAM
Apartado postal 22-582, 14000 Mézico, D.F., MEXICO

Abstract. The Localized Adjoint Method {LAM) is a new and promising methodology for dis-
cretizing partial differential equations, which is based on Herrera's Algebraic Theory of Boundary
Value Problems. A large number of numerical applications have already been made. Herera’s
Algebraic Theory implies a kind of operator extensions of great generality, which can be applied
to fully discontinuous trial and test functions, simultaneously. This is In contrast with standard
theory of distributions, which can be applied to discontinuous trial functions, only if test functions
satisfy a corresponding degree of regularity, or viceversa. This paper is devoted to make a brief
presentation of such extensions.

1. Introduction

The Localized Adjoint Method (LAM) is a new and promising methodology for
discretizing partial differential equations, which is based on Herrera’s Algebraic
Theory of Boundary Value Problems [1]-[5]. Applications have successively been
made to ordinary differential equations, for which highly accurate algorithms were
developed [4], [6]1-[8], multidimensional steady state problems [9] and optimal spa-
tial methods for advection-diffusion equations [10]-[17]. More recently, in a pair
of articles [18, 19], generalizations of Characteristic Methods that we refer to as
Eulerian-Lagrangian Localized Adjoint Method (ELLAM}, were provided. Related
work has been published separately [20]-[23] and some more specific applications
have already been made [24]-[29].

For differential operators, Herrera’s Algebraic Theory of Boundary Value Prob-
lems imply a kind of operator extensions of great generality, since using it, fully
discontinuous trial and test functions can be applied simultaneously. Actually, the
operator extensions implied by the Algebraic Theory (the “algebraic extensions”),
yield extensions of distributional operators, because the distributional! extensions
colncide with the algebraic extensions, whenever the former are defined. However,
the operator extensions implied by the Algebraic Theory are well defined, in cases
for which the distributional defimitions are not. This is the case, for example, when
trial and test functions are fully discontinuous.

The definition of the algebraic extensions is based on an algebraic structure which
systematically occurs in boundary value problems [2, 5]. In the present paper a
comparison is made with the distributional approach [30, 31]. It must be mentioned
that although in previous work, attention has been mainly devoted to analyze the
implications of the theory for single differential equations, the manner of applying
it to systems of equations has been explained in [22]. The interested reader may
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find more thorough expositions of the algebraic structure in [2, 5]. A more recent
exposition presenting several aspects of the algebraic structure in a more complete
manner, is given in [32] and a more systematic derivation of the operator extensions
from such algebraic structure, will appear in [33]. A monograph, in which the
discussion was restricted to symmetric operators, has already appeared in book
form [1].

The operator extensions implied by the author’s Algebraic Theory (the algebraic
extensions), are introduced in Section 2. In Section 3, a sketch of the proof that the
algebraic extension is indeed an extension of the distributional definition, is given.
Section 4 is devoted to present simple illustrations of the results produced by the
algebraic extensions.

2. Operator extensions

Consider a region €2 and for simplicity, assume the spaces of trial and test functions,
defined in 2, are the same linear space: D (i.e., D = Dy = Dy). Assume further,
that functions belonging to 1) may have jump discontinuities across some internal
boundaries whose union will be denoted by £. For example, in applications of the
theory to finite element methods, the set X would be the union of all the interelement
boundaries.

To be specific, consider a linear differential operator £ of order m and assume
{,...,Qg} is a partition of Q. More precisely, {{h,...,Qp} is a collection of
disjoint open regions (the “elements”) of §2, such that {2 is contained in the closure
of the union of {€,...,Qg}. Then, one can define D = H™(4) & --- & H™(Qp).
In thiscase T=Q -~ (Q U...UQE).

The definition of formal adjoint requires that a differential operator £ and its
formal adjoint £*, satisfy the condition that wlu ~ ul*w be a divergence; ie.:

wlu — ul*w =V - {D(u, w)} (n

for a suitable vector-valued bilinear function D{(u, w), which involves derivatives up
to order m — 1. Integration of {1) over £ and application of generalized divergence
theorem [34], yield:

Z/ {wﬁu—uﬁ*w}dm:/ Ra(u,w)dx+/7iz(u,w)d£, {2
~Ja, an b

where
Ro(u,w) = P(u,w) -n and Rglu,w)=—[D(u,w)] n. {3)

Here, as in what follows, the square brackets stand for the “jumps” across L of the
function contained inside; i.e., limit on the positive side minus limit on the negative
one. The positive side of X is chosen arbitrarily and then the unit normal vector
n, is taken pointing towards the positive side of £. The operators £ and £* are
understood in a distributional sense, and since they are of order m, both fﬂi wluds
and fn; ul*wdz are well defined for every ¢ = 1,..., E. However, observe that

D C H%), but the relation D C H(Q) does not hold, so that when u € D one
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can only grant that Lu € H™™(Q) and L*w € H™™(Q). Thus, [, wludzr and
jﬂ wL*w dzx are not well defined for every u € D and w € D. This Section is devoted

fo present extensions £ and £* (the algebraic extensions), of £ and £*, respectively,
for which [, wCudz and [, ul*wdz are well defined for every v € D and w € D.

In the general theory of partial differential equations, Green’s formulas are used
extensively {31]. For the construction of such formulas, it is standard to introduce a
decomposition of the bilinear function R s (see, for example, Lions and Magenes [31],
Vol. I, pp. 114-115). Indicating, as it is usual, transposes of bilinears forms by means
of a star, the general form of such decomposition is:

Rao(u,w) = D(u,w) - n = Bu,w) — C*(u, w) 4)

where B(u,w) and C*(u,w) are two bilinear functions, which involve derivatives up
to order n — 1. When considering initial-boundary value problems, the definitions
of these bilinear forms depend on the type of boundary and initial conditions to be
prescribed. A basic property required of B(u, w) is that for any u which satisfies the
prescribed boundary and initial conditions, B(u, w) is a well-defined linear function
of w, independent of the particular choice of u. This linear function will be denoted
by g5 (thus, its value for any given function w, will be gs(w)) and the boundary
conditions can be specified by requiring that B(u,w) = gs(w), for every w € D (or
more briefly: B(u,-) = gs). For example, for Dirichlet problem of Laplace Equation,
B{u,w) can be taken to be udw/0n, on 0% [19]. Thus, if us is the prescribed value
of u on 69, one has B(u,w) = us0w/0n, for any function u which satisfies the
boundary conditions. Thus, ga{w) = uaOw/In, in this case.

The linear function C*(u, ), on the other hand, can not be evaluated in terms of
the prescribed boundary values, but it also depends exclusively, on certain boundary
values of u (the “complementary boundary values”). Generally, such boundary val-
ues can only be evaluated after the initial-boundary value problem has been solved.
Taking again the example of Dirichlet problem for Lapalce Equation, C*(u, w) =
wdu/8n and the complementary boundary values, correspond to the normal deriva-
tive on 9% [19].

In a similar fashion, convenient formulations of boundary value problems with
prescribed jumps, requires comstructing Green’s formulas in discontinuous fields.
This can be done by means of a general decomposition of the bilinear function
Ry(u, w) that has been introduced by the author [22] (see also [19]) and whose def-
inition is point-wise on X. The general theory includes the treatment of differential
operators with discontinuous coefficients [4]. However, for simplicity in this article
only continuous coefficients will be considered. In this case, such decomposition is
easy to obtain and it stems from the algebraic identity:

[D(x, w)] = D([u], 1) + D(%, [w]) (5)

where
[=wp—us,  @=(uy+us)/2 (6)

The desired decomposition is obtained combining the second of Equs. (3) and (5):

Re(u,w) = T (u,w) — K*(u,w) (7
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where

J(u,w) = ~D([u],w)-
Kj*(“: w) = K(w: u) = 2(':‘} [w]) :

(89
(8b)

I= I8

Observe that the expressions for J(u, w) and X*(u, w), involve jumps and averages
across X, of u, w and their derivatives up to order m — 1.

An important property of the bilinear functional 7 {u, w) is that when the jumps
of v and its derivatives up to order m ~ 1, are specified, it defines a unique linear
function of w, which is independent of the particular choice of the function u, as long
as it satisfies the prescribed jump conditions. When considering initial-boundary
value problems with prescribed jumps, the linear function defined by the prescribed
jumps in this manner, is denoted by jg (thus, its value for any given function w,
will be ju{w)) and the jump conditions at any point of X, can be specified by
means of the equation: J(u,) = js [19]. In problems with prescribed jumps,
the linear function K*(u,-), plays a role similar to the complementary boundary
values C*(u,-). It can only be evaluated after the initial-boundary value problem
has been solved and certain information about the average of the solution and its
normal derivatives on X, is known (see Equ. (8b)). Such information, is called the
“generalized averages” [2, 4, 19].

Introducing the notation

(Pu,w) = Z/ wludz; (Q'u,w):Z/ ulwdez (9a)
i Yk 5 JEk

(Bu,w) = /mza(u,w)dx; (C*u,w)::/aiQC(w’u)d:c (9b)

(Ju,w) = A Juw)yds and (K*u,w)= /2 K (w, ) ds (9¢)

equation (2), can be written as:
(Pu, w) — (Q"u,w) = (Bu,w) — {C*u,w) + (Ju,w) — {K"u, w) (10)

This is an identity between bilinear forms and as such, can be written more briefly,
after rearranging, as:

P-B-J=Q -C"—K* (11)

This is Green-Herrera formula for operators in discontinuous fields [2, 5, 19].

It can be shown [33] that the pair of operators {J,—K*} constitutes a weak
decomposition of (P — B) — (Q ~ C)*, that B and J are boundary operaiors for
P, which are fully disjoint and that (11) is indeed a Green’s formula, in the weak
sense. On the other hand, when [J and K* are defined by (8), then the pair of
bilinear functionals {J,~K"}, constitutes a strong decomposition, point-wise, of
the bilinear functional Ry, which is defined point-wise, also [33].

The algebraic extension £ of the distributional operator £, is defined to be the
bilinear functional P — J. More precisely, £ is defined by:

/n wlude = (P - J)u,w) (12)
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which holds whenever v € D and w €D. Similarly, the operator extension corre-
sponding to £* is defined to be the bilinear functional Q* — K*; i.e.:

/ﬂ wbrwdz = (Q — K)*u, w) (13)

which also holds when both v and w belong to D). Thus, using these operator
extensions, Green-Herrera formula (11) can be written as:

/ﬂwﬁu de — Luﬁ*w dz = (B — C")u, w) (14)

for elements u € D and w € D,

3. Comparison between £ and £

Since the definitions for [, wludz and [ wL*w dz, which are standard in the theory
of distributions, can not be applied to all possible pairs {u, w}, such that u € D and
w € D, the algebraic extensions £ and £* were introduced in the last Section, for
which both Ja wludz and Jo ul*wdz are well defined, whenever u € D and w € D.
It can be shown that the operators £ and £*, defined by Equs. (12) and (13), are
indeed extensions of the distributional operators £ and L£*, respectively, and the
main purpose of this Section is to briefly explain a proof of this result. To achieve
this goal, it is only necessary to prove that for every u € D and w € D, the following
two implications hold:

/ wlu dz is defined = f wlude = / wludr (15a)
0 1) 0

/ull*wd:c is defined = /uﬁ*wdz:/ufﬁ*wdr (15b)
a Q 2

We only sketch a proof of implications (15) for the case when the order of the operator
is 1 (ie., £ = A(z)3/0z; + B(z), where i may be 1,..., N, while the coefficients
A(z) and B(g) are given functions of z), since the result for the case when £ is
of arbitrary order, can be derived from this case, by induction on the order of the
operator (see [33] for details). For this choice of £, one has £*w = —9(Aw)/dz;+ Bw
and D(u,w) - n = Auwn,, so that

J (v, w) = Alujwm; and K*(u,w)= —Ad[w]n; (16)

by virtue of Equ. (8a). Actually, only the implication (15a) will be shown, since the
proof of (15b) is similar. When u € D C H°(2) and w € H}(Q) or when v € H}(Q?)
and w € D C H(Q), Jo wludz is defined. Consider first the case when u € H(Q)
and w € D C H%(R). In this case

/ wludz = Z/ wludz @amn
0 i £
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since both w and Lu belong to H°(Q) = L%(Q). In addition, when u € H}(Q), v
is continuous and J(u,w) = 0 on X, by virtue of Equ. (16). Thus, Ju = 0. This
proves that

/ﬂwﬁu dz = (P — Nu,w) = (Pu,w) = E;/S‘t. wludz (18)

Comparing Equs. (17) and (18), the desired equality follows.
Ifu € DC H%Q) and w € H1(R), a standard Green’s formula used in the theory
of distributions (see p. 115 of Lions and Magenes [31]), yields:

/ﬂwﬁudr:/ﬂuﬁ*wdr+((B—C*)u,w) :Z/ﬂ ul*wdz+((B—C*)u,w) (19)

The last equality holds because u and £*w belong to H%(Q) = L2(Q). On the other
hand, using Green-Herrera formula (11), it is seen that

/ﬂw[ﬁu dz = ((P — JNu,w) = (@ — K" )u,w) + (B - CHu,w) (A)

However, w is continuous, because w € H1(). Thus, K(w, ) = 0 on £, by virtue of
Equ. (16), and Kw = 0. Hence, (K*u,w) = (Kw, u) = 0. Using this fact, Equ. (20)
reduces to

/ﬂwﬁu dz = (Q u, w) + (B — C*)u, w) = Z /ﬂ wC*wdz+ (B — C*)u, w) (21)

Comparing this equation with (19), the desired result follows.

4. Examples

As a first illustration, let us consider the operators £ and £, in the case when the
distributional operator £ = d/dz, the region  is the interval (—1, 1) of the real line
and the partition of Q is made of two subintervals: ©Q; = (—1,0) and Q, = (0,1).
Then £* = —d/dz, while D(u,w) = uw. Let the function u be defined by: u =10
for -1 <z < 0and u =1 for 0 < z < 1. Thus, u is essentially, a Heaviside step
function. The test function w will be taken having different degrees of smoothness.

Case A. w € H1(R), so that w is continuous.
1) In this case, application of a Green’s formul operators (see [31], p.115) yields:

1 1
/ wﬁudz:/ ul*wdz + (uw)|L,
-1 -1
and evaluating, it is obtained
1 1 dw L
wluds = — . de + w(1l) = —w|s + w(l) = w(0). (22q)
-1 0

This result is standard. In essence, it establishes that du/dz is a Dirac’s Delta
function when u is a Heaviside step function.
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ii) Using the fact that D(u,w) = uw and applying Equ. (8a), it is seen that

/ 1 wludz = Z / wludz + (h[u])s=0 = w(0) (22b)

since [u]y=g = 1, while w(0) = w(0), because w is continuous.

Case B. w has a jump discontinuiy at £ = 0, so that w € D but w € H*(R).
i) f_ll wlu dz is not defined.

ii) fil wludz is well defined and it is still given by (22b), except that w(0) # w(0),
so that

/ 1 whude = w(0) (23)
It is recalled that w(0) = (w(0%) 4+ w(07))/2.

As a second illustration, replace d/dz by d?/dz?, in the previous example. Then
£* = L, while Py, w) = w—(-iﬁ — w22 and proceeding as before:
dx dz
Case A. w € H*(Q), so that w is continuous, with continuous first order derivative.

1) In this case, as before, application of a Green’s formula yields:

1 1
/ w[;udxzf ul*wdz + (wu' — uw')|t,;

1 -1

and evaluating, it is obtained

/1 wludz = ]Gl w” dz — w'(1) = —uw'(0) (24a)

-1

‘This is a standard result. In essence, it establishes that v is the derivative of
Dirac’s Delta function, when u is a Heaviside step function.
il) Using the fact that D(u, w) = wu' — uw’ and applying Equ. (8a), it is seen that

1 ~
[ wludz = E/ wludz + (wu'] — ¥'[u])e=0 = —w'(0) (24b)

1 i

where the fact that 1w'(0) = w'(0), because v’ is continuous, has been used.
Case B. w' has a jump discontinuity at z = 0, so that w € D but w ¢ H%(Q).
i) f_ll wlu dz is not defined.

1) f_ll wLlu dz is well defined and it is still given by (24b), except that w'(0) # w'(0),
so that

/ l wludz = —i'(0) (25)

1
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