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ON OPERATOR EXTENSIONS: THE ALGEBRAIC THEORY 
APPROACH 

ISMAEL HERRERA 
Instituto de Geofísica, UNAM 
Apartado postal 22-582, 11,000 México, D.F., MEXICO 

Abstract. The Localized Adjoint Method (LAM) is a new and promising methodology Cor dis­
cretizing partía! differentia! equations, which is based on Herrera's Algebraic Theory of Boundary 
Value Problems. A large number of numerica! applications have already been marle. Herera's 
Algebraic Theory implies a kind oC operator extensions of great generality, which can be applied 
to fully discontinuous tria! and test functions, simultaneously. This is in contrast with standard 
theory oC distributions, which can be applied to discontinuous tria! Cunctions, only if test Cunctions 
satisfy a corresponding degree of regularity, or viceversa. This paper is devoted to make a brief 
presentation of such extensions. 

1. Introduction 

The Localized Adjoint Method (LAM) is a new and promising methodology for 
discretizing partial differential equations, which is based on Herrera's Algebraic 
Theory of Boundary Value Problems [1)-[5). Applications have successively been 
made to ordinary differential equations, for which highly accurate algorithms were 
developed [4], [6)-[8), multidimensional steady state problems [9] and optimal spa­
tial methods for advection-diffusion equations [10]-[17]. More recently, in a pair 
of articles [18, 19], generalizations of Characteristic Methods that we refer to as 
Eulerian-Lagrangian Localized Adjoint Method (ELLAM), were provided. Related 
work has been published separately [20)-[23) and some more specific applications 
have already been made [24]-[29J. 

For differential operators, Herrera's Algebraic Theory of Boundary Value Prob­
lems imply a kind of operator extensions of great generality, since using it, fully 
discontinuous trial and test functions can be applied simultaneously. Actually, the 
operator extensions implied by the AIgebraic Theory (the "algebraic extensions"), 
yield extensions of distributional operators, because the distributional extensions 
coincide with the algebraic extensions, whenever the former are defined. However, 
the operator extensions implied by the Algebraic Theory are well defined, in cases 
for which the distributionaI definitions are noto This is the case, for example, when 
trial and test functions are fully discontinuous. 

The definition of the algebraic extensions is based on an algebraic structure which 
systematically occurs in boundary value problems [2, 5). In the present paper a 
comparison is made with the distributional approach [3D, 31J. It must be mentioned 
that although in previous work, attention has been mainly devoted to analyze the 
implications of the theory for single differentiaI equations, the manner of applying 
it to systems of equations has been explained in [22]. The interested reader may 
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find more thorough expositions of the algebraic structure in [2, 5]. A more recent 
exposition presenting several aspects of the algebraic structure in a more complete 
manner, is given in [32] and a more systematic derivation of the operator extensions 
from such algebraic structure, will appear in [33]. A monograph, in which the 
discussion was restricted to symmetric operators, has already appeared in book 
form [1]. 

The operator extensions implied by the author's AIgebraic Theory (the algebraic 
extensions), are introduced in Section 2. In Section 3, a sketch of the proof that the 
algebraic extension is indeed an extension of the distributiona! definition, is given. 
Section 4 is devoted to present simple illustrations of the results produced by the 
algebraic extensions. 

2. Operator extensions 

Consider a region O and for simplicity, assume the spaces of tria! and test fundions, 
defined in O, are the same linear space: D (i.e., D = DI D2)' Assume further, 
that functions belonging to D may have jump discontinuities across sorne interna] 
boundaries whose union will be denoted by :E. For example, in applications of the 
theory to finite element methods, the set :E would be the union of all the interelement 
boundaries. 

To be specific, consider a linear differential operator C of order m and a.'lsume 
{O!, ... ,OE} is a partition of O. More precisely, {Ol, ... , OE} is a collection of 
disjoint open regions (the "elements") of O, such that O is contained in the closure 
of the union of {O}, ... , OE}' Then, one can define D Hm(Ol) E9 ... E9 Hm(QE). 
In this case :E = O (01 U ... U OE)' 

The definition of formal adjoint requires that a differential operator C and its 
formal adjoint C", satisfy the condition that wCu uC"w be a divergence; i.e.: 

wCu - uC*w = V· fD(u, w)} (1) 

for a suitable vedor-valued bilinear function 'D(u, w), which involves derivatives up 
to order m - 1. Integration of (1) over O and application of generalized divergence 
theorem [34J, yield: 

uC"w}dx= r 'Ro(u,w)dx+ r 'RE(u,w)dx, (2)100. lE 
where 

'Ro(u, w) 'D(u, w) '!l and 'Rr;(u, w) -[Q(u, w)]·!l. (3) 

Here, as in what follows, the square brackets stand for the "jumps" across E of the 
function contained inside; Le., limit on the positive side minus limit on the negative 
one. The positive side of :E is chosen arbitrarily and then the unit normal vector 
!l, is taken pointing towards the positive side of:E. The operators C and C' are 
understood in a distributional sense, and since they are of order m, both Ini wludx 
and In, uC"wdx are well defined for every i 1, ... ,E. However, observe that 
D e HO(n), but the relation D e HI(O) does not hold, so that when u E Done 
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can only grant that 'cu E H-m(n) and ,c*w E H-m(n). Thus, Jn w'cu dx and 
J uC"w dx are not well defined fOl every u E D and w E D. This Section is devoted n 
to present extensions C and C* (the algebraic extensions), of'c and ,c*, respectively, 
for which Jn wCudx and Jn uC*w dx are well defined for every u E D and w E D. 

In the general theory of partial differential equations, Green's formulas are used 
extensively [31]. For the construction of such formulas, it is standard to introduce a 
decomposition ofthe bílinear function na (see, for example, Lions and Magenes [31], 
Vol. I, pp. 114-115). Indicating, as it is usual, transposes ofbilinears forms by means 
oí a star, the general form of such decomposition is: 

na(u, w) == V(u, w). 11 =B(u, w) - C·(u, w) (4) 

where B(u, w) and C* (u, w) are two bilinear functions, which involve derivatives up 
to order m - 1. When considering initial-boundary value problems, the definitions 
of these bilinear forms depend on the type of boundary and Ínitial conditions to be 
prescribed. A basic property required of B(u, w) is that for any u which satisfies the 
prescribed boundary and initial conditions, B(u, w) ís a well-defined linear functíon 
oí w, índependent of the partícular choice of u. This linear fundíon will be denoted 
by ga (thus, its value for any given function w, will be ga(W» and the boundary 
conditions can be specified by requiring that B(u,w) = ga(W), for every w E D (or 
more briefly: B(u, .) =ga). For example, for Dirichlet problem of Laplace Equation, 
B(u,w) can be taken to be uowjon, on OÜ [19]. Thus, ifua is the prescribed value 
of u on on, one has B(u, w) = uaowjon, for any function u which satisfies the 
boundary conditions. Thus, ga(w) = uaowjon, in this case. 

The linear fundion C*(u, .), on the other hand, can not be evaluated in terms of 
the prescribed boundary values, but it also depends exclusively, on certain boundary 
values of u (the "complementary boundary values"). Generally, such boundary val­
ues can only be evaluated after the initial-boundary value problem has been sol ved. 
Taking again the example of DirÍchlet problem for Lapalce Equation, C* (u, w) = 
w8ujon and the complementary boundary values, correspond to the normal deriva­
tive on on [19]. 

In a similar fashion, convenient formulations of boundary value problems with 
prescribed jumps, requires construding Green's formulas in discontinuous fields. 
This can be done by means of a general decomposition of the bilinear function 
'R.¡:(u, w) that has been introduced by the author [22] (see also [19]) and whose def­
inition is point-wise on E. The general theory includes the treatment of differential 
operators with discontinuous coefficients [4]. However, for simplicity in this article 
only continuous coefficients will be considered. In this case, such decomposition is 
easy to obtain and it stems from the algebraic identity: 

[V(u, w)] = V([u], w) +V(ú, [w]) (5) 

where 
[u] = u+ - u_, ú (u++u_)j2 (6) 

The desired decomposition is obtained combining the second of Equs. (3) and (5): 

ní1(U, w) = ..1(u, w) K*(u) w) (7) 
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\ 
where which holds wh, 

sponding to C* 
.J(u, w) -V«(u], w).!! (8a) 

K*(u, w) K(w, u) V(ú, (w])·!! (8b) 

Observe that the expressions for .J(u,w) and K*(u,w), involvejumps and averages 
across .E, of u, w and their derivatives up to order m 1. 

An important property of the biJinear fundional :J(u, w) is that when the jumps 
of u and its derivatives up to order m - 1, are specified, it defines a unique linear 
function of w, which is independent of the particular choice of the fundion u, as long 
as it satisfies the prescribed jump conditions. When considering initial-boundary 
value problems with prescribed jumps, the línear fundion defined by.the prescribed 
jumps in this manner, is denoted by i'iJ (thus, its value for any given function w, 
will be h(w» and the jump conditions at any point of E, can be specified by 
means of the equation: .J(u,.) = j'iJ (19]. In problems with prescribed jumps, 
the linear function K*(u, .), plays a role similar to the complementary boundary 
values C* (u, .). It can only be evaluated after the initial-boundary value problem 
has been solved and certain information about the average of the solution and its 
normal derivatives on .E, is known (see Equ. (8b». 8uch ínformation, is caBed the 
"generalized averages" (2, 4, 19]. 

Introducing the notation 

(Pu, w) I:l weudx; (Q*u,w) =¿;: lo. ue*wdx (9a) 
i ni 

{Bu, w} = 1B(u,w)dx; (e*u, w) 1C(w,u)dx (9b)
&n {jn 

(Ju, w) = ~ .J(u,w)dx and (K*u,w) ~ K(w,u)dx (9c) 

equation (2), can be wrítten as: 

(Pu, w) (Q*u, w) = (Bu, w) - (e·u, w) + {Ju, w} - {K*u, w} (10) 

This is an identity between bilinear forms and as such, can be written more briefly, 
after rearranging, as: 

P - B - J = Q* - e* - K* (11) 

This is Green-Herrera formula for operators in discontinuous fields [2,5, 19]. 
It can be shown [33] that the pair of operators {J, - K*} constitutes a weak 

decomposition of (P B) - (Q - e)*, that B andJ are bO'll.ndary operators for 
P, which are fully disjoint and that (11) is indeed a Green's formula, in the weak 
sense. On the other hand, when .J and K* are defined by (8), then the paír of 
bilinear functíonals {.J, -K*}, constitutes a strong decomposition, point-wise, of 
the bilinear functional 'RE which is defined point-wise, also [33]. 

The algebraic extension Cof the distributional operator e, is defined to be the 
bilinear functional P J. More precÍsely, é is defined by: 

lo wéu dx:; {(P - J)u, w) (12) 

which also hol! 
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which holds whenever u E D and w ED. Similarly, the operator extension corre­
sponding to f: is defined to be the bilinear functional Q* - K*; i.e.: 

in uC*w dx == (Q - K)*u, w) (13) 

whích also holds when both u and w belong to D. Thus, using these operator 
extensions, Green-Herrera formula (11) can be written as: 

in wCu dx - in uC*w dx (B - C*)u, w) (14) 

for elements u E D and w E D. 

3. Comparison between Cand e 
Since the definitions for In weu dx and In uCw dx, which are standard in the theory 
of distributions, can not be applied to aH possible pairs {u, w}, such that u E D and 
w E D, the algebraic extensions .c and .c* were introduced in the lasi Section, for 
whích both In wCu dx and In uC*w dx are weH defined, whenever u E D and w E D. 

It can be shown that the operators C and C*, defined by Equs. (12) and (13), are 
indeed extensions of the distributional operators e and e*, respectively, and the 
main purpose of thís Sectíon is to briefly explain a proof of this resulto To achieve 
this goal, it ís only necessary to prove that for every u E D and w E D, the following 
two implications hold: 

in weu dx is defined => in weu dx = in w.cu dx (15a) 

and 

in uCwdx is defined => in uC*wdx =in uC*wdx (15b) 

We only sketch a proof ofímplications (15) for the case when the order ofthe operator 
is 1 (Le., e == A(g},')O/OXi + B(i), where i may be 1, .. . ,N, while the coeflicients 
A(~) and B(g;.) are given functions of ~), sínce the result for the case when e ís 
of arbitrary order, can be derived from this case, by induction on the order of the 
operator (see [33] for detaíls). For this choice of e, one has Cw == -o(AW)/OXi+Bw 
and D(u, w)'!l = Auwni, so that 

:T(u,w) = A[U]Wni and K*(u,w) = -Aü[wJn. (16) 

by virtue of Equ. (8a). ActuaHy, only the implication (15a) will be shown, since the 
proof of (15b) is similar. When u E D e HO(Q) and w E Hl(Q) or when u E Hl(Q) 
and w E D e HO(Q), In weu dx is defined. Consider first the case when u E Hl(Q) 
and w E D e HO(Q). In this case 

f weudx = ¿ { weudx (17)
Jn i Jn, 
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since both w and .cu belong to HO(n) = L2 (n). In addition, when u E H1(O), U 

is continuous and :J(u, w) == O on E, by virtue of Equ. (16). Thus, Ju = O. This 
proves that 

f w.cu dx = ((P - J)u, w) = (Pu, w) =L f w.cu dx (18)Jo. ¡Jo.. 
Comparing Equs. (17) and (18), the desired equality follows. 

If u E D e HO(n) and w E H 1 (n), a standard Green's formula used in the theory 
of distributions (see p. 115 of Lions and Magenes [31]), yields: 

f w.cudx = f u.c*wdx+((B-C*)u,w} =L f u.c*wdx+((B-C*)u,w} (19)Jo. Jo. ¡Jo.. 
The last equality holds because u and .c*w belong to HO(n) = L 2 (n). On the other 
hand, using Green-Herrera formula (11), it is seen that 

in w.cu dx = ((P - J)u, w) = ((Q* - K*)u, w) + ((B - C*)u, w) (20) 

However, w is continuous, because w E H 1(n). Thus, K(w,·) == Oon E, by virtueof 
Equ. (16), and Kw = O. Hence, (K*u, w) = (Kw, u) = O. Using this fact, Equ. (20) 
reduces to 

1w.cu dx = (Q*u, w) + ((B - C*)u, w) =L 1u.c*w dx + ((B - C*)u, w) (21)
o. i 0., 

Comparing this equation with (19), the desired result follows. 

4. Examples 

As a first illustration, let us consider the operators .c and .c, in the case when the 
distributional operator .c == djdx, the region 0, is the interval (-1, 1) of the realline 
and the partition of 0, is made of two subintervals: 0,1 = (-1, O) and 0,2 =(0,1). 
Then.c* == -djdx, while V(u, w) == uw. Let the function u be defined by: u =O 

for -1 < x < O and u = 1 for O :::; x < 1. Thus, u is essentially, a Heaviside step 
function. The test function w will be taken having different degrees of smoothness. 

Case A. w E H 1 (n), so that w is continuous. 
i) In this case, application of a Green's formuloperators (see [31], p.115) yields: 

{11 w.cudx= {11 u.c*wdx+(uw)I:'1 

and evaluating, it is obtained

11 dw1 
w.cu dx = - -d dx + w(1) = -w16 + w(l) = w(O). (22a)1 ° X-1 

This result is standard. In essence, it establishes that dujdx is a Dirac's Delta 
function when u is a Heaviside step function. 
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ii) Using the fact that 'D( u, w) == uw and applying Equ. (8a), it is seen that 

i weudx 	 (22b)¡: lo. wCU dx + (tÚ[U])x=O = W(O)j -1 
l 

since [u]x=o = 1, while tú(O) =w(O), because w is continuous. 

Case B. w has a jump discontinuiy at x = O, so that w E D but w ti. H 1(0). 
i) f~1 wCu dx is not defined. 

ii) tI weu dx is well defined and it is still given by (22b), except that tú(O) 1= w(O), 
so that 

JI weu dx ::::: tú(O) (23) 
-1 

It is recalled that tú(O) = (w(O+) + w(0-))j2. 

As a second illustration, replace djdx by d2 j dx 2 , in the previous example. Then 

C* == C, while 'D(u, w) == w~: - u ~: and proceeding as before: 

Case A. w E H 2(0), so that w is continuous, with continuous first order derivative. 
i) In this case, as before, application of a Green's formula yields: 

JI wCUdx=jl uC*wdx+(wu' UW'W:.l 
-1 -1 

and evaluating, it is obtained 

I wCu dx = t w" dx - w'(l) ::::: -w'(O) (24a)J Jo-1 

This is a standard resulto In essence, it establishes that u" is the derivative of 
Dirac's Delta function, when u is a Heaviside step function. 

ii) Using the fact that 'D(u, w) wu' - uw' and applying Equ. (8a), it is seen that 

I weu dx =:L: [ wCu dx + (tÚ[u'] - tú'[u])x=o = -w' (O) (24b)J-1 i Jn• 

where the fact that tú'(O) ::::: w'(O), because w' is continuous, has been used. 
Case B. w' has ajump discontinuity at x = O, so that w E D but w ti. H 2(0). 

i) f~1 wCu dx is not defined. 

ii) 	f~1 weu dx is well defined and it is still given by (24b), except that tú'(O) 1= w'(O), 
so that 

J
I weu dx ::::: -tú/(O) 	 (25) 

-1 
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