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ABSTRACT

Locallzed Adjoint Method (LAM), Is a new and promising methodology
for discretizing partial differential equations, based on the
author’s Algebralc Theory of Boundary Value Problems, which has been
successfully applied to ordinary and partial differential equations.
Recently, a sequence of two papers was devoted to applying Localized
Adjoint Method (LAM), In space-time, to problems of advective
diffusive transport. The resulting methodology, called
Eulerian-Lagranglan localized adjoint method (ELLAM), ylelds a
general formulation that subsumes many characteristic methods (CM).
The LAM constitutes a general and powerful framework for
investigating and comparing a wide variety of numerfical methods, and
supplies Insights to innovate them. However, further research should
be carried out In many p:oints. This paper Indicates some of such
points and anounces results recently obtained.

1. INTRODUCTION

Three of the most powerful numerical methods for partial
differential equations are finite elements, finite differences and
boundary element methods. The foundations of each one of these
methodologies, as originally formulated, was unrelated. More
recently, it has been recognized that it is “desirable to develop
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ped the Algebraic Theory of Boundary Value Problems [1-5]
has led to what Is at present known as the "Localized Adjoint
i",
‘he Localized Adjoint Method (LAM) is a new and promising
jology for discretizing partial differential equation's. which
ied on Herrera's Algebraic Theory of Boundary Value Problems
Applications have successively been made to ordinary
ential equations, for which highly accurate algorithms were
ped [(4,6-8], multidimensional steady state problems (9] and
il spatial methods for advection-diffusion equations {10-18].
recently, in a pair of articles [19,20] generalizations of
steristic Methods that we refer to as Eulerian-Lagranglan
zed Adjoint Method (ELLAM), were provided by the ELLAM Group
Celia, R.E. Ewing, T.F. Russell and the author). Related work
been published separately (21-25] and some more specific
ations have already been made [26-31].
in the conclusions of the second of the ELLAM articles (20], a
il discussion of the ELLAM methodology, and to some extent of
.AM itself, was presented. In particular, a more complete
e of the possibilities that should be explored and the
'ms that must be tackled, in order to make of ELLAM a more
ive modeling tool, was established. It was recognized that the
framework has been demonstrated to be very suitable for
1iting specialized test functions. The effect that different
ary and continuity (or smoothness) conditions, satisfied by
“unctions, have on approximate solutions was clearly exhibited.
the LAM framework leads in a natural manner to a definition of
le unknowns for a given problem. For example, when developing
umerical implementation of ELLAM in [19], it became apparent
in some cases it was necessary to introduce the total flux as
1ditional unknown at the boundaries, in spite of the fact that -
ain g‘pa! was to predict the value of the function at time ™,
s also demonstrated that in the LAM approach it is possible to
simult'an‘cogsly. discontinuous triai and 'tesi functions, which

ther approaches is not. The generality of the theory was
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corroborated, once more, by applying It to systems of equations and
deriving Mixed Methods,

However, there are many points that should be studied in more
depth. For example, among the theoretical questions which are open,
one can mention that Herrera's Algebralc Theory of Boundary Value
Problems, imply a kind of operator extensions of great generality
(the “algebralc extensions”). Using them fully discontinuous trial
and test functions can be applied simultaneously, which i{s not
possible when standard theory of distributions is used. However, In
this respect it is desirable to establish more clearly the relation
between the algebralc extensions and the theory of distributions.
Another theoretical question that should be tackled, refers to the
concept of TH-complete systems of test functlons. This com’:ept was
originally Introduced by the author and extensively studied for
symmetric operators ([1,32], but the corresponding development for
non-symmetric operators [s wanting.

Among the more numerical aspects, there also many questions
that should studied further. For example, very effective numerical
procedures were developed for ordinary differential equations [6],
but an extenslve comparison of the efficlency of such procedures has
not been carried out thus far. Also, we need to develop more
efficlent proceddrcs for the constructlon and application of test
functions which satisfy boundary conditions required in the
numerical implementations. We need a more extensive study of both
the theory and implementation of ELLAM techniques for variable
coefficients particularly in multidimensional applications.
Implementation of boundary conditions for variable-coefficient
problems in multiple dimensions is also an important problem. Even
in the one-dimensional case and In spite of the important progress
that has already been made [19.20], several points remain open, in
this respect. In addition, the treatment of nonlinear problems
deserves further study. Since the wunknown variables appear in
nonlinear coefficients of the problexﬁ that are usually evaluated in,

the interior of mesh blocks via numerical quadrature, greater

attention must be placed on the full approximation theoretic
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properties of the trial functions in these applications. The
‘potential of local refinement in both space and time holds enormous
potential for ELLAM and is the object of ongoing research.

Finally, we want to emphasize that LAM forms a general and
powerful framework for investigating and comparing a wide variety of |
numerical methods. The framework motivates different choices of test
functions to approximate different properties of the unknowns or
even different unknowns, such as fluxes. The general theory Iis
expanding to provide more insight. In addition, the ELLAM methods
appear to have enormous flexibility and: .aypotential for treating

general advection-diffusion-reaction problems.

2. THE CRITERIUM OF TH-COMPLETENESS

The discussion concerns functional-valued operators such as
R:Dl—-—>D:. which are linear, and their transposes (R.:Dz——-—>D:).
Here, Dx and D2 are two linear spaces, the spaces of trial and test
functions, respectively, In which no further structure s assumed.

*
We write <Ru,w>=CR w,u> for the associated bilinecar functional,
whenever ueD‘ and weDz. We underline auxiliary concepts whose

definitions can be found ‘in other papers (2,5,33,34).
Definitions 2.1.- Consider an operator R:Dl

> D; and an ordered
pair of linear subspaces (Il. Iz). with Il c D‘ & 12 < D2 . Such

pair is said to be conjugate for R, when
uell & welz ===> <Ru,w> = 0 (2.1)

Definition 2.2.- Let (Il,lz}, be a pair of subspaces (l‘cD‘ and
lchz). conjugate for R. Then, a subset & c !2. s said to be
TH-completg for Ix' when for every ueD‘, one has:

<Ru,w> = 0 V web ====> uell (2.2)
Theorem 2.1.- Let R, Rx and Rz' be functional-valued operators and
assume R = Rx + Rz. Define the pairs of linear subspaces (In,l |

22
and (112.121). by:

I, =N <D 1, =N,cD (2.3a)
2 1
I_=N cD I =N cD (2.3b)
. 12 Rl 1 21 R; 2

Then

‘a) Each of thg pairs (I“,Izz) and unz'lzx)' are
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conjugate with respect to R.

L4

When in addition, R ® & R _® can be varied independently, one has:
b) I 22 is TH-complete for Iu
c) 121 is TH-complete for Ixz'

Definiton 2.3 (ABSTRACT FORMULATION OF PROBLEMS WITH JUMPS).- Let

D — .D—>D" 1. . ] -
the operators P.Dl >D_, B.Dl >D 2’ J.D‘—>Dz, Q'Dz—>Dx’

N

C:D —>D" and K:D —>D
. 2 1 2

- &

, satlsfy Green-Herrera formula [2,20]:

P-B-J=Q-C-K (2.4)
An.-.abstract formulation of boundary value problems _ with~
prescribed jumps is the following: Lo
Given UQ. Ua and U}:' belonging to Dx’ define f=PU_, g=BU
and j=JUg, the problem Is to find ueD, such that
Pu=fiBumg&lu=] (2.5)

a

Theorem ?.2.- Let t.he operators C':b‘-—m:; C":D;—)D;;
K"D;—"Dz‘ K":Dl-——->02: be such that: C=C'+C" and K=K'+K".
Assume:
a).- uer is a solution of the boundary value problem with
prescribed jumps;
b).- B+J Is a boundary operator for P, while B and J ar-
disjoint; |
c).- Q-C’-K’ and C"+K" can be varied independently, while (C")!
and (K").a're disjoint.

Then:
A).- The system of equations (2.5), is equivalent to the single
equation: |
(P-B-JJu = f-g-j (2.6)
B).- (N(c,.x_)..Nq_c,_K,) is a conjugate pair for P-B-J;
C).- No—c'-x' is TH-complete for N(c_’x-’.;
D).- If S’CNQ_C,_K, is TH-complete for N(cux'r’ then for any

ueD‘. one has:

«C""+K"")u, wr=<g# j-f,w> Ywe€ ===> C""u = C""u and K""u = K""u (2.7)
Remark.- Also, the assumption that Q-C'-K' and C"+K" can be varied

independently, is tantamount to assume existence of solution of the

homaoenenus "adioint nroblem™:
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Glven any WeDz, find a weD2 such that

y (Q-C’-K")w = (Q-C'-K')W, while (C"+K")w = 0 (2.8)

Also, when ;ED , Is an approximate solution, the relations C".\: =
C".u and K"';x = K”'u. imply, depending on the choice of C" and K",
that some complementary boundary values, and values of the solution
and its derivatives are predicted exactly at the Interelement
boundaries X, even if the approximate solution is fully
discontinuous. For specific applications of this result, the reader

is referred to previous work, already cited (in particular, see [20]

for an_  extensive discussion of this point, In connection with..

ey
e B Ak
ke PRy

ordinax:; dif ferential equations).
3. APPLICATION TO DIFFERENTIAL EQUATIONS

The manner in which differential equations, Including systems
of such equations, are incorporated In the general setting of the
author’s Algebraic Theory of Boundary Value Problems has been
explained In several previous papers (see for example [20]). In the
brief explanation here presented, we follow a procedure Introduced
in [33], In which Sobolev épaccs are used locally.

Consider a region @ and for simplicity, assume the spaces of
trial and test functions, defined In ), are the same lincar space: D
(i.e., DaD‘aDz). Assume further, that functions belonging to D may
have jump discontinuities across some Internal boundaries whose
union will be denoted by ZI. For example, In applications of the
theory to finite element methods, the set £ would be the union of
all the interelement boundaries. To be specific, consider a linear
differential operator ¢ of order m and assume {Ql....,ﬂz) is a
partition of fl. More precisely, (Ql....,QE) is a collection of
disjoint open regions (the “elements”) of €, such that 0 is
contained in the closure of the union of (ﬂl,...,ﬂs). Then, one can
define D=Hm(ﬂx)e...eHm(QE). “where H"‘(n‘) is the Sobolev space of
order m, defined in Qx' In this case 2#-(ﬂ‘u...uﬂ£).

The definition of formal adjoint requires that a differential
0per:a_t9r £ and its formal adjoint 2.. satisfy the condition that
wlu-ug w be a divergence; i.e.:

o weu-uf w = V~(2(u.wj) (3.1)

e



Numerical Methods in Water Resources 9

for a suitable vector-valued bilinear function D(u,w). Then,
one defines bilinear functions B(u,w) and B(w,u) on 80 (see [35]).,
such that
B(u,w) - ﬁ'(u.w)xg(u.w)-g (3.2)

where, as It Is usual, transposes of blilinear forms are denoted by
means of a star. A basic property required of B(u,w) Is that for any
u which satisfies the prescribed boundary and Initial conditions,
B(u,w) is a well-defined linear function of w, independent of the

particular choice of u.

X(w,u), by
Hu,w) = =D (lul,w)ep, X(w,u) = D(u,lwl)ep (3.3)

where
[u)= u-u_, U = (u. +u)/2 (3.4)
An Important property of the bilinear function $(u,w) is that, when
the Jump of u Is specified, it defines a unique linear function of
w. Conslder the
initlal-boundary value problem with prescribed Jjumps

fus= fn. In Ql. for i=],...,E (3.5a)
where erHo(D). together with _

Blu,*) = gg on 80 (3.5b)
and

Hu,+) = J, ' onT (3.5¢)

Here, g, and ja are the linear functions defined by the (initial
and) boundary and Jjump conditions, respectively (see [20]). Then,
introducing the notation
. [
Pu,w> = T J‘n wfudx; Quw =Y J'n u? wdx (3.6a)
1 1 1
L ]
<Bu,w)> = J'aQB(u.'w)dx; <C u,w> = J'anG(w.u)dx (3.6b)

Quws = S Huwldx and K uw = JoK(w,uldx (3.6c)
the problem can be formulated by means of Equ. (2.6) and the results
of Section 2 can be applied. In particular, and depending on the
choice of K", Equ. (2.7) implies that if a TH-complete system of

weighting functions Is used, the ayverage of an approximate solution,



-

I3

10 Numerical Methods in Water Resources

yields an exact prediction of the values of the solution on the

interelement boundaries ZX. Applications and Illustrations of these
facts, were given in [4,6,7,20].

4. THE ALGEBRAIC EXTENSIONS

[ ]
As already mentioned, the operators £ and £ are understood in

a distributional sense, and since they are of order m, both [ Q wfudx

1
[ .
and J'nuz wdx are well defined for every i=l,...,E. However,
1

DcHo(Q). but the relation DcH'(Q) does not hold and when ueD, one
can only grant that 2ueH ™) and Z.WGH-m(Q). Thus, S wZfudx and
I u.’f wdx are not well defined for every ueD and weD. Thxs Section is
devotcd to present extensions 2 and 2. (the "algebraic extensions"),
of £ and 2 , respectively, for which J‘nw;!udx and J'nui.wdx are well
defined for every ueD and weD.

The "algebraic extension” :V_ corresponding to the distributional
operator £, Is defined to be the bilinear functional P-J. More
precisely, i Is defined by:

J' wéudx m ((P-J)u,w> (4.1)
which holds whcncvcr ueD and weD. Similarly, the algebraic extcnslon
corresponding to 2 Is defined to be the bilinear functional Q -K
je.:

~e [ ]

J"nuZ wdx = <(Q-K) u,w> (4.2)
which also holds when both u and w belong to D. These operator
extensions satisfy Green-Herrera formula [20]:

J'Qw;tudx - J'Qui.wdx B <(B-C.)u.w) "(4.3)

which holds whenever ueD and weD. This exhibits £ as thc formal
adjoint of E In a previous paper [33], it was shown that Z and :’..
are indeed extensions of the distributional operators £ and 2 ,
respectively, and examples of the application of the algebraic
extensions were given. The fact that é is indeed an extension of Z%£,
means that

J nw.“‘.udx = J‘Qwiﬂudx (4.4)

whenever the latter integral is defined.

.As a first illustration, let us consider the operator £ and its

algebraic extension, in the case when the distributional operator



Numerical Methods in Water Resources 11

£ad/dx, the region Q = (-1,1) and the partition of Q1 is made of two
subintervals: Qx- (-1,0) and ﬂza (0,1). Then z.l-d/dx. while
D(u,w)muw. Let the function u be essentially a Heaviside step
function (u=0 for =-1<x<0; and u=l for O0s=x<l), while w is taken
having different degrees of smoothness.
Case A.- weH'(Q), so that w is continuous.
i) In this case:
5t weudx = 5 ue'wix + ()]’ = SIS gx 4 wi) = wl0).  (4.52)
This result Is standard. In essence. lt corresponds to £u being a
Dirac's Delta Function.
i) Using the fact that D(u,w)auw, it is seen that

5! witudx = I fq weudx + (wiul) _ = w(0) (4.5b)
since [u]x_o-l. while w(0)=w(0), because w Is continuou;. Thuz,
Equ. (4.4) Is verified for this case.
Case B.- w has a jump discontinuity at x=0, so that weD but weH(Q).
1) J' w!udx is not defined.

i) J‘ixwiudx Is well defined and it Is still glven by (4.4b), except

that w(0)#w(0), so that
J’ilwiudx = w(0) (4.6)
where It s recalled that w(0)=(w(0.)+w(0-))/2.

As a szecond lllustratlon. replace ds/dx by d /dxz. in the
previous example. Then .‘t s £, while D(u, w)-wa-:—:- -ug: and proceeding
as before:

Case A.- weHz(ﬂ). so' that w is continuous, with continuous first
order derivative. '

i) In this case:

J‘ileudx = Iiluz.wdx + (wu'-uw')lil= J';w"dx - w'(l) = -w'(0) (4.7a)
where u' and w' stand for the derivatives of u and w, respectively.
This is a standard case. In essence, this result corresponds to u"
being the derivative of Dirac’s Delta Function, when u s a
Heaviside step unction.‘

[i) Using the fact that D(u,w)swu'-uw’, it is seen that:

I wiudx = I Jp wiudx + (Wlw'-w'lul)__ = -w'(0)  (4.7b)


http:2)(u.w).uw
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where the fact that w'(0)=w’(0), because w' Is continuous, has been

used. Again, Equs. (4.7) agree with Equ. (4.4).

Case B.- w' has a jump discontinuity at x=0, so that weD but
weH2(Q). '
Dr LwZudx is not defined.

i) f! wiudx is well defined and It Is still given by (4.6b), except

that Q'(O):w‘(O). so that
1 wiudx = -w'(0) (4.8)
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