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1. INTRODUCTION

Three of the most powerful numerical methods for partial differential equations are finite elements, finite differences
and boundary element methods. The foundations of each one of these methodologies, as originally formulated, was
unrelated. More recently, it has been recognized that there are many relations between them and that it is desirable
to develop foundations common to aJl of them. In this spirit, the author developed his Algebraic Theory of Boundary
Value Problems [1-5] which has led to what is at present known as the "Localized Adjoint Method".

The Localized Adjoint Method (LAM) is a new and promising methodology for discretizing partial differential
equations, which was proposed by the author [4] and is based on Herrera's Algebraic Theory of Boundary Value
Problems [1-5]. Applications have successively been made to ordinary differential equations, for which highly accurate
and efficient algorithms were developed [4,6-8], multidimensional steady state problems [9] and optimal spatial methods
for advection-diffusion equations [10-18]. More recently, generalizations of Characteristic Methods known as Eulerian-
Lagrangian Localized Adjoint Method (ELLAM), were developed [19,20] and many specific applications have already
been made [21-28]. Related work and additional applications are underway (see [29], for additional references).

In this paper the Localized Adjoint Method is briefly explained and some of the ideas are illustrated by means of
simple examples. In a companion paper, presented in this meeting [29], ELLAM procedures, which have been quite
successful for treating advection dominated transport, are discussed.

2. LOCALIZED ADJOINT METHOD

In the construction of approximate solutions there are two processes, equally important but different, that should be
clearly distinguished [20}. They are:

i) Gathering information about the sought solution; and

ii) Interpolating or, more generally, processing such information.

These two processes are distinct, although in many numerical methods they are not differentiated clearly. The
information about the exact solution that is gathered, is determined mainly by the weighting functions, while the
manner in which it is interpolated depends on the base functions chosen. Examples have been given for which these
processes are not only independent but, they do not need to be carried out simultaneously [20] (see also Section 4).

The fact that the two above mentioned processes have considerable independence, exhibit some of the severe limita-
tions associated with methods, such as the Galerkin method, in which base and test functions are required to be the
same. The conditions that test functions must satisfy in order to be effective for gathering information are, in general,
quite different to those that must be satisfied by base functions, in order to be effective interpolators.

The questions posed by the above comments are very complex and to explore them in all its generality is quite
difficult. Localized Adjoint Method is a methodology I have proposed [2-4], to carry out such analysis and develop new
algorithms using the insight so gained.

A first step is to have a procedure for exhibiting the information about the exact solution, contained in an approximate
one. The usefulness of this insight is two-fold: firstly, it can be used to develop weighting functions which concentrate
such information in a desired manner and secondly, such knowledge permits interpolating or, more generally, processing
the available information more effectively.

In the Localized Adjoint Method, the information about the exact solution contained in an approximate one, is
exhibited applying Herrera's Algebraic Theory of Boundary Value Problems. This approach is more direct than the
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Theory of Distributions. It is also more appropriate to carry out the analysis, when localized weighting functions are
used, as is the case in most numerical methods. In this respect, the Algebraic Theory allows simultaneous use of
discontinuous trial and test functions, something which is not pO68ible when the Theory of Distributions is applied.

3. VARIATIONAL FORMULATION IN TERMS OF THE SOUGHT INFOR.WATION
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Consider a region n and the linear spaces Dl and D2 of trial and test functions defined in n, respectively. Assume
further, that functions belonging to Dl and D2 may have jump discontinuities across some internal boundaries whose
union will be denoted by>:;. For example, in applications of the theory to finite element methods, the set >:; could be
the union of all the interelement boundaries. In this setting the general boundary value problem to be considered is one
with prescribed jumps, across >:;. The differential equation is

£u = fn, in n (3.1)

where n may be a purely spatial region or more generally, it may be a space-time region. Certa.in boundary and jump
conditions are specified on the boundary 8n of n and on >:;, respectively. When n is a space-time region, such conditions
generally include initial conditions. In the literature on mathematical modeling of macroscopic physical systems, there
are many examples oC initial-boundary value problems with prescribed jumps. The definition of Cormal adjoint requires
that a differential operator £ and its formal adjoint £°, satisfy the condition that w£u -u£ow be a divergence; i.e.:

w£u-u£ow = V.{Q(u,w)} (3.2)

Cor a suitable vector-valued bilinear function Q( u, w). Integration oC (3.2) over n and application of generalized diver-
gence theorem [30], yield:

i {wt.u -ut..w} dz = fan'R.8(U,W)dz + i'R.1;(U,W)dZ

where

.DB of

quite

ldbe

.The
e the
these
4).
mita-
e the
1eral,

na(u,w) = Q(u,w) '!!. a.nd nI;(U,W) = -[Q(u,w)].!!. (3.4)

Here, the square brackets sta.nd for the "jumps" across E of the function conta.ined inside; i.e., limit on the positive
side minus limit on the negative one. Here, as in what follows, the positive side of E is chosen arbitrarily a.nd then the
unit normal vector !!., is taken pointing towards the positive side of E. Observe that generally t.u will not be defined
on E, since there u a.nd its derivatives may be discontinuous. Thus, in this article, it is understood that integrals over
n are carried out excluding E.

In the general theory of partial differential equations, Green's formulas are used extensively [31] a.nd they can be
obta.ined decomposing the bilinear function na. Indicating, as it is usual, transposes of bilinears forms by mea.ns of a
star, the general form of such decomposition is:

na(u,w) = Q(u,w) '!!.= 8(u,w)-C.(u,w) (3.5)

where 8(u,w) a.nd C(w,u) are two bilinear functions, In general, 8(u,w) is associated with the prescribed boundary
values, while C"( u, w) ca.n only be evaluated after the problem has been solved a.nd is called the "complementary
boundary values" [20].

In a similar fashion, convenient formulations of boundary value problems with prescribed jumps, requires constructing
Green's formulas in discontinuous fields. For the case when the coefficients of .£: are continuous (discontinuous coefficients
have been treated previously [4]), the corresponding decomposition is easy to obta.in a.nd it stems from the algebra.ic
identity:

[Q(u,w)] = Q([u],tb)+Q(u,[w])
where for every function u,

quite
) new

[u] = u+ -U_, iI = (u+ + __)/2

while u+ and u- stand for the limits of u on the positive and negative sides, respectively. It yields

'R.I;(U,W) = .1(u,w) -K:(u,w)imate
1trate
~sing

(3.8)
with

.1(u,w) = -J?([u],tb)o.!!

.t"(w, u) = J?(u,[w))..!!
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Generally, the jump .J'( u, w) is prescribed, while K;-( u, w) arc part of the sought information and can only be evaluated
after the initial-boundary value problem has been solved and certaoin information about the average of the solution and
its derivatives on E, is known. Such information, is ca.Iled the "generalized averages".

The initial-boundary value problem with prescribed jumps, can be formulated point-wise, by means of Equation (3.1),
together with

8(u,.) = 98 and .7(u,.) = ja

Introducing the notation

4. DISCUSSION

d
£u = -';j;"

n* 

-VU) + Ru = 10, in n = (0,1)
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(4.2a)

.(Pu,w)= Iwr.udz; (Q.u,w)= lur..wdz (3.11a)
'1n 1n\

(Bu,w) = !anB(U,W}dZ; (C.u,w) = !anC(W,U)dz (3.116)

(Ju,w) = 1.7(u,w)dz and -..,*;:,,", (K.u,w) = I.t"(w,u)dz (3.11c)
11: J 11:

and defining the linear functionals f, g, j E D; by means of:

U,w} = 1 wfn dz; (g,w) = !anga(W)dz; U'W}=~h(W)dZ; (3.12)

"Herrera's variational formulation in terms of the sought infonnation", is written as

((Q. -C' -r)u,w) = (f -g -j,w}Vw E D2 (3.13)
The linear functiona.ls Q.u, C.u and K.u, supply information about the sought solution at points in the interior of the
region 11, the complementary boundary values at 8{} and the generalized averages of the solution at E, respectively, as
can be verified by inspection of Eqs. (3.11) and will be illustrated in the examples that follow.

In view of (3.13), when the method of weighted residuals is applied, an approximate solution U E DJ, satisfies:

(Q.-C.-K.)u,wa}=U-g_j,wO), a=l,...,N (3.14)
Since the exact solution satisfies (3.13), it is clear that:

((Q. -C' -K.)u,wO) = (Q. -C' -K.)u,wa), a = 1,...,N (3.15)



Attention will be restricted to the case when D and V are continuous, in which case the smoothness conditions implied
by conservation of mass and Fickian diffusion are:lated

l&nd

(4.2b)
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(4.4)

and

( dW ) du Q(u,w)=u D"J;""+Vw -wD"d;"
(4.5)
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Application of Eqs. (3.9), yields:

.ro(u,w) = -[u] (4.6a)

3.15)
mate

D~ + VW)!!j
du

C(w,u) = wD~~B(u,w) = u (4.7)

for Dirichlet data,
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(4.8)

for Neumann data and

dw
C(w,u) = -uD";j;!! (4.9)

when total flux is prescribed.
For ordinary differential equations it is easy to construct algorithms which concentrate all the information at internal

nodes [5]. The conditions to be satisfied by weighting functions are: £.w = 0 and C( w, .) = o. This latter requirement
implies the boundary conditions:

(4.1)

Jence
neral

4.2a}

by virtue of the assumed continuity of V and D.
A partition {O = Zo,ZI,...,ZE-I,ZE = I} is introduced, which is assumed to be uniform; i.e., Za -Za-1 = his

independent of o. It will be further assumed, that trial and test functions may have jump discontinuities at internal
nodes, only. This corresponds to taking E = {ZI,...,ZE-I}, in the general frarrjework presented in Section 2. On E,
the choice !l = 1 is convenient, because in this manner the positive side of E is the side that is determined by the sense
of the z-axis. Boundary conditions satisfied at 0 and I, can be Dirichlet, Neumann or Robin boundary conditions, but
they are left unspecified, since the following developments accommodate any of them.

The formal adjoint of the operator L:, as defined by (4.20), is:

from which .1 and K, are obtained by means of Eqs. (4.1). In Eqs. (4.6). as wherever deemed necessary, a bar is used
to make clear that the dot on top refers to the whole expression covered by the bar.

The definitions of the bilinear functions B( u, w) and C( w, u). depend on the type of boundary conditions to be
satisfied. They may be taken as:

to be satisfied wherever Dirichlet, Neumann or flux conditions a.re prescribed for the sought solution. The actual
construction of such weighting functions is very efficient when collocation is used [6]. In the case of algorithms for which
approximate solutions contain information about the exact solution at internal nodes, exclusively, the information about
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the first derivative must be removed. This is achieved ifK.l(W,.) = 0, at internal nodes. Thus, the weighting functions
must satisfy the additional condition [w] = 0, by virtue of Eq. (4.66).

In summary, the weighting functions that concentrate all the information in the values of the sought solution at
internaJ nodes satisfy

£.w=O, onn; C(w,.) =0, on8n={O,I}j [w]=O, onE (4.11)
These are CO test functions; for them the system of equations (3.15) reduces to:

(K.u,wa) = (K.i,wa), a = 1,...,N (4.12)
When the system of test functions {wI, wN} is TH-complete, Eqs. (4.12) imply tliat K.u = K.u, which in the
present case is equivalent to

t1(Zj)=U(Zj), j=1,...,E-1 (4.13)
where u( z) is the exact solution. Thus, the values of the sought solution are predicted exactly at internal nodes.

Here, as in what follows, the concept of TH.completeness is used. This concept was introduced by Herrera. in [32],
where a rigorous discussion of this question in an abstract Betting was presented, allowing considerable generality,
since the conclusions that were obtained, are independent of the order of the differential equations and the number
of independent variables involved. However, that discussion refers to symmetric operators and recent results for non-
symmetric ones, can be found in [33].

Observe that Eqs. (443) hold independently of the base functions used, because when deriving them, nothing was
assumed about such functions. Therefore, when the sys~m of weighting functions is TH-complete, Eqs. (4.13) hold
even if the system of test functions are fully discontinuous, or they violate the prescribed boundary conditions.

Let {c)°, c)1, ...,IE} be a system of baae functions which, for the time being, are assumed to be continuous (but
whose derivatives may have jump discontinuities at internal nodes), such that (for every Q = 1,... ,E) WO = 1 at node
1:0, while it vanishes at every other node. For the case when the prescribed boundary conditions are non-homogeneous,
a suitable representation of the approximate solution is:

E-l
U(Z) = UotO + UEtE + L Ujti(z). (4.14)

j=1
TH-complete systems which satisfy (4.11) have dimension E -1 [33]. Let us apply the system of equations (3.14),

using the weighting functions {wl,...,wE-I}, where {Wl,...,wi:-l} is a TH.complete system. Then any sollltion of
the resulting system has the property:

Uj=U(Zj), j=1,...,E-1
by virtue of (4.13). Thus, the exact values are predicted correctly, independently of the base functions used.

5. THE METHOD OF CELLS

Let us consider Eq. (4.20), in the case R = o. Keeping the same partition as before, let us denote by Zi+l/2
(i = 0, ..., E -1), the middle point of the intervals [Zi, Zi+1J. The decomposition of K.:

K.(w,U)=~(fD,U)+K.F(fD,U) :~~... ~ (5.1)
where

~(W,U)=U[D~]; C"(W'U)=-[W](D~) (5.2)
will be used in tbe sequel. Define the system of weighting functions {wt,... ,wE-!}, as the characteristic funclio.. of
each one of the subintervals ['a-I!"'a+!!'); i.e.,

1, %o-ln < % < %o+ln

0, elsewhere
WO(z) =

Then .c.w" = 0 and

KO(w,u) = 0 while KF(w,u) = (D~ -vu )dz 0+1/2,
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(K.u,wa) = (K.u,wa), Q = l,...,E-l (5.5)

In this case the system of weighting functions is not TH-complete and the equality K.u = K.u, does not follow.
However, the information supplied by the system of weighted equations, is concentrated at the internal nodes and refers

to the total flux D~ -Vu. Such system of equations containa E unknowns(D ~ -V U) , for Q = 0,..., E -1;
% a+l/2

and E -1 equations. Thus, further processing is required to obtain a system having a unique solution. This depends
on the boundary conditions to be satisfied. For Dirichlet boundary conditions, it is standard to use the relations

'D~ -Va' = D~ -VUa+l + ua + O(h2) (5.6)
dz ~', h 2

(4.13)
'.
in [32],

erality,
lumber
)r non-

a+l/~

to replace the E unknowns fluxes by only E -1 unknown values of the solution at the internal nodes {Ua, a =
1,..., E -I}. In this manner, an E by E system of equations is obtained. The author's Algebraic Theory of Boundary
Value Problems yields the same system of equations, if the trial function (4.14) is used, while Uo and UE are set to be
equal to the prescribed boundary values.

On the other hand, if the Dirichlet condition is replaced by a flux condition on the left boundary, a TH-complete
system of weighting functions is obtained, if the system defined by Eq. (5.3) is supplemented with the characteristic
function of the interval [zo, ZI/2]' Observe that due to Eq. (4.9), no additional unknown is introduced by this weighting
function. In this latter case, any approx.imate solution will yield the exact values of the flux at the inter-element
boundaries. In particular, if the nodal values of the approximate solution are introduced by means of Eq. (5.6), the
identity

ng was
3) hold

..UI 

(but

1t node
eneous,

(D~-VU ) =D~-Vio+l+Ua (5.7)
dz a+l/2 I. 2

will hold, because the fluxes at the inter-element boundaries ale predicted exactly by the approximate solution. This is
in spite of the fact that in this case, the values of the solution at the cell centers are predicted to order 1.2, only.

(4.14)

(3.14),
:tion of

(4.15)

Jons of

REFERENCES

1. Herrer&, I., -Bounduy Method.: An Algebraic Theory", Pitmu Adnaced Pnbli8hing Progr&m, London, 1984.
2. Herrer&, I., -Unified FormuI&tion of Numerical Method.. I Green'a Formulae ~r Oper&tora in Diacontinuoua Fielda", Numerical Method.

for P&rti&l Differenti&l Equations, 1, pp. 25-44, 1985.
3. Herrera, I., .Unified Approach to Numerical Method., Part 2. Finite Dements, Boandary Method., &nd its coupling", Numerical Method.

for Partial Differential Equ&tions, 3, pp. 159-186, 1985.
4. Herrer&, I, Chargoy, L., Alduncin, G., -Unified Approach to Numerical Methods. ill. Finite Differences ud Ordinary Diferential

Equations-, Numerical Method. for P&rti&! Differenu&l Eqn&tiou, I, pp. 241-258, 1985.
5. Herrer&, I., -Some unifying concepts in &pplied m&them&tia", ia: -ne Merging of Diaciplines: New Directiou in Pure, Applied, ud

Comput&tional M&them&tica". Edited by R.E. Ewing, K.I. Grog ud C.F. MuUn. Springer Verl&g, New York, pp. 79-88, 1986. (Invited
P&per.)

6. Herrer&, I., "The Algebraic Theory Appro&Ch for Ordinuy Di/fereatial Equwona: Highly Accnr&te Finite Differences", Numeric&!
Method. for Partial Differenti&! Equ&tiona, 3 (3), pp. 199-218, 1987.

7. Celi&, M.A., &nd Herrer&, I., -Solution of Gener&! Ordinary Di/fereaaal Equ&tiona Uaing The Algebraic neory Approach", Namerical
Methods for Partial Differenti&! Equ&tion., 3 (1) pp. 117-129, 1987.

8. Herrer&, I. ud Chargoy, L., -An Overview of the 'fre&tment of Ordiauy Differenti&! Eqn&tiona by Finite Differeaces", Pergamoa Preas,
Oxford, Vol. 8, pp. 17-19, 1987.

9. Celi&, M.A., Herrer&, I., ud Boulontae, E.T., -Adjoint Petroy-Galerkia Methoda for Mnlti-Dimenaional Flow Problema", ia: Fini.ie
Element An&!yai. in Fluid., T.J. Chung &nd Karr R., Eda., UAH P~ Huntsville AI&bamL pp. 953-958, 1989.

10. Herrer&, I., -New Method for Diffusive Trusport", in: GroundW&ter 110w ud Quality Modelling, D. Reidel Publilhing Co. pp. 165-172,
1988.

11. Herrer&, I., -New Approach to Advection-Domin&ted Flows ud Comp&rilon with other Methoda", in: Comput&tioaal Mechanica'88,
Springer Verl&g, Heidelberg, Vol 2, 1988.

12. Herrer&, I., "Localized Adjoint Methods: Applic&tion to &dvection domiD&ted 80"", in: Groundwater Muagement: Quutity &ad Qmality.
IAHS Publ. No 188, pp. 349-357, 1989.89.

13. Celi&, M.A., Herrer&, I., Bouloutaa, E.T., ud Kindred, J.5., -A New Numeric&! Approach for the AdYectiv~Diffuaioe 1'rusport
Equ&tion", Numerical Method. for Putial Differential Equ&tiou, 5 pp. 203-226, 1989.

14. Herrera., I., Celi&, M.A., Mutinez, J.D., "Localized Adjoint Method ae & New Approach to Advection Domin&ted Flows", in: Recent
Adv&nces in Ground-Wa.ter Hydrology, J.E. Moore, A.A. Zaporosec,S.C. C.&ll&nJ ud T.C. V&rney, Eds. Americu Institmteof Hydrology,
pp. 321-327, 1989.

15. Herrera, I., "Localized Adjoint Methods: A New Dilcretiz&tion Methodology", in: SIAM Conference on M&them&tical &nd Computa.tion&l
Issues in Geophysical Fluid ud Solid Mechuica. Fitzgibon (In Pr_) 1990.

16. Herrera., I., "Localized Adjoint Method. in Water ~urces Probleln8" , in: Computa.tion&! Method. in Surface Hydrolor,y, G. Gambolati,
A. Rinaldo and C.A. Brebbia., Eds., Springer-Verlag, 433-440, 1990 (Iavited p&per).

...347



17. Herrera, I., G. HerD&ndes. "AdvaDces OD the Numerical SimalalioD o{ Sleep Fronts", iD: Numerical Melhods {or 'naupor! aDd Hydrolopc
Procesaea, Vol. 2, M.A. Celia, L.A. FerraDd aDd G. Pinder Eda. of the Series DevelopmeDts in Water ScieDce CornputatioDaI MechaDica
PublicatioDs, Elsevier, Amsterdam Vol. 36 pp. 139-145, 1988.

18. Herrera, I., "AdvaDces in the Numerical SimulalioD of Sleep Fronla", iD: Finite Element Analysis in Fluids, T.J. Chnng aDd R. Karr,
Eds. UDiversily of Alabama Preas, pp. 965-970, 1989.

19. Celia, M.A., Ru_II, T.F., Herrera, I., and Ewing R.E., "Aa EuleriaD-LagrangiaD Localized AdjoiDt Method f~ the AdgeCtioD-DiIr~on
Equalion', AdvaDced Water Resources, Vol. 13 (4), pp. 187-206,1990.

20. Herrera, I., R.E. EwiDg, M.A. Celia aDd T.F. Ru-lI, "EuleriaD-LagraDgiaD Localized Adjoint Methods: The theoretical framework",
SIAM J. Numer. ADaI., 1992 (submitled).

21. Celia, M.A., KiDdred, J.5., aDd Herrera, I., "ConlamiDanl Tr&D8port aDd Biodegradation: 1. A Numerical Model for Reactive Tr&D8port
iD Porous Media', Water Resources Reaearch, 25 (6) pp. 1141-1148, 1989.

22. Celia, M.A aDd ZismaD S., "EuleriaD-LagraDgian Localized AdjoiDt Melhod for Rea.:live TraDsport in GrouDd_ter", iD: ComputatioDal
Melhods iD Subsurface Hydrology, Eda, G. Gambolali el aI., ComputatioDaI MechaDia Publications, Springer Verlag, pp.383-390, 1990.

23. Herrera, I., R.E. Ewing., "Localized AdjoiDt Melhods: Applicalions to Mulliphue Flow Problems', in: ProceediDga Fifth Wyoming
Enhanced Oil Recovery Symposium, Msyo 10-11,1989, EDhaDced Oil Recovery Inslitute, University ofWyomiDg, pp. 155-173,1990.

24. Ewing, R.E.,"Operator SplitliDg aDd EuleriaD-LagraDgiaD Localized AdjoiDt Melhods for Mulliphaae Flow", iD: MAFELAP, Proc. of the
CoDf. on Maths. of FiRite ElemeDIa aDd Applia. (MAFELAP), 1990.

25. Ewing, R.E. aDd Celia. M.A., "Multiphaae Flow Simulation in GrouDdwater Hydrology aDd Petroleum EngineeriDg', iD: ComputalioDaI
Melhods iD Subsurfa.:e Hydrology, Eds, G. Gambolali el aI., Compulalional MechaDia Publications, Springer Verlag, pp. 195-202, 1990.

26. ZismaD, S., "Simulation of coDlaminant transport in groundwater systeml ~Dg EuleriaD-LagrangiaD localilal adjOiDt melhods', MS
Thesis, Dept. Civil ED g., MIT, 1989.

27. Russell, T.F., "EuleriaD-LagraDgiaD Localized AdjoiDI Met.oos for AdvectioD-DomiDaled Problems', iD: PrOto 13th DuDdee BieDDial
COD!. on Numerical ADalyais, Research Noles iD Malhematics Series, PitmaD, to appear, 1989.

28. NeumaD, S.P., "AdjoiDt Petrov-GalerkiD Method with Optimum Weight aDd IDterpolalioD FuDCtions DefiDed OD Multi-dimeDaioDaI
Nested Grids', iD: CompntatioDaI Melhods iD Surface Hydrology, Eda G. Gambolali et aI., ComputatioDaI Mechwca Publications,
SpriDger Verlag, pp. 347-356, 1990.

29. Henera, G., I. Herrera, G. GaliDdo aDd L. Chargoy, "ELLAM Procedures for AdvectioD-DiffuaioD Equations', iD this voIDme, 1992.
30. AIleD, M.B., Herrera, I., PiDder, G.F., "Numerical ModeliDg iD Science aDd EDgiDeeriDg', A Wiley-IDteracieDce PublicatioD, Jon Wiley

aDd SoDS, 1988.
31. Lions, J.L. and MageDes, E., "NoD-HomogeDeous BouDdary Value Problems aDd Applications", SpriDger-Verlag. New York, 1972.
32. Herrera, I., "BouDdary Methods: A criteriOD for completeD--, Proc. NalioDaI Academy of ScieDcea, USA, 77 (8), pp. 4395-4398, 1980.
33. Herrera, I., "On Operator Extensions: The Algebraic Theory Approach', Seventh IIMAS-UNAM Conference ~ Applied Mathematia,

Oaxa.:a, Mexico, Spring-Verlag, 1992 (To appear).

~48


