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The Localized Adjoint Method (LAM) is a new and promising methodology for discretizing partial differential equations
which has been introduced by I. Herrera. It is based on Herrera's Algebra.ic Theory of Boundary Value Problems
[1-5], as it is expla.ined in a companion paper [6]. Applications have successively been made to ordinary differential
equations, for which highly accurate algorithms were developed [4,7-9], multidimensional steady state problems [10],
and optimal spatial methods for advection-diffusion equations [11-18]. More recently, the development of generalizations
of Characteristic Methods, known as Eulerian-Lagrangian Localized Adjoint Method (ELLAM), was initiated [19,20].
Already many specific applications have been made [21-26].

The numerical solution of the advective-diffusive transport equation is a problem of great importance because many
problems in science and engineering involve such mathematical models. When the process is advection dominated the
problem is especially difficult. The methods ava.ilable derive from two ma.in approaches: Eulerian and Lagrangian, or
Eulerian-Lagrangian, when such approaches are combined.

When applied to advection dominated transport, the salient features of approximations which derive from an Eulerian
approach, may be summarized as follows; (i) Time truncation error dominates the solutions, (ii) Solutions are charac-
teriz'?d by sigr,ificant numerical diffu;,c: and some pnase errors, (iij) The Courant number (Cu == ~) is ger:erally
restricted to be less than one, and sometimes much less than one. Among such procedures, one may distinguish Optimal
Spatial Methods (OSM), in which an accurate solution of the spatial problem is developed. HoweveI, other Eulerian
methods can be deveJoped that perform better than OSM approximations [27-29], although they still suffer from severe
Courant number limitations.

Lagrangian procedures profit from the structure of characteristic curves, treating the advective component by a
characterjstic tracking algorithm (a Lagrangian frame of reference), and the diffusive step is treated separately using a
more standard spati.al approximation. These methods have the significant advantage that Courant number restrictions
of Eulerian methods are a.Ileviated because of the Lagrangian nature of the advection step. Furthermore, because the
spatial and temporal dimensions are coupled through the characteristic tracking, the influence of time truncation error
is greatly reduced. When the procedure is purely Lagrangian, a moving grid has to be used, but the grid is fixed when
the approach is Eulerian-Lagrangian, as in the Modified Method of Characteristics (MMOC). .

Localized Adjoint Method (LAM) has been applied in space-time, in an Eulerian-Lagrangian manner to problems of
advective-diffusive transport, using specialized test functions. These functions locally satisfy the homogeneous adjoint
equation within each element. The method so obta.ined is the Eulerian-Lagrangian Localized Adjoint Method (ELLAM)
[19,20]. The ELLAM approach, in addition to providing a unification of characteristic methods (CM's), supplies a
systematic framework for incorporating boundary conditions in C M approximations. Any type of boundary conditions
can be accommodated in a mass conservative manner. This seems to be the first complete treatment of boundary
conditions in Eulerian-Lagrangian methods, that leads to a conservative scheme for the general transport equations [19].

Up to now two different classes of test functions have been used in ELLAM: bilinear functions (Bilinear-ELLAM)
[19,20,30,31] which are defined as "chapeau" functions at level time tn+l, and constant along characteristic curves. In
addition, the application of test functions which are defined as box functions at level t"+I, and which are also constant
along characteristic curves (Cell-ELLAM), is under investigation [32,33]. In this paper these approaches are briefly
explained.discussion of the relative merits of these approaches, is presented.
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FIGURE 1. Decomposition of 0 into the 8ubregiona oj I i = I, ,E.

The following properties of the ELLAM Cells method are worth mentioning: it is directly applicable to the case of
variable coefficients; the formulation is simpler than the Bilinear-ELLAM, both in the interior and at the boundaries.
This is especia.lly relevant in complicated problems, such as Petroleum Engineering.

2. ADVECTION-DIFFUSION EQUATION

Z E nz = [0.1], t E 0, = [tn,tn+l], (z,t)en=nzxnt,
subject to initial conditions

u(x,t") = u"(x), (2.2)

and suitable boundary conditions, at x = 0 and I. Here, jt is assumed that V > O. The following development accom-
modates any combination of boundary conditions. The manner in which the region n and the initial conditions were
chosen in Eqs. (2.1) and (2.2), is convenient when applying a step by step solution procedure. Observe that in this case
the adjoint operator .co is:

.OW 0 ( ow) OW r. w = D- -V -+ Rw. (2.3)

ot OZ OZ OZ

It will be useful to decompose the boundary oil into 8011, 0/11, on 11 and on+111, which are defined as the s~bsets of 11 for
which (z,t) satisfies z = O,z = l,t = tft and t = t"+I, respectively. The initial conditions, given by Eq. (2.2), are to be
satisfied at 0,,11 and the boundary conditions perta.in to 8011 U 0/11. These latter conditions can be of Dirichlet (u = ua),
Neumann (D~D = q) or Robin type, or a combination of them. Here, it is understood that D = 1 at z = I and D = -1
at z = O. For the time being, only Dirichlet conditions will be considered, although the methodology accommodates
any of them.

In addition, a partition of [0, ij is introduced and the region 11 is decomposed into a collection of subregions 111,. .., I1E,
each one associated with the node of the same subindex, as shown in Fig. 1. These subregions are limited by space-time
curves Eo whose positions at any time t (tn ~ t ~ tn+l) are given by the functions C1o(t) and it will be assumed that
discontinuities exclusively occur on these lines. Thus for the general notation introduced in [6], in this volume, E = UEo
in this case. Clear]y, the velocity of propagation Vt of each one of these lines is dC1o/dt.

The bilinear function C( w, u) is defined by:

C(w,u) = -uw on 0"+111, C(w,u) = 0 on anl1, ((2.4a)
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In this Section, we consider the one-dimensional transient advection-diffusion equation, in conservation form:



(2.4b)

or if the flux (D~ -Vu)n (= F) is prescribed:

While the function K,(w, u) is equal to the sum:

K,(w,u) = K,°(w,u) + K,l(W,U),

with K,° and K,1 defined by:

X:O(w,u) = (1 + Vi)-1/2U

e 

case oflnda.ries.

X;l(W,U) = -(1 + Vi)-1/2[W]D~ (2.6b)

where [u] = u+ -u_, U = (u+ + u_)/2 and u+, u- represent the limits of u as E is apJ\roached from the positive and
negative sides, respectively. In what follows, the positive side of E is defined to be the on'e towards which the vector N,
perpendicular to E, points to. The direction of this vector is chosen arbitrarily.

Observe that C"(u,.) = 0 on an!}, no information is sought at t = tn, which is natural for an initial value problem.
Observe also that Ko and X;l are defined so that are associated with the value of the sought solution u and with the
derivative of the sought solution au/ax, respectively.

LAM procedures use "Herrera's variational formulation in terms of the sought information", as is explained in [6].
For this case it is:

(2.1)
(Q" -C" -K")u, w) = (f -9 -j, w) V we D2,

where D2 is a suitable set of weighting functions,

(Q"u,w) = 1 u!"wdJ1,

.,-+1

(C.u,w) = r C(w,u)dz +1 ;
Jan+1 I"

(K.u,w) = 1K(W,U)dll = 2-:::1 K(w,u)dll
1: a to

t"+1
[C(w,u)}~=ldt + f

it"
(2.2)

t a.ccom-

ms were
this case

{C(w,u)}r=odt,

(2.8c)

and
(2.3)

of n for.re 
to be

u = ua),
n =-1rnodates

(/,w) = f wfnd,jl; (g,w) = f ga{w)d,jl; (j,w) = fjt(w)d,jl. (2.9)
In lan lt

Here, d,jl is used to denote the element of area (space-time) in n and of length in any of the space-time curves which
constitute >:::. The functions ga and jt are defined by means of the boundary and jump conditions, respectively, as
explained in [6].

It is convenient to decompose the bilinear functional K. into the contributions which stern from >:::°' for Q = 1,..., E.
If we define

...,nE,ace-time

1ed that: 
= UEo

(K;u,w) = i U [D~] -[w]~- (V -VI;)U
a .0

where, the subindex Eo means that the line integral is to be carried out on Eo (note that dt = (1 + Vf)dJl), then

E
R'. -'""' } " ( '-L., \0' ,

0=1
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(2.4a)



The linear functiona.ls (J.u, C.u and K.u, supply information about the sought solution at points in the interior of the
region n, the complementary boundary values at on and the genera.lized averages of the solution at E, respectively.

It is convenient, a.lso, to decompose the bilinear functional C. into the contributions from 8"n,8"+ln,aon, and a,n.
In this manner one can write:

C. = C:+1 + Co + C/., (2.12)

where

(C:+1u,w) = -l'(UW)I=I~+'dz, (2.13a)

( C'

1 ,"+1 ou,w) = -

I"

Ift+1

(Cju,W) = -f
=0 Jlft

The functionals (2.9) for equation (2.1) are: (j, w) = 0 and g, defined by 9 = gft + go + g/, with
,

(gft, w) = -1/ uftw(t")dz,

D~-VU )8z
8u )D- -Vu
8%

dt, dt. (2.13b)w w

s=l

,n+!
(9', w) = -f

z=o l,n

The "varia.tional formulation in terms of the sought information" for the transient advection-diffusion equation in
space-time is obta.ined by substituting (2.3) to (2.6) in (2.7). This formulation supplies a firm basis for analyzing the
information that is conta.ined in an approximate one. In particular it yields guidelines for developing weighting functions
which concentrate the information in a desired manner. A possibility is to eliminate all the information in the interior
of each one of the subregions {}' (i = 1,. .., E).

In this later case:

1"+1 {(go,w) = _1 UD~}I" ax dt, dt.
~=/

Ow 0.c.w=-~-&

Wi = 0, on z = 0 and z =

When the support of wi does not intersect lateral boundaries, condition (2.15) is automatically fulfilled. When this is
not the case, to satisfy (2.15), special functions for each type of boundary condition must be constructed, although the
construction of these test functions may be complicated, in general.

Quite satisfactory results in the treatment of boundary conditions have been reported, even without the use of
the specialized test functions mentioned above. Indeed it has been concluded the ELLAM approach provides a sys-
tematic and consistent methodology for proper incorporation of boundary conditions. This allowed to construct an
overall approximation that possesses the conservative property, thereby assuring conservation of mass in the numerical
solution [19].

For the implementation of ELLAM procedures two different classes of test functions have been used up to now:
bilinear functions (Bilinear-ELLAM) [19,20,30,31], and more recently constant weights [32,33], which yield an ELLAM
"cells" or "control volume" method.
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a.nd Eq. (2.7) becomes ((C* + K*)u,1;..) = (g -I,lL'). Different choices of test functions that satisfy (2.15), lead to
different classes of approximations, including optimal spatial methods and general characteristic methods [20]. The
classification of numerical methods into OSM and CM, can be related to the speed of propagation of discontinuity
lines. If time independent soluUons of Eq. (2.15) are chosen, as weighting functions, then VE = 0, necessarily, and one
is led to optimal spatial methods, to which several papers have been devoted, using the LAM approach [12-18]. On the
other hand, if the lines Ej, satisfy VE = V, characteristic methods are obtained, Eulerian Lagrangian Localized Adjoint
Methods (ELLAM) use this latter approach [19,20,30-33]

An important advantage of the ELLAM approach, is due to its ability to deal with boundary conditions, effectively.
By inspection of Eq. (2.4b), it is seen that weighting functions which eliminate the information at lateral boundary of
n, (i.e., C( wi,.) = 0), must fulfill:



3. BILINEAa.-ELLAMerior of the

>ectively.
1, a.nd a,n. This approach wa.s first presented by the ELLAM Group in [19,20). For simplicity only the ca.se of constant coefficients

will be expla.ined here, although the ca.se of variable coefficients ha.s already been implemented (see for example [34]).
For lhe ca.se when lhe cocfficients of Eq. (2.1) are conslant, the source term Yanishe!; (R = 0) and the partition is

uniform, the test functions used were:(2.12)
,"+1 -t ) ni ~+V ., (Z,t e~'1

~z ~z
' "+1+V--='Wi(Z,t) =

(2.130) Zi+J -Z

~Z (z,t) e n;
.:lz

dt. (2.136)
.0 all other (z,t)

where n; and n~ are as is shown in Fig. 1. Such weighting functions satisfy £.wi = 0 and are continuous (i.e [w] = 0),
but have discontinuous first derivatives (i.e.; [dwjdz] ~ 0). In view of Eqs. (2.6), it is clear that for this choice, ,t"l( w, u)
vanishes identica.lly while

K,°( Wi, u) = (1 + V£)-1/2U
(2.14a)

(2.146)

8WiD-
8%

This latter expression does not vanish on three lines of discontinuity, at most: Ei-l' Ei and Ei+ 1. Thus

i+l
(K"u, wi) = L (Kju, wi)

j=i-l
'quation in
uyzing theg 
functions

he interior

The jumps are

1 -2 1
[~]i-l=X;-; [~]i=~Zj [~]i+l=X;-' \""')

When the region Oi does not intersect the latera.! boundaries, the boundary tenns (2.46) and (2.136) vanish and the
vari ation a.! principle in tenns of the sought information (2.7), reduces to (C:+1 + K')u, w) = (gn -j, wi):

-",+1 1"+1 ",+1 .

f U(O'i-l(t),t)dt -2 f U(O'i(t),t)dt + f U(O'i+l(t),t)dt
it" it" it" "

(2.15)

1

%;+1 D

{%;-1 U(X,tn+l)Wi(X,t"+l)dx -A;

i), lead to
[20]. The
continuity
i, and one
8]. On the
~d Adjoint

=1~:+, u(x,/ft)W'(Z,/n)dz + f Inw'dzdl, (3.5)
Z.-I in

where the unknowns have been collected in the left-hand member of the equation while the data is included in the right
one. Reca.ll that 0',(/) is describing the characteristic curve E" so that the integrals where they appear are integrals
along the characteristics.

Notice that the unknown function u(z, t) has not yet been approximated by any specific functional form. The integrals
that appear in this equation may in fact be approximated in many different ways. Different approximations of these
integrals lead to different CM algorithms reported in the literature. In a.ll of these, the integrals are approximated in
terms of nodal values of u at the discrete time levels ,n and ,n+1, so that the unknowns in the equation ultimately
correspond to nodal values at time ,n+1. For example, piecewise linear spatial interpolation of u at time levels tn and
tn+l, coupled with a one-point (at t = ,n+l) fully implicit approximation to the temporal integral, leads to the modified
method of characteristics (MMOC) of Douglas and Russell [35]. Further details of the derivations are given in [19].

When a region n' intersects the inflow boundary, several cases can occur. As an example, we discuss the case
illustrated in Fig. 2. Then, the equation ((C:+1 + KO)u, w) = (gn -I, w'), becomes:

",+1 ,~+I
i. u(O"-I(t),t)dt -21.

.-1 .

~ffectively.)undary 
of

(2.16)

hen this is
:hough the

the use of
des a sys-
1struct an
numerical

U(O'i+l(t),t)dt}

l '~+1 u(t1;(t),t)dt + .

'.+1

P to now:
n ELLAM
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FIGURE 2. Case when the support of the bilinear weighting function wi intersects the inflow boundary.

The integrals along characteristics appearing in Eq. (3.6), can again be evaluated by means of a fully implicit approxi-
mation. However, approximation of the last term in the left side of Eq. (3.6) must be handled with special care, to obtain
an algorithm with satisfactory properties. If we simply discretize the unknown diffusive boundary flux along the time
direction, the discretization will be unsatisfactory for large Courant number Cu = V 6t/ 6z, since many characteristic
lines will be crossed. Thus, instead, one can evaluate the contribution to the integral of the term containing u(O, i),
since this is Dirichlet data, and transpose it to the right side of the equation. The remaining part of that integral, can
be approxjmated as it is indicated next:

{::-IWiD~(O,t)dt=f (%;+\wi~(Z,t"+1)dz+O(6t2) (3.7)
1,;+\ 1%;-1

Approximations similar to (3.7) were proposed by Russell [30], although the derivation presented here, is more direct,
and have been used satisfactorily in numerical applications [19,30,31]. Recently, Wang et al. [31], have carried out a.n
error analysis of several approximations of this kind. Neumann and flux boundary conditions, prescribed in the inflow
boundary, can be bandied in a similar fashion [19,30,31].

For outflow boundary conditions of Dirichlet type, the outflow boundary contributions vanish for all the test functions.
This is due to the fact that a.ll the weighting functions vanish in the cha.racteristic EE, which passes through (ZE, t"+l),
and beyond it. Also, the system of equations tbat is obtained in the manner expla.ined above, is closed, because UE+l
is datum. If additional information is desired in the outflow boundary, it can be obtained applying procedures which
amount essentially to post-processing.

Neumann or flux conditions, imposed in the outflow boundary, are more complicated to deal with (see [19]), when
this approach is used. This is in contrast with the method ELLAM cells (or control volume), which is explained in
Section 4.

~
~

4. ELLA M CELLS

Keeping the same notation as in the last Section, a notation which is fairly usual for the cells method is introduced.
Writing Zi+1/2 = Zi+ Az/2, the subintervals [Zi-1/2,Zi+l/2] (with i = l"",E-l), [ZO,ZI/2] and [ZE-l/2,ZE], will
be the "cells", while the points {zo,.." ZE} will be the cell "centers", Notice that the first and the last cells are
half-length, Assuming R = 0, in Eq. (2.1), the test functions to be used, regardless of whether the coefficients are
constant or variable, are:

1, if (z,l) E ni

,0, if(z,t)tni
where the regions n' are limited by the curves ~i-l/2' ~i+l/2 (i = 1,..., E -1) and the boundaries of the space-time
region n, as illustrated in Fig. 3.

(4.1)Wi(Z, t) =
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, tn+l),
e Un+lE
which

1Z:+1/2 f
=. u(z, tn) dz + J{] /0 dz dt. (4.4)

z.-1/2 0

where the unknowns have been collected in the left-hand member of the equation, while the data was left in the right
one.

Eq. (4.4) is similar to (3.5). In it, ihe unknown function has not yet been approximated by any specific functional
form and the integrals that appear there can be approximated in many different ways. As in Section 3, different
approximations of these integrals lead to different algorithms. To be specific, the integrals over characteristics will be
approximated by means of a fully implicit approximation. Thus:

jft+1 lJ l jft+1
lJ -( lJ )nT' -.- u u u au

f D-lJ (O'i-l/2(t),t)dt -D- lJ (Ui+l/2(t),t)dt = D-lJ -D-
lJJ,ft Z 1ft Z Z i-l/2 Z i+l/2,

Regarding the integral of u at time tn+l, there are also several possibilities for approximating it. The simplest is1Z;+1/2 u(z,tn+l)dz=u~+16z+0(6z3) (4.6)

z.-1/2

However, the numerical experiments carried out thus far, indicate that the use of Eq. (4.6), produces too much numerical
diffusion. A more refined option is:1Z;+1/2 : I

z.-1/2

, when

ned in

..+1

~t

(4.5)

duced.
::-}, will
115 are

lts are

(4.7)
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FIGURE 3. Space-ti~ support of the weighting function wi Cor the ~thod of cells.

For this case the weighting functions have continuous normal derivative everywhere, although the function it self
is discontinuous on the "characteristic" curves 1;, passing through the boundaries of the cells. Therfore X:-O( w, u) = 0,
by virtue of Eq. (2.6a), and all the information that is gathered on 1;, concerns the first derivative of the solution,
exclusively. In addjtion VI: = V.

When the subregjon W does not intersect the lateral boundaries oC the entire region n, ,t"l(wi,u) does not vanish
identically in two lines of discontinuity, at most: 1;i-I/~ and 1;i+I/~' There:

[wJI: = 1; [wJI: 1 = -1. (4.2)
.-1/2 .+1 2

Replacing Eqs. (4.2) into (2.6b), it is obta.ined

,t"1(W,U)I:;tI/2 = %(1 + V~)-I/~~. (4.3)

Hence, the variational principle in terms of the sought inCormation «(C:+1 + J{8)U, w) = (gn -f, wi), becomes:
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t"

XE-1 "E-"'2 A[a L

FIGURE S. Space-time support of the weighting function wE
for Neumann and flux conditions at the inflow boundary.

FIGURE 4. Case when the support of the weighting function
Wi for the cells method intersects the inflow boundary.

When the region 0; intersects the inflow boundary, procedures similar to those described in Section 3, must be
applied. As an example, consider the equation associated with node z;, illustrated in Fig. 4. This is:1%'+1/2 {1,"+1 8u 1,"+1 8u }~;-1/2 u(z,t,,+I)dz + D ':-1/2 az(q;-1/2(t),t)dt -1:+1/2az(Q;+1/2(t),t)dt

(4.8)

,"i ;-1/2 + .

':+1/2

Observe that for this case (DirichJet data), (gO + g/, wi) = 0 by virtue of Eq. (2.14b), since awi lax = O. The treatment
of the integ-ral over the boundary x = 0 requires some care. As was the case for Eq. (3.6), the crossing of characteristic
curves must be a.voided when approximating such integral. The term conta.ining u(O, t) is known and can be transposed
to the right-hand side of the equation. The rema.ining one, can be approximatcd in essentia.JJy the same manner that
\\'a.s done for Eq. (3.6); i.e. 1,0 1/2 11 D1$'+1/2 11

0'- D~(O,t)dt = V ~(z,t"+l)dz + D(At') (4.9)
';+1/2 $;-1/2

Although the discussion here has been restricted to Dirichlet boundary conditions, similar procedures can be applied
to Neumann and flux conditions.

For outflow boundary conditions of Dirichlet type, the outflow boundary contributions vanish for all the test functions.
This is due to the fact that all the weighting functions vanish in an interval nei~hboring ZE = I. Also, the system of
equations that is obtained in the manner explained above, is closed, because UE+ is datum. .

To treat outflow Neumann or flux conditions, it is necessary to incorporate UE+l, as an additional unknown. To
this end, it is convenient to add one more weighting function, whose support nE is half the size of the other ones, as
illustrated in Fig. 5, to close the system of equations.
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