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1. INTRODUCTION

The Localized Adjoint Method (LAM) is a new and promising methodology for discretizing partial differential equations
which has been introduced by I. Herrera. It is based on Herrera’s Algebraic Theory of Boundary Value Problems
[1-5], as it is explained in a companion paper [6]. Applications have successively been made to ordinary differential
equations, for which highly accurate algorithms were developed [4,7-9], multidimensional steady state problems [10),
and optimal spatial methods for advection-diffusion equations [11-18]. More recently, the development of generalizations
of Characteristic Methods, known as Eulerian-Lagrangian Localized Adjoint Method (ELLAM), was initiated [19,20).
Already many specific applications have been made [21-26).

The numerical solution of the advective-diffusive transport equation is a problem of great importance because many
problems in science and engineering involve such mathematical models. When the process is advection dominated the
problem is especially difficult. The methods available derive from two main approaches: Eulerian and Lagrangian, or
Eulerian-Lagrangian, when such approaches are combined.

When applied to advection dominated transport, the salient features of approximations which derive from an Eulerian
approach, may be summarized as follows: (i) Time truncation error dominates the solutions, (ii) Solutions are charac-
terized by significant numerical diffusior and some phase errors, (iii) The Courant number (Cu = YZ‘%!') is gererally
restricted to be less than one, and sometimes much less than one. Among such procedures, one may distinguish Optimal
Spatial Methods (OSM), in which an accurate solution of the spatial problem is developed. However, other Eulerian
methods can be developed that perform better than OSM approximations [27-29], although they still suffer from severe
Courant number limitations.

Lagrangian procedures profit from the structure of characteristic curves, treating the advective component by a
characteristic tracking algorithm (a Lagrangian frame of reference), and the diffusive step is treated separately using a
more standard spatial approximation. These methods have the significant advantage that Courant number restrictions
of Eulerian methods are alleviated because of the Lagrangian nature of the advection step. Furthermore, because the
spatial and temporal dimensions are coupled through the characteristic tracking, the influence of time truncation error
is greatly reduced. When the procedure is purely Lagrangian, a moving grid has to be used, but the grid is fixed when
the approach is Eulerian-Lagrangian, as in the Modified Method of Characteristics (MMOC). )

Localized Adjoint Method (LAM) has been applied in space-time, in an Eulerian-Lagrangian manner to problems of
advective-diffusive transport, using specialized test functions. These functions locally satisfy the homogeneous adjoint
equation within each element. The method so obtained is the Eulerian-Lagrangian Localized Adjoint Method (ELLAM)
[19,20]. The ELLAM approach, in addition to providing a unification of characteristic methods (CM’s), supplies a
systematic framework for incorporating boundary conditions in CM approximations. Any type of boundary conditions
can be accommodated in a mass conservative manner. This seems to be the first complete treatment of boundary
conditions in Eulerian-Lagrangian methods, that leads to a conservative scheme for the general transport equations [19].

Up to now two different classes of test functions have been used in ELLAM: bilinear functions (Bilinear-ELLAM)
[19,20,30,31] which are defined as "chapeau” functions at level time t"*?, and constant along characteristic curves. In
addition, the application of test functions which are defined as box functions at level ¢"+!, and which are also constant
along characteristic curves (Cell-ELLAM), is under investigation [32,33]. In this paper these approaches are briefly
explained.discussion of the relative merits of these approaches, is presented.
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Figure 1. Decompesition of (7 inio the subregions ', i=1,...,E.

The follewing properties of the ELLAM Cells method are worth mentioning: it is directly applicable to the case of
variable coefficients; the formulation s simpler than the Bilinear-ELLAM, both in the interior and at the boundaries.
Thie is especially relevant in complicated problems, such as Petroleum Engineering.

2. ApvEcTioN-DIFFUsioN EQuUATION

In this Section, we consider the one-dimensional transient advection-diffusion equation, in conservation form:

a ]
I:HE:—I:""E]";(ﬂ"a—zﬂvu)+ﬂu=f;}[1,f}1 in 2 (2:1)

zel=[01], tefM=[""), (rpe=0,x0,

suliject to initial eonditions

u{z A" = u"z), (2.7

and suitable boundary conditions, at = = 0 and /. Here, it is assumed that ¥V = 0. The following development accom.
modates any combination of boundary conditions. The manner in which the region {1 and the initial conditions were
chosen in Egs. (2.1) and (2.2), is convenient when applying a step by step solution procedure. Observe that in this case
the adjoint operater £° is:

. _ Ow @ duw dw
sz-ﬁ-a—l(ﬂﬂ:)—lﬁax+ﬂw. (2.3)

It will be useful to decompese the boundary 861 into &0, 8, 8,0 and 4101, which are defined as the subsets of {1 for
which (z,1) satisfies z = 0,z = [, = 1" and t = 1™*!, respectively. The initial conditions, given by Eq. (2.2), are to be
satizfied at .01 and the boundary conditions pertain to &1 &1, These latter conditions can be of Dirichlet (u = ug),
Neumann {D%-En = q) or Robin type, or a combination of them. Here, it is understood that n=latz = land n = -1
at z = 0. For the time being, only Dirichlet conditions will be considered, although the methodology accommodates
any of them.

In addition, a partition of [0, 1] is introduced and the region 0 is decomposed into a collection of subregions ©17,. ., , N5,
each one associated with the node of the same subindex, as shown in Fig, 1. These subregions are limited by space-time
curves I, whose positions at any time ¢ (1" < t < (™*') are given by the functions o,(t) and it will be assamed that
discentinuities exclusively occur on these lines, Thus for the general notation introduced in [6], in this volume, £ = UE,
in this case. Clearly, the velocity of propagation V¢ of each one of these lines is do,, fdt.

The bilinear function C(w, u) is defined by:

Clw,u) = —ute an fyegfl, Clw,u) =0 on 4.1, ) (2.4a)
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C(w,u)=w (Dg—:— - Vu) n on G2 U GN. (2.4%)

When the boundary conditions are Neumann, this definition must be modified to be:
C(w,u) = -u (D%‘:— + Vw) n

or if the flux (D% - Vu)n (= F) is prescribed:
w

C(w,u) = —uDo—n

While the function K(w, u) is equal to the sum:
K{w,4) = K%w,u) + K} (w, u),
with £° and K! defined by:

Ko(w,u) = (1+ Vg)'l/zft {[Dg—w] + (V- V}:)[w]}
1 2\-1/2 e
K'(w,) = ~(1+ V) [u]D (2.6)
where [u] = uy — u_, % = (uy + u_)/2 and uy, u_ represent the limits of u as T is approached from the positive and

negative sides, respectively. In what follows, the positive side of T is defined to be the one towards which the vector N,
perpendicular to I, points to. The direction of this vector is chosen arbitrarily.

Observe that C*(u,) = 0 on 0,9, no information is sought at t = t*, which is natural for an initial value problem.
Observe also that X% and K! are defined so that are associated with the value of the sought solution u and with the

derivative of the sought solution du/8z, respectively.
LAM procedures use “Herrera’s variational formulation in terms of the sought information”, as is explained in [6].

For this case it is:
(@ - C* - K*u,w) = (f - g - j,w)Vw e Dy,

where Dy is a suitable set of weighting functions,
(Qu,w) = / vl wdy,
n

tn+l tn#l

{C"u,w) =/ C(w,u)d:-}»/ {C(w,u)} o=t dt +/ {C(w,u)} =0 dt,
8,,.“ "

tn

(K*u,w) = /2 K(w,u)dp =" /E K(w,u)dp (2.8¢)

and
fyw) = /ﬂ wfody (g,w)= /mya('l’)dll: Gy w) = [2 je(w)dp. (2.9)

Here, du is used to denote the element of area (space-time) in § and of length in any of the space-time curves which
constitute I. The functions g3 and jgz are defined by means of the boundary and jump conditions, respectively, as
explained in [6).

It is convenient to decompose the bilinear functional K* into the contributions which stem from £,,fora = 1,...,E.

If we define .
(K2u,w) = / {u [Da‘”] [w]D -(V- Vz)fl} d
Ea Y

x
where, the subindex T, means that the line integral is to be carried out on I, (note that dt = (1 + V2)dy), then
E
K* =) K. @
a=1
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The linear functionals Q*u,C*u and K *u, supply informalion aboul the sought solution at points in the interior of the
region {1, the complementary boundary values at &0 and the generalized averages of the solution at I, respectively,

It is convenient, also, to decompose the bilinear functional € into the contributions from 8,81, 8,411, &1, and 811
In this manner one can wrile:

where

!
EU;+1".W}=—_/;Euwh..-+=d=. ! (2.13a)

o —j:m w{ (p:;‘:i » Vﬂ) }“ﬂ L - j:m w{ (Dg—: B Vu) }“‘ dt. (2.138)

The functionals {2.9) for equation (2.1) are: {j,w) = 0 and g, defined by ¢ = g4 + go + g, with

{
(gn w) = -f u (™ )dz, {2.14a)
D
ntl 1 gt
(go,wh = — /‘.. {uﬂg—z}#ﬂ dt, (g w) = = ‘L {HE%E}==,: dt. (2.14b)

The “variational formulation in terms of the sought information™ for the transient advection-diffusion equation in
space-time is oblained by substituting (2.3) to (2.6) in (2.7). This formulation supplies a firm basis for analyzing the
information that is contained in an approximate ene. In particular it yields guidelines for developing weighting functions
which concentrate the information in a desired manner. A possibility is to eliminate all the information in the interior
of each one of the subregions 0¥ (i = 1,..., E).

In this later case;

. Bw @ duw A DR,
ﬁw=-m'—a'—-:(ﬂm)—v?}-;+ﬂu—ﬂ,mﬂ (2,15)

ani Eg. (2.7 becomes ([C% + A%, w) = (g — fiw} Different choices of test functions that satsly (2.153], lead 1o
different classes of approximations, including optimal spatial methods and general characteristic methods (20}, The
lines. If tme independent solutions of Eq. (2.15) are chosen, as weighting functions, then Vg = 0, necessarily, and one
is led to optimal spatial methods, to which several papers have been devoted, using the LAM approach [12-18]. On the
other hand, if the lines &;, satisly V¢ = V, characteristic methods are obtained. Eulerian Lagrangian Localized Adjoint
Methods (ELLAM) use this latter approack [19,20,30-33)

An important advantage of the ELLAM approach, Is due to its ability to deal with boundary conditions, effectively,
By inspection of Eq. (2.4h), it is seen thal weighting functions which eliminale the information at lateral boundary of
i1, {ie., C{w',-) = 0), must fulfill:

w=0onz=0andz=1 (2.16)

When the support of w' does not intersect lateral boundaries, condition (2.15) is automatically fulfilled. When this is
not the case, to satisfy (2.15), special functions for each type of boundary condition must be constructed, although the
construction of these test functions may be complicated, in general.

Quite satisfactory results in the treatment of boundary conditions have been reported, even without the use of
the specialized test functions mentioned above. Indeed it has been concluded the ELLAM approach provides a sys
tematic and consistent methodalogy for proper incorporation of boundary conditions. This allowed to construct an
overall approximation that possesses the conservative property, thereby assuring conservation of mass in the numerical
salution [18].

For the implementation of ELLAM procedures two different classes of test functions have been used up to now:
Bilinear functions (Bilinear-ELLAM) [19,20,30,31], and more recently constant weights [32,33], which yield an ELLAM
“cells” or “control volume™ method.
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3. BiLINEAR-ELLAM

This approach was first presented by the ELLAM Group in [19,20]. For simplicity only the case of constant coefficients
will be explained here, although the case of variable coefficients has already been implemented (see for example [34)).

For the case when the cocfficients of Eq. (2.1) arc constant, the source term vanishes (R = 0) and the partition is
uniform, the test functions used were:

T -z g i
Az +V Az ' @ned
w(z,t)= zip-z2 g :
Az T v Az (.)€
.0 all other (z,1)

where £} and ) are as is shown in Fig. 1. Such weighting functions satisfy £*w* = 0 and are continuous (i.e [w] = 0),
but have discontinuous first derivatives (i.e.; [dw/dz] # 0). In view of Eqgs. (2.6), it is clear that for this choice, X1(w,u)
vanishes identically while

)

v’
| [D'a?]
This latter expression does not vanish on three lines of discontinuity, at most: Z;_;, I; and Z;4;. Thus
i i+l )
(K*u,w') = Z (K u,v')
J=i=-1
The jumps are
ol . few) o fes]
Oz |, , Az’ |09z),” Az’ [dz],, Az e

When the region ' does not intersect the lateral boundaries, the boundary terms (2.4b) and (2.13b) vanish and the
variational principle in terms of the sought information (2.7), reduces to ((Cr,y + K*)u,w) = (gn = f,0'):

1l n+l

/"’" u(z, " w'(z, 1" ) dz - A£5 {/‘ u(0i-1(t),t) dt - 2/ u(ai(t),t)dt +/ "(""“(t)")dt}

Ti-1

= / s u(z, ")w'(z, ") dz + / fow'dzdt, (3.5)
E Q

where the unknowns have been collected in the left-hand member of the equation while the data is included in the right
one. Recall that o;(t) is describing the characteristic curve I;, so that the integrals where they appear are integrals
along the characteristics.

Notice that the unknown function u(z,t) has not yet been approximated by any specific functional form. The integrals
that appear in this equation may in fact be approximated in many different ways. Different approximations of these
integrals lead to different CM algorithms reported in the literature. In all of these, the integrals are approximated in
terms of nodal values of u at the discrete time levels t" and 1**!, so that the unknowns in the equation ultimately
correspond to nodal values at time ¢"*1. For example, piecewise linear spatial interpolation of u at time levels t™ and
t"t1, coupled with a one-point (at t = t™*+1) fully implicit approximation to the temporal integral, leads to the modified
method of characteristics (MMOC) of Douglas and Russell [35]. Further details of the derivations are given in [19].

When a region §* intersects the inflow boundary, several cases can occur. As an example, we discuss the case
illustrated in Fig. 2. Then, the equation {(C},, + K™ )u,w) = (g - f,w'), becomes:

n+t il

Tit1 n+l
/ u(z, " )wi(z, ") dz - -f—z {/ u(a;-1(t), 1) dt - 2/ u(oi(t),t)dt + /‘ u(a;,.,(t),t)dt}

o . tia i .
+/‘. w' {Dg—;(o,t) - Vu(O,t)} dt = % {/P u(0,t)dt - /" , u(O,t)df} + /‘;fnw‘ dzdt

i+1 i+
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FiGURE 2, Case when the support of the billnear weighting function w' intersects the inflow boundary,

The integrals along characteristics appearing in Eq. (3.6), can again be evaluated by means of a fully implicit approxi-
mation. However, approximation of the last term in the left side of Eq. (3.6) must be handled with special care, to obtain
an algorithm with satisfactory properties. If we simply discretize the unknown diffusive boundary flux along the time
direction, the discretization will be unsatisfactory for large Courant number Cu = VA(/Az, since many characteristic
lines will be crossed. Thus, instead, one can evaluate the contribution to the integral of the term containing u(0,t),
since this is Dirichlet data, and transpose it to the right side of the equation. The remaining part of that integral, can
ke approximated as it is indicated next:

i
f' 'D—UJ gd =2 [ o8 o4y ds 4 0(ALY (3.1)
e, v s Oz

Approximations similar to (3.7) were proposed by Russell [30), although the derivation presented here, is more direct,
and have been used satisfactonly in numerical applications [19,30,31). Recently, Wang et al. [31], have carried out an
error analyvsis of several apprt‘-xlma?iuns of this kind. Neumann and flux boundary conditions, preseribed in the inflow
boundary, can be bandied jn a similar fashion [19,20,31)

For outflow boundary conditions-of Dirichlet type, the outflow boondary contribulions vanish forall the test functicas.
This is due to the fact that all the weighting functions vanish in the characteristic Tg, which passes through (zg, ("**),
and beyond it. Also, the system of equations that is obtained in the manner explained above, is closed, because u}“
is datum. I additiona information is desired in the outflow boundary, it can be obtained applying procedures which
amount essentially to post-processing.

Neumann or flux conditions, imposed in the outfiow boundary, are more complicated 1o deal with (see [19]), when
this approach is used. This is in contrast with the method ELLAM cells (or control volume), which is explained in

Section 4.

4. ELLAM CeLts

Keeping the same notation as in the last Section, a notation which is fairly vsual for the cells method is introduced.
Writing 2,412 = =i + A1/2, the subintervals [z, 5, 25403 (With i = 1,...  E = 1), [z0,3y 5] and [zg_yp5,2g), wil
be the “cells”, while the points {zq,...,zg} will be the cell “ceaters”. Notice that the first and the last cells are
half-length. Assuming R = 0, in Eq. (2.1}, the test functions o be used, regardless of whether the coefficients are

constant or variable, are:
A 1, (=, ) et
'z, i) = (4.1}

0, il{z,1) g
where the regions 01" are limited by the curves . /5, Zigapa (= ...  E — 1) and the boundaries of the space-time
region {1, as illustrated in Fig. 3.
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FIGURE 3. Space-time support of the weighting function w' for the method of cells.

For this case the weighting functions have continuous normal derivative everywhere, although the function it self
is discontinuous on the “characteristic” curves L, passing through the boundaries of the cells. Therfore K%(w,u) = 0,
by virtue of Eq. (2.6e), and all the information that is gathered on L, concerns the first derivative of the solution,
exclusively. In addition Vg = V.

When the subregion 2 does not intersect the lateral boundaries of the entire region Q, K'(w',u) does not vanish
identically in two lines of discontinuity, at most: Z;_,/; and Z4y3. There:

[w]:i_’/’ = 1; [u’]zi"’l/7 = -1 (4.2)
Replacing Eqgs. (4.2) into (2.6b), it is obtained
_1/20u
K'(w, “)E.‘tnla =3(1+V? 1/25;' (4.3)
Hence, the variational principle in terms of the sought information ((C;,, + K*)u,w) = {g. ~ f, w*), becomes:
Zis1p2 41 ou s ou
/ u(z, ") dz + / D‘—a-;(a,-_,,z(t),t)dz - / Da—;(a,vﬂ/g(t),l)dt
z fad  d

=172

Ti1p

=/ u(z,t")dz +/fg dzdt. (4.4)
L a

where the unknowns have been collected in the left-hand member of the equation, while the data was left in the right

one.

Eq. (44) is similar to (3.5). In it, the unknown function has not yet been approximated by any specific functional
form and the integrals that appear there can be approximated in many different ways. As in Section 3, different
approximations of these integrals lead to different algorithms. To be specific, the integrals over characteristics will be
approximated by means of a fully implicit approximation. Thus:

" Bu B (o)™ AN |
D—(U'_l g(t) t)dl - / D—(0'+1 z(t),t)d‘ = (D—) - (D—) At (4.5)
/z" FZ ~ dz Y 92/, 1p 92 ) 12
Regarding the integral of u at time t"+!, there are also several possibilities for approximating it. The simplest is
%12
/ u(z,t"* 1) dz = u' Az + O(AZP) (4.6)
Fi<1/2

However, the numerical experiments carried out thus far, indicate that the use of Eq. (4.6), produces too much numerical
diffusion. A more refined option is:

Tit1/2 . . :
/ w(z, ") dz = (M) Az + 0(Az)
T,

z el (4.7)

i-1/2

339



Bl lnn"‘

"

]
]
ol |
t W ®
I x x
Ir E-‘,.rl E
|

e N

X
XFO XiyaXi Kirye ) Re-%ey, el

L7

Figune 4. Case when the support of the weighting function Fiaure 5. Space-time support of the weighting function w®
w' for the cells method intersects the inflow boundary. for Neumann and flux cenditions at the inflow boundary,

When the region Q' intersects the inflow boundary, procedures similar to those described in Section 3, must be
applied. As an example, cansider the equation associated with node =y, illustrated in Fig. 4, This is:

Tis1fa ki b
f u(z,i™')dz + D {f 7z (Gi-1alt) 1) dt —f EE{HHHZUL 1) E“}
fi1fa LRy Taip
+f"”’{1;=@{n,ﬂ- h(u,:)} di =ffnri;r|ﬁ, (4.8)
He1ga o2 a

D':-sur"f— that for this case (Dirichlet data), (g0 + g0, w') = 0 by virtue of Eq. (2.145), since 8w /81 = 0. The treatment
ntegral over the boundary r = 0 requires some care. As was the case for Eq. (3.6), the crossing of characteristic
must be avoided when approximating such integral. The term containing u({0,t) is known and can be transpased
to the right-hand side of the equation. The remaining one, can be approximated in essentially the same manner that
was dote for Eq. (2:6); ...

i 1 #1021 fy
[ Do na =5 [ ey a0 (49)
Hetp a < Fiap

Although the discussion here has been restricted to Dirichlet boundary conditions, similar procedures can be applied
to Neumann and flux conditions.

For putflow boundary conditions of Dirichlet type, the cutflow boundary contributions vanish for all the test functions.
This is due to the fact that all the weighting functions vanish in an interval nm%hbm-ing zg = L. Also, the system of
equations that is obtained in the manner explained above, is closed, because u“+ is datum.

To treat outflow Neumann or flux conditions, it is necessary to mcurpmatc u"‘”, as an additional unknown. To
this end, it is convenient to add one more weighting function, whose support {1 is hall the size of the other ones, as
illustrated in Fig. 5, to close the system of equations.
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