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1. INTRODUCTION

Apparently, in Petroleum Engineering the first studies of discontinuous fronts or shocks, are contained in the papers
that originated the classical Buckley-Leverett Theory [1,2]. In reservoir studies, this theory has been used mainly in the
form présented by Welge [3] (see also [4]), Later on, Cardwell and Sheldon et al, in a couple of papers [5,6], discussed
shock formation wsing the method of characteristics, throwing additional light on Buckley-Leverstt theory and in the
method of Welge.,

However, a more general theory of discontinuities in oil production is possible and it would be useful, Buckley-Leverett
theory applies when the fluids and the rocks can be treated as incompressible and effects of capillary pressure can
be neglected. The work by Sheldon et al [6] opened the door to some generalizations, such as the incorporation of
compressibility and gravity segregation, Kale [7] praposed & two-dimensional extension of Bucklew-Leverest theory
using a linear approximation of the fractional fow Tunction. An importent contribution in this direction was made by
Glinun et al. [8), who propesed & front tracking method Tor petraleam reservoir simalation in which the formulation of
shack conditione, ik based on “hyperbolic conservation laws™ and this approach has bean applied recently by Bratved: o1
al. [8], to develop a front tracking method for reservoir simulation, which alse appreximates the fractiona! faw feaction
by piecewise linear funciions. However, in these latter papers, attention was centered mainly on the computational
aepects. [ must also be mentioned, that fundamental blocks in Gimm's construction are the solutions af locs! Riemann
problams.

Other related approaches, are based on the method of characteristics [10-14] and more recently, in combining the
method of characteristics with Localized Adjoint Method (ELLAM) [15,16), This approach was first proposed for
multiphase problems of reservoir Enginecring by Herrera and Ewing [17]. Hewever, these methods although suited to
deal with abrupt continueus fronts, de not include the treatment of shocks and are veually limited to miscible fow
problemes.

In this paper we present an approach to treal discontinuous frontls or shocks, recently propased by Herrera et
al. [17,18], We would like to call attention to the following aspects of our presentation:

a) A systematic formulation of “jump conditions™ of general applicability to multi-phase systems:
bl Introduction of finite difference schemes for discontinuous functions;

e} An Eulerian-Tagrangian approach to front tracking: and

d} A rigorons mathematical setting is given for more general problerms,

Regarding the generality of the “jump conditions™ here derived, it must be mentioned that they are based on the
fundamental “balance laws® of Continunm Moechanics, These are the fundamental physical laws in which madels of
macrascopie physical systems are based, and have complete generality. Indeed, they are applicable to any kind of
multiphase problem with shocks, occurring in Pelroleum Engineering,
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Another interesting point is the use of “finite difference formulas” for functions with jump discontinuities. Standard
applications of such formulas require that the functions be differentiable. However, at present Herrera [20] has been
developing finite difference formulas which are applicable to fully discontinuous functions and numerical results that
have been obtained using them, for some problems of petroleum reservoir simulation, have been reported {18). In
Petroleum Engineering, one important advantage of using finite differences for front tracking is that numerical schemes
that are obtained are easily incorporated in the software available for reservoir simulation, since this is most frequently
based on finite difference approximations.

The advantages of using an Eulerian-Lagrangian approach to front tracking, instead of using a moving frame of
reference, has been recognized in applications of the method of characteristics [10-16] and has been the motivation for
the development of the Modified Method of Characteristics. The combined use of finite difference formulas for functions
with jumps and an Eulerian-Lagrangian approach is very fruitful, since these two methodologies match very well [11].

In this paper our procedure is briefly explained and as an illustration it is applied to treat the shocks which occur
when a gas front invades a region of undersaturated liquid oil. The case of an advancing front of gas into undersaturated
liquid oil has been treated previously [21-23], but to our knowledge, jumps were incorporated in the model for the first
time in [18], and the numerical results obtained were quite satisfactory.

2. JuMP CONDITIONS

To give to our developments a sound physical and mathematical basis, we start from first principles. The basis of
the fundamental equations that govern the flow and transport of fluids in a reservoir are the balance equations of
Continuum Mechanics. The synthesis of this theory that has been given by Allen, Herrera, and Pinder [24], and by
Herrera and Allen [25), are very convenient for our purposes. In the case of multi-phase systems, each phase a moves
with its own velocity v”. Here, @ = 1,...,N, where N is the total number of components. In any phase there may
be several components, but all components contained in the same phase move with the same velocity. The balance
equations satisfied by the intensive property $* associated with component a, are:

Y+ V- (¥Pp°) -V 1" =g¢* (1a)
and
[v*(2" - 25) - 2% - n = g% . (13)

Here, the vector 77, is the fluz of ¥ across surfaces in space, while the quantities g and g§ represent ezternal supply
of ¢~ [23, 24] per unit volume and unit time, in the case of g ,» While g§& represents ezternal supply of ¢ through the
discontinuity, per unit area and unit time.

Equation (1la) is the “general differential balance law”, to be satisfied at every point of the space occupied by
the continuous system. Equation (1b), is the “general jump condition”, to be satisfied on surfaces of discontinuity.
With respect to this latter equation, it is assumed that there is a surface (generally, space-time) of discontinuity I,
which moves with velocity vz and in which the physical variables may have jump discontinuities. In addition, the squa.re
brackets are defined as the “jumps™ across the surface of discontinuity X. More precisely, for any function | f] -f-
where f; and f_ represent the limits of f as ¥ is approached from the positive and negative sides, respectively. Xn what
follows, the positive side of X is defined to be that one towards which the vector n points to. The sense of this latter
vector, however, is chosen arbitrarily. Finally, it must be mentioned that in the form presented here, Eq. (18) is slightly
more general than that presented in [24] and [25], because the possibility of non-vanishing external supply through the
discontinuity, has been included.

To illustrate the use of Eqs. (1), let us apply them to a black oil model. The black oil (or beta) model that will be
considered is based on the following hypotheses:

a) There are three phases: water, liquid oil and gas;

b) Water and oil are immiscible, while gas is soluble only in liquid oil; i.e. the water and gas phases consist of only
one component, while the liquid oil is made of two components: dissolved gas and non-volatile oil. This implies
that the total number of components are four and that v*, in Eqs. (15}, is the same for the latter two components.

¢) No physical diffusion is present. This includes both, molecular diffusion and that induced by the randomness of
- the porous medium (dispersion).

With the mass of each one of the components there is associated one intensive property, which represents the mass
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per unlt of total velume of that component. Thus, one can write:
L T T O R Y T $Sgng (2)

for the intensive properties associated with water, non-volatile oil, dizsolved gas and gas in the gas phase, respectivoly,
The notations: f, and Adg are used for the effective densitios of noen-volatile oil and dissolved gas, respectively. Alsa, the
Sluz T corresponding to each one of these intensive properties vanishes identically, since no physical diffusion s present,
Applying Equation (1a) to each one of these intensive properties one Eets, in a straight forward manner, the familiar
system of equations of black oil models (see details in [18]):

Vel — 2 V2) = £ (f;—) (3a)
V(T =22 = 7 (%) (30
Ve [Bada(Vpo — 1,V2) 4 A(Vpg = 7, V)] = a% [¢ (R,%:- + gf)] (3¢)
where
W= EE (1= w0 4)

are the mobilities.
In 2 similar fashion, applying Equation (15) to each one of the four intensive properties, it is obtained:

[#pwSu(v™ - ve)] 0 =0, (5a)
[¢PaSa(r® — pg)] - n =0, (58)
(4545 Sole” = vg)] ' 1 = g2, (6ix)
[#05 Sg(1* - vy)] - = gt . (66)
In addition, Darcy's Law requires:
d=0; i=2wog (7)

Finally, the guantities gr, and gt stand for the exchange of mass bhetween the Easeous and liquid phases, Mass
conservalion requires that;

9L+ 98, =0 (&)
So that, adding up Eqs (6, it is obtained:
[‘ﬁﬁdrﬁ'ﬂf + ¢’ng|1-.'!} YR i¢‘ﬁdg£ﬂ T 'ﬁFI.S[]‘EE =10 9

Continuity of the pressures of the different phases implies the continuity of p,. In addition, it is assumed that the
porosity ¢, is continuous. This allows canceling the factors @ and gy in Equations (5) and (9], and writing them as:

[Suwle™ - ve)l-n =0, (10a)
[(ﬁ—“) [2“-&;)] ‘n=10, (108)
[(R—!;f—“) (2% - pg) + (gf) Ez‘—yx}J ‘a=0, {10¢)

when the volume factors, are introduced, Equations (10), together with (7), constitute the desired system of jump
conditions for the three-phase {four component) oil reservair, They relate the jumps of the physical variables with the
veloeity vy of the advancing froat. Observe that, in general, the jumps of the volume factor 8y and of R, may be
non-zere since both of them, B, and £y, may change with the bubble point.
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3. THE VELOCITY OF THE ADVANCING FRONT

Thus far the discussion has been completely general. In this Section, a front of gas advancing into a non-saturated
liquid oil, is considered. In the developments, a formula for the ” jump of a product” that has been extensively used by
Herrera in his “Algebraic Theory of Boundary Value Problems” {26-30], will be applied. This is:

[rs] = #{s] + #[r] (11)
where the dot stands for the “average” across the surface of discontinuity. More precisely, for any function r, one has
F=(ry +1.)/2 (12)

To treat the case of a front of gas advancing into a non-saturated liquid oil, the unit normal n to the gas front T, will
be taken with its sense opposite to v& (i.e. v8 .1 < 0), so that the positive side of ¥ is that in which the advancing gas
is located. For simplicity, the residual saturation of the gas will be neglected, so that S;_ = 0 and the only properties
of the gas phase which are relevant are defined in the positive side of L. Due to this fact, it is convenient to drop the
“plus” sign as a subindex when it refers to a property of the gas phase. Thus, for example, we write By instead of Bg,.
Using this convention, we define the parameters 1, ¢ and w,; by means of the relations:

vron=mfon y,em=(v5-n (13)
and
w= Z:ﬁ: (14)
Then, equations (10b) and (10c), can be written as:
W(¢-n=0, (15a)
B [Raw(C-n)]+1-n=0. (15b)
Using formula (11), Eq. (15a) can be transformed into:
' () + &1¢] = nlw] (16)
from which it follows that
¢=n-0 (1)

[w]
On the other hand, Eq. (150), when use is made of the identity (11) and after simplifying by means of Eq. (15a), can
be written as:
[Bw((-n)+1-9=0. (18)
Here, as in what follows, use is made of a bar to indicate that the average refers to the whole expression covered by the
bar. From (18), it follows that

[R] (B?—wn)+1-n=0 (19)

which can be further simplified by means of an algebraic identity closely related with (11); this is: u_( = [W)[¢]/4 + &(.
Applying this identity and combining the resulting equation with Eq. (17), one gets:

_ (9
n= 1 [Rl] [w]w'f'w- (20)
Equations (13), (17) and (20), determine the velocity of the advancing front, but as they stand, they look cryptic.
However, they become more transparent when they are written in terms of a “retardation factor €”, which exhibits how
the relative velocities (with respect to the velocity of the oil) of the advancing front £ and of the gas, are related. Thus,
define the "retardation factor €” by means of the equation:

(22 -13) n=e(v®-03) n (21)
Using Egs. (13), it can be seen that
=64+
€= . 22
1=¢, (22)

275



When the auxiliary relations:

<] il
— (=2 D=y = {14 Ry ) 22 23
7 + [w] 'I1-+ { ! +}[w] l: .]'
which are implied by Eqs, (17) and (20), after some algebraic manipulations, are used in Eq. (22}, the cxpression
1 ]
e : (24)
T+ [y 1+[H,]§E$°+
s o

“for the retardation factor «, is ohtained, Eyquation (24), together with {21), yield the velacity of the advancing gas froat,
(iserve that R, > R,_, so that ¢ = 1.

4. NuMERICAL FORMULATION oF JumF CONDITIONS

Equation (24) is informative and permits sequiring insight on the manner in which the advance of the gas front takes
place. However, for numerical applications we have preferred to start from Eqs. (10} and transform them in the manner
explained in [18].

For simplicity, in what follows only two phases will be considered. For that case, the jump conditions can be trans
formed into [18):

A+ [%‘Eﬂ] ve + [Ao]m = 0, (25a)
( e Sa . By
2R+ }-‘._.) &+ 2 {iﬁ' (R.F -+ F)J T+ ?EJLH. + ]R,J\gj]m = . {25#}
o £

Here, the notation s =E?p,f{‘}ﬂand h= %%3, is understood and capillary pressure has been neglected. For the numerical

treatment, in [18], Eqs. (25) were used as 2 system ol equations for the unknowns s, vy and m, all of them defined on
the space-time surface of discontinuity (1), Hawever, this system is not determined sincs itis 2 by 3. The additional
equation that was needed, was ohtained weighting the differential equations (1) in 2 suitable manner, as it is explained
in the next Section.

5. Tue Weranten EquaTions

The one-dimensional version of Equations (35 and ¢), js:

8 (, 0p_ 8 (45, ,
7 ("‘E‘) i (3_) =5 (P8}
L3 Opa  \ Opg) B e Se Y1 _
e (R.AQE; + A R ) - {d' (R'.H_n -+ B_; =0. (264)

In this Section these eguations will weighted using convenient space-time weights, detiving in this manner equations
suitable for discretization. The weights that will be chaosen lead to what is essentially a cells (or control volume) method,

As an illustration, the procedure is explained for the case Cy = —{Ve&At/&z) < 1. The position of the gas front will
be denoted by zg(t). The space interval will he divided into a finite number of equally epaced cells. Taking time t, as
starting time, a procedure for constructing the solution at time {,,, will be developed. The index © will be reserved
to denote the call containing the front at time fnt1e When Cw < 1and Ve <0, only two cases must be distinguished,
Either, during the time interval (taitns1) the gas front docs not cross any inter-cell boundary (Case A); or it crosses
one inler-cell boundary (Case #), Observe that in Case B the inter-cell boundary that is cressed is Zipijae

Case A: The system of space-time weights to be used in cell § (i (zicvyz Tisagal)s i
wilz,d) =1 (27a)
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{0, z < zg(t)
wg(zv') =

1, z>zg(l)

for the oil and

‘.0 {0, z < zg(t)
vAREE 1, z>zg(t)

for the gas.

The resulting equations, constitute a system of three equations for cell i, which must be coupled with the sys-
tem of jump conditions and the equations of the remaining cells (two for each cell, when a two-phase system is
considered), to ‘obtain a determined system. Assume, for the sake of definiteness, that we are solving for pressure
and saturation of the gas. Cells, other than cell i, can be treated in a standard manner, solving for example, for
oil pressure and gas saturation at the center of the cell. However, cell i must be treated in a special manner. We
have available the system of five equations The five unknowns that were chosen in [18] were: the jump and aver-
age of the pressure gradient (s and m, respectively), the velocity vg of the gas front (these three unknown func-
tions defined on X(t)), the saturation and the pressure. Then, the resulting system of equations was solved for
the value p:‘f"l at the center of cell i and the value S:{ ! of gas saturation at the gas fromt, together with s"*?,

m"t! and g';:“. A special feature of this procedure is that one does not solve for saturation at the center of cell
i
Case B: The treatment is similar, except that the system of space-time weights to be used in cell i (i.e.; [z;_1/2, Zis1/2]),
is:

wi(z,t) =1
for the oil and

{ 0, z<zg(t)

1, z>azg(t)
for the gas. The system of space-time weights to be used in cell i +1 (i.e; {zi41 2 Tigapa))s ist

w(z, )= 1

for the oil and

0, z<zg(t)
(284d)
1, z>zx(t)
for the gas. In addition, a space-time weight with support in the union of cells ¢ and i+ 1, is applied to the oil equation.
It is defined by
0, z<zgx(t)
wi(z,t) = (28¢)
1, z>zg(t)

For additional details of the numerical treatment, the reader is referred to [18].

6. FINITE DIFFERENCES FOR DISCONTINUOUS FUNCTIONS

For the construction of an Eulerian-Lagrangian approach to front tracking, it is essential to apply finite difference
formulas to functions with jump discontinuities. Such formulas are being developed by Herrera {20] and they have been
used in the numerical applications of the method presented here. Since the use of such formulas is not standard, in this
Section we present an example, to illustrate the procedure.

Consider an interval of the real line and a uniform partition in it, as shown in Fig. 1. A notation which is usual
in applications of the cells method has been adopted. Thus, the “nodes” will be the centers of the subintervals of the
partition. The i-th subinterval (cell) of the partition will be [2;_1/3,%;41/2]), whose center is z;, and it is limited by the
interelement boundary points z;_/; and z;412. In Figure 1, we have illustrated cells i — 1, i and i+ 1. Assume the first
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x X x %
1-1 1 L I el
| X X—x—| X | Case A
X X
Jll|-1 *r 5 xl*l-
| X | X—X | X | Case B
X1 Xt

Fioure 1.

derivative of the oil pressure pg, has a jump discontinuity at zp and z,_y;3 € £ € Fig1 2 Po itsell being continuous,

Qur purpose is lo construct a second order approximation to (%zp—" Mz € zg one can apply the usual centered
i-1/2
differences formula:
(apﬂ) . Poi = Pai-1 + G{hﬂ'} [29}
dz [, | /1 h

However, when zx < z;, Eq. (28) is not applicable and a modified formula, accounting for the discontinuity, is needed.
In what follows the notation

dp. _ &?Fa _

is adopted and an anxdliary function f., defined by
i po—jalz—zg) - fr(z—zp) Hzp s,
fo= (31)
Pot balz—zgp)+ irlz—zp)? iz <2z

This function is C3. Therelore, writing Az = &, one has:

s Poi — Peim
() -Eoi=tiom
i-1/3

o P h
= BiTPEl S+ 1) - T{E + 26+ 1) + 004 (32)
with £ = (zg — =;)/{h/2). Here, the assumption that the partition is uniform, has been used. On the other hand
aﬁn) (ﬂp,) s rh 9
Ss = | == + == —(E+ 1)+ 0(R"). {33)
(&’ i-1f2 0z Jigpp 24
Combining (32) and (33), it is obtained:
po _Pei=Pai-1 8. Thoy g
(3*).--,” = Bichan, 2 ha o) 30)

The jump r of the second derivative is not known and in applications of formula (M) to partial differential equations,
it is necessary to eliminate it. To this end, the second derivative of ji, is computed in two alternative forms:

a) Firstly, the standand centered difference formula is applied to g,
b) Secondly, the first derfvalive of f, is differenied.
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Here, we skip the details and only the final results are given. They are:

r= w_h' {(E + 1)Poit1 + (€ = DPoi-1 = Apoi _ 2d,g — a} +0(h) (350)

h h(€ +2)

where w~ = —8/(£ + 2)?(€ - 1). This equation can be applicd when z5 € [z,_,,z,z.] Similarly, when zg € [2i,2i41/2),
one has

+0(h)

h h(E-2)
where wt = 8/(€ — 2)?(€ + 1). Here, the notation d,g = (8p,/0z)g is understood. \\

r e WT {(f + 1)Poi+1 + (€ = 1)Poi-1 — 2poi _ 24z + 3}
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