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l.- INTRODUCTION

Three of the most powerful numerical methods for partial
differential equations are finite elements, finite differences and
boundary element methods. The foundations of each one of these
methodologies, as originally formulated, were unrelated. More
recently, it has been recognized that there are many relations
between them. In this spirit, the author developed his Algebraic
Theory of Boundary Value Problems [1~5] which has led to what is at
present known as the "Localized Adjoint Method".

In the construction of approximate sclutions there are two
processes, equally important but different, that should be clearly
distinguished [6]. They are:

i).- Gathering information about the sought solution; and
ii).~ Interpolating or, more generally, processing such
information.

These two processes are distinct, although in many numerical methods
they are not differentiated clearly. The information about the exact
solution that is gathered, is determined mainly by the weighting
functions, while the manner in which it is interpolated depends on
the base functions chosen. Examples have been given for which these
processes are not only independent but, they do not need to be
carried out simultaneously [6].

This, by the way, exhibit some of the severe limitations
associated with methods, such as the Galerkin method, in which base
and test functions are required to be the same, The conditions that
test functions must satisfy in order to be effective for gathering
information are, in general, quite different to those that must be
satisfied by base functions, in order to be effective interpolators.
The questions posed by the above comments are very complex and to
explore them iIn all its generality is quite difflcult. A first step
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is to have a procedure for exhibiting the information about the
exact solution, contained in an approximate one. The usefulness of
this insight is two-fold: firstly, it can be wused to develop
weighting functions which concentrate such information in a desired
manner and secondly, such knowledge permits interpolating or, more
generally, processing the available information more effectively.

localized Adjoint Method is a methedology | have proposed
{2-5], for carrying out such analysis and for developing improved
algorithms. When this approach is used, the information about the
exact solution contained in an approximate one, is exhibited
applying Herrera's Algebraic Theory of Boundary Value Problems. This
procedure is more direct than applying the Theory of Distributions,
malinly because the sought information s expressed in terms of
localized inner products, which permit a more direct physical
interpretation. Also, the author’s Algebraic Theory allows
simultaneous use of discontinuous trial and test functions.

From the start, BHerrera's Algebraic Theory of Boundary Value
Problems has had a close connection with Boundary Methods. As a
matter of fact, its development was motivated by theoretical needs
that were encountered in the development of Trefftz Method [7]. For
symmetric operators, a full account of the theory was given in book

form [11. Later on, it was extended to non-symmetric operators
{2-51.

Applications  have  successively been made to  ordinary
differential equations, for which highly accurate and efficient
algorithms were developed [4,8-10], multidimensional steady state
problems [l11] and optimal spatial methods for advection-diffusion
equations [(12-20). More recently, generalizations of Characteristic
Methods known as Eulerian-Lagrangian Localized Adjoint Method
(ELLAM), were developed [21,6). ELLAM allows a very systematic
treatment of boundary conditions and this permitted to obtain the
first characteristic algorithms possessing the mass-conservation
property. Many specific applications have already been made (22-29]
and related work and additional applications are underway [30l.

In all these applications, the algorithms that have been
developed  concentrate the information in  the interelement
boundaries. In order to achieve this, the weighting functions wa.
are required to satisfy the adjoint equation; £ w =0. When this is
done, the resulting procedure is a generalized boundary method.

In this paper the Localized Adjoint Method is briefly explained
and some of the ideas are illustrated by means of simple examples.

2. VARIATIONAL FORMULATION IN TERMS OF THE SOUGHT INFORMATION

Consider a region R and the linear spaces D1 and D2 of trial

and test functions defined in Q, respectively. Assume further, that
functions belonging to D1 and D2 may have jump discontinuities

across some internal boundaries whose union will be denoted by Z.
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For example, in applications of the theory to finite element
methods, the set I could be the union of all the interelement
boundaries. In this setting the general boundary value problem to be
considered is one with prescribed jumps, across Z. The differential
equation is

fu = fQ‘ in (2.1)

where 2 may be a purely spatial region or more generally, it may be
a space-time region. Certain boundary and jump conditions are
specified on the boundary 8Q of fi and on I, respectively. When Q1 is
a space-time region, such conditions generally include (initial
conditions. In the literature on mathematical modeling of
macroscopic  physical systems, there are many examples of
initial~-boundary value problems with prescribed jumps.

[ ]
When £ (is the adjoint of £, one has:
L 3
wlu-uf w = V+(Dlu,w) (2.2)
for a suitable vector-valued bilinear function D(u,w). Integration

of (2.2) over §1 and application of generalized divergence theorem
{31], yield:

%
J‘Q{wxu-u.‘e widx = [ ?{a(u,w) dx + J R_{u,w) dx (2.3)
z
a0 b
where

fRa(u,w) = D(uy,wlen and fRz(u.w] = -[D(y,w)}*n (2.4)

Here, the square brackets stand for the "jumps" across I of the
function contained inside; {.e., limit on the positive side minus
iimit on the negative one. Here, as in what follows, the paositive
side of I is chosen arbitrarily and then the unit normal vector p,
is taken pointing towards the positive side of &, Observe that
generally, #u will not be defined on Z, since there u and its
derivatives may be discontinuous. Thus, in this article, it s
understood that integrals over Q are carried out excluding I.

In the @general theory of partial differential equations,
Green's formulas are used extensively [32) and they can be obtained
introducing suitable decompositions of the bilinear function ‘Ra.

Indicating, as it is wusual, transposes of bilinears forms by means
of a star, the general form of such decompositions
is:

Ro(u,w) & Dlu,wien = Bluw) - € (u,w) (2.5)

where Blu,w) and 6(w,u) are two bilinear functions. In general,
B(u,w) is associated with the prescribed boundary values, while




576 Boundary Elements

L]
€ (u,w) can only be evaluated after the problem has been solved and
is called the "complementary boundary values” [6].

Green's formulas for problems with prescribed jumps, stem from
the algebraic identity:

[D(u,w)] = D(lul,w) + D(,[w)) (2.6)

which holds when the coefficients of ¢ are continuous (for
discontinuous coefficients see [4]}, and where for every function u:

ful= u-u_, 0= (u¢ + u_J/Z (2.7

while u*and u_ stand for the limits of u on the positive and

negative sides, respectively. Equ. (2.6}, yields

R (u,w) = lu,w) = X (u,w) (2.8)
with
Hu,w) = -D ([ul.\rv)-g (2.9a)
Kiw,u) = D (Q,lwhen (2.9b)

-
Generally, the jump Ju,w) is prescribed, while X (u,w) is part of
the sought information and can only be evaluated after the
initial-boundary value problem has been solved and certain
information about the average of the solution and its derivatives on
Z, is known. Such information, Is called the "generalized averages”.

The initial-boundary value problem with prescribed jumps, can
be formulated point-wise, by means of the equation (2.1}, together
with

Blu,*) = g5 OO an (2.10a)
and

My, ) = ‘j&' on £ {2.10b)

Introducing the notation
[ L
Pu,wd = J‘Qwsudx; Quwr =J Qu.‘ﬁ wdx  (2.lla)

-

<Bu,w> = J‘anB(u,w)dx; « uywr = .I'anb’(w.u)dx (2.11b)
-

Ju,wy = Izj(u.w)dx and <K u,w> = J‘EK(w.u)dx (2.11c)
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»
and defining the linear Tunctionals f, g, _it:I)2 by means of:

W = J‘Q wadx; g.wW) = Iaﬂga(w)dx ; W = IzJE(W)dX; (2.12)
"Herrera's variatiocnal formulation in terms of the sought
information”, is written as

» » L]
Q@ -C - Khuw =< - g - j,w> ¥ weD (2.13)

2

3
The !linear functionals Q‘u, C'u and K u, supply information about
the sought solution at points in the interior of the region Q, the
complementary boundary values at 8Q and the generalized averages of
the solution at I, respectively, as can be verified by inspection of
Equs. (2.1}) and will be illustrated in the examples that follow.

In view of (2.13), when the method of weighted residuals is
applied, an approximate solution uch, satisfies:

- " *
dQ -C -K Yo,w™ = ¢fF-g-j,w™ |, a=l,...,N (2.14)
Since the exact solution satisfies (2.13), it is clear that:
» L » A o * L ] | g o
A(Q -C -K Wu,w > = Q@ -C -K Ju,w >, a=1,....N {(2.15)

Equs. (2.15), can be used to analyze the information about the exact
solution that is contained in an approximate one and have been
applied extensevily in the development of the Localized Adjoint
Method.

3. ORDINARY DIFFERENTIAL EQUATIONS

»

As has already been mentioned, K u supplies information about
the average of the solution and its derivatives across the surface I
of discontinuity. Such information can, be classified further. In
particular, it is useful to decompose K u into the averages of, the
function, the first derivative, etc., This is achieved writing K as
the sum of operators K , K ,..., each one containing the
information, about the average of the derivative ,of the
corresponding order. Such decomposition is induced when X (yw) is
degomposed point-wise, into the sum of bilinear functions K° {u,w),

K {u,w),..., each one containing the corresponding information
pf:int-wise. Similarly, J will be written as the sum of operators ],
J,..., each one of them containing the jump of the derivative of

corresponding order and ${u,w) will be the sum of 2(u,w), $(u,w),
etc. When this is done:

K=§K‘; J.—.gJ‘; X =§J<‘; ;=§;e‘ (3.1)

A physical sgijtuation that the general ordinary differential
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equation of second order mimics, is transport in the presence of
advection, diffusion and linear sources, as {s the case when
chemical reactions take place, and a notation related with such
processes will be adopted. Thus, the general equation to be
considered, is:

d,.du
fum - a—;(Da; -Vul + Rus= fﬂ' in Om{0,1] (3.2a)
subject to the smoothness conditions
=0 and (34=0, on I (3.2b)
X
A uniform partition {0=x°. Xpeoos Xp s xE=I} is introduced,

with xm-xa_lnh. It will be further assumed, that trial and test

functions may have jump discontinuities at internal nodes, so that

Z={x1,,..,xs_1}, in the general framework of Section 2. On &, n=l is

chosen, Boundary conditions satisfied at 0 and I, can be Dirichlet,
Neumann or Robin boundary conditions, but they are left unspecified,

The formal adjoint of the operator 2, is:

» d, . dw dw
.Z wE - a-f(Dd_f) - Va—i- + Rw (3-3)
Therefore:
. d dw du
wiu ~uf w s d_f{umd—f + Vw) - WDEE} (3.4)
and
D (uw) » ubY + vw) - wp¥ (3.5)
g dx dx '
Application of Equs. (2.9), yields:
Luw = - O + v, $u,w) = wDI3Y (3.6a)
* dx ] L] dx 2

x° (w,u} = 0 [Dg; + Vw]; Kw,u) = - !Wng—% (3.6b)

from which ? and X are obtained by means of Equs. {3.1). In Equs.
(3.6}, as wherever deemed necessary, a bar is used to make clear

that the dot on top refers to the whole expression covered by the
bar.

The definitions of the bilinear functions B(u,w) and &(w,u),
depend on the type of boundary conditions to be satisfied. They may
be taken as:

Blu,w) = u (ng—";" f Vwips  Blwau) = w D‘};u (3.7)
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for Dirichlet data,

du - dw
Blu,w} = -w Dd_fﬂ’ Glw,u} = -u (Da—x- + Vwig (3.8)

for Neumann data and

d
Blu,w) = -w (1?)2%{1~ - Vulp: Blw,u) = -u Dagg (3.9)

when total flux i{s prescribed.

For ordinary differential equations it is easy to construct
algorithms which concentrate all the information at Internal nodes
{4). The conditions to be satisfied by weighting functions are:
¥ we0 and €{w,+)s0. These latter conditions are:

dw e A dw _
w=0; Da-}-(- + Vw = 0; DEE Q (3.10)

which hold wherever Dirichlet, Neuman or §lux conditicns are
prescribed for the sought solution. The actual construction of such
weighting functions is very efficient when collocation is used [8].
In the case of algorithms for which approximate solutions contain
information about the exact solution at internal nodes, exclusively,
the inf’ormationlabout the first derivative must be removed. This is
achieved if X'(w,*)=0, at internal nodes. Thus, the weighting
functions must satisfy the additional condition [w]=0, by virtue of
Equ. {3.6h).

In summary, the weighting functions that concentrate all the
information in the values of the sought solution at internal nodes
satisfy

z'w =0, on £y E(w,+)=0, on 3={0,l}; [w]=0, on E {3.11)

These are C° test functions; for them the system of equations (2.13)
reduces to:

" [ ]
K uwH=X o,w*, asl,...,N (3.12)

When the system of, tes functions {wl....,wn} is TH-complete, Equs.
(3.12) imply that K Uu=K u, which in the present case is equivalent
to

G(xj) = ulx), j=l....E71 (3.13)

where u(x), is the exact solution. Thus, the values of the sought
solution are predicted exactly at internal nodes.

Here, as in what follows, the concept of TH-completeness Iis
used. This concept was introduced by Herrera in [1,33], where a
rigorous discussion of this question in an abstract setting was
presented, allowing considerble generality, since the conclusions
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that were obtained, are independent of the order of the differential
equations and the number of independent variables involved. However,
that discussion refers to symmetric operators and recent results for
non-symmetric ones, can be found in [34].

Observe that Equs. (3.13) hold independently of the base
functions used, because when deriving them, nothing was assumed
about such functions. Therefore, when the system of weighting
functions is TH-complete, Equs. (3.13) hold even If the system of
test functions are fully discontinuous, or they violate the
prescribed boundary conditions.

Let {00,.@1,.... @E} be a system of base functions which, for
the time being, are assumed to be continuous (but whose derivatives
may have jump discontinuities at iternal nodes), such that ({for
every a=l,...,E) wa=1 at node xa. while it vanishes at every other

node. For the case when the prescribed boundary conditions are
non-homogenecus, a suitable representation of the approximate

solution is:
E~1

ix) =Ue® + Ut + T Ujﬁj(x) (3.14)
)=t
TH-complete systems which satisfy (3.11) have dimension E-I
[34]. Let us apply 1the sygtem of equations (3.14), wusing a

TH-complete system {w,..., w } of weighting functions. Then any
solution of the resulting system has the property:
U = ulx), jol...Exl (3.15)

by virtue of (3.i3). Thus, the exact values are predicted correctly,
independent}y of the ©base functions used. ndeed, discontinuous
functions $(x) can be used in (3.14) and Equs. (3.13) hold, anyway.

4. ADVECTION-DIFFUSION EQUATION

In this Section, we consider the one-dimensional transient
advection-diffusion equation, in conservation form:

du 8 du
fum 3 " 6_f(D3_§ - Vu) + Ru = fn{x,t). in 2 (4.1)
:nus!?x = [0,l]
teQ, = (" "

{x,t)ef2 = nxx ‘Qt
subject to initial conditions
ulx,t™ = u"(x), (4.2)

and suitable boungary conditions, at x=0 and !. In this case, the
ad joint operator £ is:

. dw 8 8w aw
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It will be useful to decompose the boundary 80 into BOQ, alﬂ,
ann and amln. which are defined as the subsets of Q for which (x,t)

satisfies x=0, x=l, t=t" and t=t™', respectively (Fig.la). The
initial conditions, given by Eq. (4.2), are to be satisfied at ann

and the boundary conditions pertain to Boﬂualﬂ. These latter
conditions can be of Dirichlet (u=ua), Neumann (Dg—i_ff‘-q) or Robin

type, or a combination of them. Here, it {s understood that p=1 at
x=l and p=-1 at x=0. For definitness, for the time being, only
Dirichlet conditions will be considered, although the general
methodology accommodates any of them [6].

-1 X, Koy Xe=l

Figure 1.- a) Decomposition of Q into the subregions QL. i=1,..E.
b) Case when the support of the bilinear weighting function w
intersects the inflow boundary.

In addition, a partition {xo.xl,...,xE} of 10,11 is introduced
and the region R is decomposed into a collection of subregions

Ql,..., QE, each one associated with the node of the same subindex,

as shown in Fig.la. These subregions are limited bx spg.?ig-time
curves Za (x=1,...,E), whose positions at any time t (t'stst” ') are

given by the functions o‘a(t) and it will be assumed that

discontinuities occur on these lines, exclusively. Thus for the
general notation introduced in Section 2, E=U2a in this case.
Clearly, the velocity of propagation VZ of each one of these lines
is do-a/dt. Also, the unit normal vector to I, of the general theory,
is a space-time vector which will be written as: §=(1+V:)"V2(g,l).

where n is a unit vector in space [6].
The bilinear functions Blu,w) and E(w,u) are defined by:
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Blu,w) = 0, B{w,u) = -uw on amn {4.4a)
Blu,w) = -uw, E(w,u) = O on ann (4.4b)
Ei(uw)uDgE G(wu)=w(D@--Vu)n on 8 flvan (4.4c¢)
' ax’ ’ ax = 0 [ )
On the other hand, the function X(w,u) is equal to the sum:
K(w.u)zko(w,u) + }w,u), {4.5)
with X° and XK', defined by:
0 2,-172* aw
Kiiwu) = (1+Vz) u{[DE-;c-l + (V -Vz)[w]}, (4.6a)
1 g o B P s O
K(w,u) = (1+Vz) [W]DH . (4.6b)

»
Observe that & (u,*)=0 on ann, so that no information is sought at

t=t", as is usually the case for an initial value problem.

LAM procedures use "Herrera's varlational formulation in terms
of the sought information"”, as was explained in Section

2. For this case, it is:

L - L ]

Q - C - Kluww=¢d -g-jw¥ WGDZ. (4.7)
where 02 is a suitable set of weighting functions,
L -
AQ u,w) = J‘nui’ wdp (4.8a)
»
C uyw> = [ Blw,u)dx + J‘{G(w.u)lﬂdt + I{G(w,u)’}c_odt, (4.8b)
arnl
L

K u,w> = fK(w,u)du = ): Jg Klw,u)du (4.8¢)

g o
and

d,w = J‘Q wfndp; {g,w> = J‘ang (w)dg 3 <jwd> = [ Jz(w)dp. (4.9)
8 z

Here, dp is used to denote the element of area (space-time) in Q and
of length, in the case of line integrals.

L
It is convenient to decompose the bilinear functional K into
the contributions which stem from Eu, for a=l,...,E. Il we define

. s Bw Ju .
<Kau,w> =\rza{u[D'5—£] = [WI(DBE - 'VE]U) }adtn {4.10)
where, the subindex T means that the line integral is to be carried
out on Za {note that dt=(l+V;)'V2du). then
s E 4
K= ZK. (4.1D)
«
o=l
»

The bilinear functional C can be written In terms of the
contributions coming from ann, 6MQ, aon. and aln. In this manner
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one can write:

L L ] L L ]
C=C +C+C, {4.12)
n+l 0 |
where
- |
€ uwd - J' (uw)  dx (4.13a)
n+l n+l
0 t=t
(C‘u W = - }'{w(i}gE - Vu)} dt (4.13b)
o’ 8x )
x=0
» du
(Clu.w> = J’{W(DE;(- - Vu)} dt (4.13c)
X=x]
Define
<gn,w> = -J'i u"wit")dx; {4.14a)
aw
g.,w>=[0 uD— ndt <g,w> =~ wq ndt (4.14b)
D g adx N
a0 aq
D N
<gF,w> = ~[ wF pdt, (4.14¢)
BFQ

Using Equs. (2.12), it is seen that g=g +g *g *g.. Also, <j,w>m0.

5. ELLAM PROCEDURES FOR ADVECTION-DIFFUSION EQUATIONS

Two ELLAM approaches that have been used thus far, for
advection dominated transport are presented in this Section.
The first one ("bilinear ELLAM"), applies bilinear ("chapeau")

test functions [21]. For the case of constant coefficients, such

functions are:

x_XI-l th*lbt :
=% + V X (::c.t)csﬁ1
_ tnoi_t
wix,t) = L ¥ + V (x,t)eq! {5.1)
' Ax ax ' 2 ’
0, all other (x,t)

»
where Q: and Q; are as shown in Fig.la. They satisfy £ w'= 0 and are

continuous (i.e {w]=0), but have discontinuous first derivatives
(i.e.; {dw/dx]#0). In view of Eqgs. (4.6), it is clear that Kl(w.u)
vanishes identically, while

H
o, 1 2.-172% 0 _ W
Kiw u) = (V) u D53 ] (5.2)

This latter expression does not vanish on three lines of
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discontinuity, at most: E " Z and }..‘ﬂ. There:

o 5 [gw] =% B (5.3)

When the region Q' does not intersect the lateral boundaries, the
boundary terms (4.4c-e) and (4.13b} vanish and the variational

principle in terms of the sought information (4.7), reduces to

» L 1
<C  +K Ju,wi=ig -f,w); lLe.:
n+l n
tn+l
1+1 n+l D
r ulx, ! (x,t Jdx - v { I u(o'l_l(t),t)dt -
x1~1 "

tn'o-l tn¢1
2J' ule (t),t)dte j u(om(t).tldt}
", t"
= r,'l ulx,tw'(x,t")dx + I f_w'dxdt, (5.4)

1-1
where the unknowns have been collected in the left-hand member of
the equation.

Notice that the unknown function u(x,t) has not yet been
approximated by any specific functional form. As a matter of fact,
LAM procedures do not require assuming any specific form for u and
the integrals that appear in this equation may in fact be
approximated in many different ways. Different approximations of
these integrals lead to different CM algorithms reported in the
literature. In all of these, the integrals are approximated in tlerms
of nodal values of u at the discrete time levels t" and t", so
that the unknowns In_the equation ultimately correspond to nodal
values at time t™. For example, piecew1se linear spatial
interpolation of u_at time levels t" and t" 1, coupled with a
one-point (at t=t"") fully implicit approximation to the temporal
integral, leads to the modified method of characteristics (MMOC) of
Douglas and Russell [35]. See [21] for additional details.

When a region Q' intersects the inflow boundary, several cases
can occur. As an exapple, ,we discuss the ,case illustrated in Fig.lb.
Then, the equation <(C +l+K uw> = <gn-r,w >, becomes:

n

t
tl—l 1

tn+1 tn+l
r‘*‘u(x,t“")w‘(x,t"")dx ~ B I oo )0dat - 2[ ue (0,04t
L ax e ) « !

! ti-1
+ Iu(al+1(t).t)dt + ‘[ {D.__-(O t) - vulo, t)}

b+l 1+1
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D ti-1 t: '
= I u(0,t)dt - I u(0,1)dth + I £ widxdt (5.5)
x 1. . g ®
t t

1 i+1
The integrals along characteristics appearing in Equ. (5.5), can
agaln be evaluated by means of a fully implicit approximation.
However, approximation of the last term in the left side of Equ.
(5.5} must be handled with special care, to obtain an algorithm with
satisfactory properties. If we simply discretize the unknown
diffusive boundary flux along the time direction, the discretization
will be unsatisfactory for large Courant number Cu=VAt/Ax, since
many characteristic lines will be crossed. Instead, one can evaluate
the contribution to the integral of the term containing u(0,t),
since this is Dirichlet data, and transpose it to the right side of
the equation. The remaining part of that integral, can be
approximated as it is indicated next:
E ]

X
t1-1 L+l
1..8u _D 13u, n+t 2
J' w'DIZ(0,t)dt = o I w3lex,t™dx + o(at’) (5.6)
. b4
t -1
1+1

The use of this approximation yields satisfactory results [2]1] and
this has been corroborated by an error analysis recently carried out
[35). Neumann or flux conditions, imposed in the outflow boundary,
are more complicated to deal with {see [2!]). However, such boundary
conditions are easy to treat when a control-volume procedure Is
used, as it is explained next.

The second procedure ("ELLAM Cells"), is a control-volume
method applied in an Eulerian-Lagragian manner [30]. Firstly,
modifications in the notation which are usual for the method of
cells, will be Iintroduced. Writing x ix|+Ax/2, the subintervals

L, Ix_,x I and |

1+172
H b n 11)
[xl-vz'xm/z o X2 xz-uz’xi:}’ will e the cells",
while the points {xo,...,xE} will be the cell "centers". Notice that
the first and the last cells are of half-length, Assuming R=e0, in

Equ. (4.1), the test functions to be used, regardless of whether the
ceefficients are constant or not, are;

1, if (x,t)EQi
wsx,t)= l (5.7
0, if {x,t)eQ

where the subregions n' are limited by the curves T and

1-1s2' zmxz
the boundaries of the space-time region Q, as [llustrated in Fig.
2a.

For this case the weighting functions have discontinuities in
the ‘“"characteristic" curves EZ, although the first derivatives are
continuous. Also, the velocit of propagation of such

discontinuities is VZ=V' so that K (w,u)=0, by virtue of Eq. (4.6a),

and the information that is gathered on £, concerns the first
derivative of the solution, exclusively.
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When the subregio? Q' does not intersect the lateral boundaries
of the region R, K (w,u) does not vanish identically in two lines

of discontinuity, at most: X and T . There:
- ng 14172
_x]z = [; —x]2 = -], (5.8)
1-1/2 14172

Replacing Equs. (5.8) into (4.6b), yields:

K‘(w,u)zl R (+v3) 2 g; (5.9)

Hernge, thg va:l'iatlonal pripciple in terms of the sought information
<(Cm1+ Kuw> = <gn-f‘.w >, becomes:

n+l

t

1+172 n+l

r ulx, " )dx + I Dow/dx(e _ (t).t)dt - Jz Dow/ax(e | (1)1t
x n 1+1/2
1-1/2 t
L ]
- ri“’z u{x,t")dx + J‘ fdxdt. (5.10)
Q

1-1/2

Equ. (5.10) is similar to {5.4); in it, the unknown function
has not been, and will not be, approximated by any specific
functional form and the integrals that appear there can be
approximated in many different ways. As in the case when the test
functions were bilinear, different approximations of these integrals
lead to different algorithms. To be specific, the case when the
integrals over characteristics are approximated by means of a fully
implicit approximation, is here discussed [30]. Thus:

tml tn*l
[, (powex)gat - [*, (pawex)gar -
t" 1~1/2 t" 1+1/72
1 1
{(nau/ax) ';jw- (D8u/8x) '::m}e.t (5.11)

Regarding the integral of u at time t"‘l. there are also several
possibilities for approximating it. The simplest is

J)(M/z ulx,t"dx = u'l'"Ax + o(ax>) (5.12)

X
1-1/2
However, this is not consistent with the order of approximation at
which other terms are treated and to obtain satisfactory numerical
results, it is necessary to use a more refined option, such as [30]:
n+l n+l

u o+ "o 22u
J‘\(M/2 u(x,t"™Ndx = L 24"‘ I+ o(ax®) (5.13)

p 4
1-1/2

When the region Q' intersects the inflow boundary, procedures
similar to those that were described for bilinear ELLAM must be
applied [30]). For outflow boundary conditions of Dirichlet type, the
out-flow boundary contributions vanish, for all the test functions.
This is due to the fact that all the weighting functions vanish in
an interval neighboring xE=L. Also, the system of equations that is
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obtained in the manner explained above, is closed, because ™! s
datum.

To treat outflow Newmann or flux conditions, it {s necessary to
n+ .
Incorporate u. , as an additional unknown, and to add one more

weighting function, in order to close the system of equations. The
support QE, of such welghting function is half the size of the other

ones, as illustrated in Fig. 4.

n* R+

Figure 2a.~ Space-time support of the wighting function w® for the
method of cells. b).- Space-time support of the weighting functions
W~ for Neuman and flux conditions at the inflow boundary.
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A Non-Nodal Collocation Procedure in
Three-Dimensional Elasticity
W.J. Mansur (*), W.G. Ferreira (**)
(*) Civil Engineering Department,
COPPE/UFRJ, Brazil

(**) Civil Engineering Department
CT/UFES, Brazil

ABSTRACT

’

A non-nodal collocation procedure to consider traction
discontinuitles In boundary element method (BEM) analysis of
three-dimenslonal elasticity problems I8 discussed here. The
numerical Iimplementation for triangular boundary elements and
numerical results for two applications are presented.

INTRODUCTION

Boundary element method (BEM) computer codes must Include adequate
techniques to deal with traction discontinuities, otherwise over
refined meshes may be required In the neighbourhood of regions where
such discontinuities occur ( or are expected to occur ). Over
refinement, besides being expensive may not give accurate results.

A technique to overcome thls difficulty, which does not require
implementation of Y special computational procedure, s that
proposed by Brebbla® who employed In the neighbourhood of points of
discontinuity, two nodes (in two-dimenslonal analyses) close to each
other but not linked by elements. Thls scheme was used for a short
perlod, belng abandoned In favour of more rigorous techniques.

The [first rigorous general procedure So deal with traction
discontinulties was developed by Chaudonneret”, for two-~dimenslonal
elasticity. Two extra equations for points where tractions could be
discontinous were obtalned from the assumption that the stress tensor
be uniquely defined, together with the condition of Invariance of
trace of the straln tensor. Thus It was possible to conslder extra
unknowns, that appear when discontinuity of surface tractions Is
considered. An equivalent psocedure for potential analysis has been
proposed by Alarcon et alll™ who obtained extra equations from the
condition of uniqueness of the flux vector at corners.

The procedure mgst widely used now days s that proposed by
Patterson and Sheikh, In which collocation points and functional
nodes are dislocated towards the Interior of any element whose
‘extreme nodes are located at points where surface traction



C.A. Brebbia

Wessex Institute of Technology
Ashurst Lodge

Ashurst

Southampton S04 2AA

UK

F. Paris

J. Dominguez

Escuela Superior de Ingenieros Industriales
Av Reina Mercedes

41012 Sevilla

Spain

Escuela Superior de Ingenieros Industriales

Av Reina Mercedes
41012 Sevilla
Spain

Co-published by

Computational Mechanics Publications
Ashurst Lodge, Ashurst, Southampton, UK

Computational Mechanics Publications Ltd

Sole Distributor in the USA and Canada:

Computational Mechanics Inc

25 Bridge Street, Billerica, MA 01821, USA

and

Elsevier Science Publishers Ltd

Crown House, Linton Road, Barking, Essex I1G11 8)JU, UK

British Library Cataloguing-in-Publication Data

A Catalogue record for this book is available

from the British Library

ISBN 1-85166-703-8 Elsevier Applied Science, London, New York
ISBN 1-85312-210-6 Computational Mechanics Publications, Southampton
ISBN 1-56252-135-7 Computational Mechanics Publications, Boston, USA

Set

ISBN 1-85312-211-4 Computational Mechanics Publications, Southampton
ISBN 1-56252-136-5 Computational Mechanics Publications, Boston, USA

Library of Congress Catalog Card Number 92-82810

No responsibility is assumed by the Publishers for any injury and/or damage to persons
or property as a matter of products liability, negligence or otherwise, or from any use
or operation of any methods, products, instructions or ideas contained in the material

herein.

(© Computational Mechanics Publications 1992

Printed and bound in Great Britain by The Alden Press, Oxford

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, of transmitted in any form or by any means, electronic, mechanical, photocopy-

ing, recording, or otherwise, without the prior written permission of the Publisher.






