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Abstract

A discussion of the situations in which petroleum reservoir models generate shocks,
together with a general formulation of the jump conditions to be satisfied by them, is
presented. In addition, a bricf review of the procedures available for treating them is
made and the [ront tracking mcthod is explaincd with some detail. Then, an Eulerian-
Lagrangian approach to the modeling of shocks, that was introduced by the authors
in a previous paper, for treating the advance of a gas [ront into a region of occupied
by undersalurated oil, is explained.

1 Introduction

This chapter stems from a previous paper,' in which a mcthod for treating shocks
occurring in variable bubble point problems of petroleum engincering was proposed.
The procedure offers some novelty, in that it is an Eulerian-Lagrangian mcthod for
tracking Lhe discontinuous fronts and in addition, it uses finite difference approxima-
tions which are applicable to discontinuous functions. In the present chapter, a more
extensive discussion of the situations in which petrolcum reservoir models gencrate
shocks, including methods which are available for treating them, is presented.

For this purpose, onc must distinguish between ‘miscible’ and ‘immiscible’
displacement. - By immiscible displacement, it is usually understood? one in which
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the different phases involved do not mix at all and there is no mass exchange between
them. This is the case, for example, when water is injected through some wells, in
secondary recovery.

On the other hand, if complete mixing or ‘miscibility’ is attained, so that only
one phase is formed, the term *miscible’ displacement is most frequently applied. This
is the case, for example, when CO, is injected to form a single fluid phase with the
resident hydrocarbon.

Another situation that can occur is ‘partial mixing’, in which two or more phases
can exchange mass but in which there is no complete mixing, so that each one of the
different phases keeps its own identity. This is the case, for example, in reservoirs
containing liquid oil and soluble gas, when the bubble point varies.

In actual reservoirs, diffusive processes are always present and discontinuities are
smoothed out, so that shocks cannot occur. However, if the advection terms are dom-
inant, very steep fronts may develop and the modeling of such continuous although
rather sharp fronts, has been and still is, a very challenging problem of computational
mechanics.

Many methods have been presented in the literature for representing such fronts
accurately. A class of such methods, which has been specially successful, is based on
the method of characteristics.®” However, the shortcomings that such methods had,
were the lack of mass conservation property and that they did not treat.-the bound-
ary conditions properly. A generalization of such methods that has been developed
recently,®~!° overcomes these problems and is being implemented further (see for ex-
ample Refs 11-15). Such generalization was obtained combining the modified method
of characteristics (an Eulerian-Lagrangian approach) with the author’s localized ad-
joint method!®~!® and it is known as ELLAM.

If the diffusive processes can be neglected, then shocks may occur. In the case
of miscible displacement, the diffusive processes are associated with dispersion and it
seems that in most cases of miscible displacement of practical interest, dispersion can
not be left aside.?® On the other hand, in reservoir models with several phases which
are immiscible or only partially miscible, shocks can occur when capillary pressure is
neglected.

The starting point for the understanding of shocks in immiscible displacement,
was the classical Buckley-Leverett theory,?2~% which was further enlighten by the
work of Cardwell & Sheldon,?*** who explained clearly the way in which shocks are
generated in such processes. A very important step forward was made, when the
Buckley-Leverett theory was set in the framework of the general theory of ‘hyperbolic
conservation laws’ (see, for example Ref. 26).

One of the most successful methods that have been proposed for modeling shocks
in miscible displacement, is ‘front tracking’. This was introduced by Richtmyer,*’
and was developed extensively by Glimm, McBryan et al. (see, for example Ref.
28). Many descriptions of the method at different states of development have been
published (see, for example Ref. 29) and a very recent one has been presented by

Bratvedt et al.3®
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On the other hand, shocks which occur when the phases are treated as partially
miscible, as is the case when a gas front advances into a region occupied by undersat-
urated liquid oil, have not received as much attention.

Since the purpose of this Chapter is to discuss shocks, attention is restricted to
phases which are miscible or partially miscible, and capillary pressure is neglected in
all cases. The physical basis of the fundamental equations which govern the flow and
transport of fluids in a reservoir, are the balance equations of Continuum Mechanics.
Thus, the technical discussions, in Section 2, start by presenting the ‘general jump
conditions’ which must be fulfilled in order to satisfy the balance equations. In Section
3, the classical Buckley-Leverett theory is revised and shock formation is explained in
Section 4. The general framework of ‘hyperbolic conservation laws’ is introduced in
Section 5, where the front tracking method for immiscible displacement, is discussed.
The study of shocks in partially miscible displacement is begun in Section 6, where
the jump conditions are applied and the velocity of a discontinuous front is. derived.
The Eulerian-Lagrangian method for modeling shocks that was introduced in Ref.
1, is presented in Section 7 and the finite difference formulas, which are an essential
ingredient of this method, are explained in Section 8. Section 9 is devoted to present
a numerical application to a variable bubble point problem.

2 Jump conditions

To give to our developments a firm physical and mathematical basis, we start by
revising the balance equations of continuum mechanics. The synthesis of this theory
that has been given in Refs 31 and 32, is very convenient for our purposes. In the
case of multi-phase systems, each a phase moves with its own velocity v®. Here,
a =1,...N, where N is the total number of components. In any phase there may be
several components, but all components contained in the same phase move with the
same velocity. The balance equations satisfied by any intensive property ¥® associated
with component «, are;

P+ V(@) =Vt = gt (1)

and

(v —vg) = 7°] - n=gg (2)
Here, the vector 7 is the flux of ¥* across surfaces in space, while the quantities
g* and g¢§ represent external supply of ¥ (Refs 31 and 32), per unit volume and

unit time, in the case of ¢* , while g¢ represents external supply of ¥* through
the discontinuity, per unit area and unit time. In addition, vy stands for the velocity

with which the discontinuity moves. In all the applications that follow, the intensive
properties are densities (mass per unit of total volume) of each one of the components
of the systems to be considered.

Equation (1) is the ‘general differential balance law’, to be satisfied at every point
of the space occupied by the continuous system. Equation (2) is the ‘general jump
condition’, to be satisfied on surfaces of discontinuity. With respect to this latter
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equation, it is assumed that there is a surface of discontinuity £ (generally, space-
time), which moves with velocity vy and in which the physical variables may have
jump discontinuities. In addition, the square brackets are defined as the ‘jumps’
accross the surface of discontinuity ¥. More precisely, for any function [f] = fy — f-,
where f, and f_ represent the limits of f as % is approached from the positive and
negative sides, respectively. In what follows, unless otherwise stated, the positive side
of ¥ is chosen arbitrarily and then the unit normal vector n, is chosen pointing towards
the positive side of . Finally, it must be mentioned that in the form presented here,
eqn (2) is slightly more general than that of Refs 31 and 32, because the possibility
of non-vanishing external supply through the discontinuity, has been included.

To illustrate the use of eqns (1) and (2), let us apply them to a black oil model. The
black oil (or beta) model that will be considered is based on the following hypotheses:

a. There are three phases: water, liquid oil and gas;

b. Water and oil are immiscible, while gas is soluble only in liquid oil; i.e. the
water and gas phases consist of only one component, while the liquid oil is made
of two components (dissolved gas and nonvolatile oil). This implies that the
total number of components are four and that v®, in eqn (2), is the same for
the latter two components.

c. No physical diffusion is present. This includes both, molecular diffusion and
that induced by the randomness of the porous medium (dispersion}.

With the mass of each one of the components there is associated one intensive
properiy, which represents the mass per unit of total volume of that component. Thus,
one can write:

¢w = <Z’>Sw/7w, 1];0 = QSSO/}m Ujdg = ‘ﬁsopdga & = ¢Sgpg (3)

for the intensive properties associated with water, nonvolatile oil, dissolved gas and gas
in the gas phase, respectively. The notations: g, and g, are used for the effective den-
sities of nonvolatile oil and dissolved gas, respectively. Also, the flux rcorresponding
to each one of these intensive properties vanishes identically, since no physical dif-
fusion is assumed. Applying eqn (1) to each one of these intensive properties, one

gets:
S

(6Supu)e + V- (BpuSuv™) =0 (4)
(pSofo)r + V ($poSov®) =0 (5)
((fb‘sloﬁdg)t. + V- ((p:ﬁdgsovo) = 9?,5 (6)

(@)Sgp&)t + V. (<;)/_7SSZV5) = !]ﬁ) (T)
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where gp is the mass of gas that is dissolved in the liquid oil per unit volume per
unit time, while gf, is the mass of dissolved oil that goes into the gas phase, per unit
volume per unit time, and the extraction terms have been set to zero. Clearly

9t + 91, =0 (8)
for mass conservation. Thus, adding up eqns (5) and (6), one gets
{#(Sopag + Sepg)te + V - {$(PagSov® + pgSegvE)} = 0 (9)
Introducing the formation volume factors, Darcy’s Law, as well as the relation
ﬁdg = PeSTO Rsﬁo (10)
PoSTC

the system of eqns (4), (5) and (9), becomes the familiar system of equations of black
oil models:

V- Du(Vpw — 1w V2)] = %(f:) (11)
v DTr -l = 5 (52) (12

Vo [RAe(Vpo = 1V 2) + Ag(Vpg — 15V 2)]
0 Se S
ey

In a similar fashion applying eqn (2), to each one of the four components, the
following are obtained:

(69w Su(v* = v5)l-n = 0 (14)
[6uSo(v° = vz)] 0 = 0 (15)
(6pagSolv —ve)l-m = g3, (16)
[6peSe(vs ~ve)l ' = gk, (17)

In addition, Darcy’s Law requires:
[p]=0; I=w,o0,¢g (18)

Above, the quantities g3 and g%, stand for the exchange of mass between the gaseous
phase and the component of dissolved gas which is contained in the liquid oil phase.
Mass conservation requires that:

9%, + 98, =0 (19)
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Thus, adding up eqns (16) and (17), it is obtained:
[¢pdgsovo + ¢PgSng] ‘1 — [$pagSe + ¢PgSg]V2 n=0 (20)

Since the pressures of the different phases are continuous, so is the porosity ¢ and py.
This allows cancelling these factors in eqns (14), (15) and (20). Then, they can be

written as:

[Swlve'n — [Syv*]'n=0 (21)
[So/BoJveg-n — [(So/Bs)v°]-n=0 (22)
[RsSo/Bo + Sg/Bglve - 1 ~ [(ReSo/ Bo|v® + (Sg/Bg)vE] - n =0 (23)

where the formation volume factors have been introduced. Equations (21),(22) and
(23), together with (18), constitute the desired system of jump conditions for the
threephase (four component) oil reservoir. They relate the jumps of the physical vari-
ables with the velocity vy of the advancing front. Observe that, in general, the jumps
of the volume factor B, and of Ry may be non-zero since they are functions of the
bubble point, in addition to pressure.

3 Immiscible displacement: Buckley-Leverett theory

In this Section our discussion will be restricted to the case when only two phases
are present and each one of them is made of one component: nonvolatile oil and the
displacing fluid. No mass exchange between these phases is assumed and capillary
pressure is neglected.

The Darcy velocities are defined by:

Uy = ¢Sav*; a=oand D (displacing fluid) (24)

Using them, eqns (4) and (5) can be written as:

(¢Sppp)e + V- (ppup) =0 (25)
(¢Sopo)t + V. (pOUO) =0 (26)

The ‘total Darcy velocity’ is defined by
Ut = up + u, = qS{SDvD + S,v°} (27)

When capillary pressure and gravity forces are neglected, Darcy velocities are given
by
kkrl
i
and the total Darcy velocity, as well as the velocity of the displacing fluid, are colinear.
Thus,

Vp, 1=0,D (28)

u; =

up = fpur (29)
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where fp is a proportionality factor. In view of this equation, one can replace up by
four, in eqn (25), to obtain

(¢Sppp)e + V- (ppfout) =0 (30)

When the fluids are incompressible, the density of the displacing fluid can be cancelled
out, in this equation. If in addition, the solid matrix is also incompressible, such
equation reduces to '

(Sp)e+¢7'V - (four) =0 (31)
Equations (18) to (20), together imply
1
fo(Sp) = —5— (32)
1 + kD Bo

When the liquid phases and the solid matrix are incompressible, eqns (17) and (18)
together imply that V - ur = 0. Hence, eqn (31), can be written as

(Sp)e+¢7 fpur - VSp =0 (33)

because fp is function of Sp, only. Here, ff, stands for the derivative of fp with
respect to Sp. This equation is a first order differential equation for Sp and when
complemented with suitable boundary conditions, it can be solved uniquely for Sp.
Such equation states that the rate of advance of a point that has a certain fixed
saturation, equals the total Darcy velocity ur, multiplied by the factor ¢~*f}. Here,
no gravity segregation has been taken into account, but it is not difficult to incorporate
it (see, for example Ref 29).

Buckley & Leverett,?!'?? were the first to derive the one-dimensional version of
eqn (33). For such a case, one has

(Sp) + ¢~ furdSp/dz =0 (34)

Writing gt for the total rate of flow through a section, the total Darcy velocity can be
expressed as ur = gp/A, where A is the cross-sectional area, and eqn (34) becomes:

(Sb)e + (qr/Ad) fo0Sp/0z = 0 (35)

This is the classical Buckley-Leverett equation. If f{, is nonconstant, the space-time
curves in which Sp remains constant will intersect, in general, leading to multi-valued
solutions which are nonphysical. The problem is similar to that occurring in the study
of compressible fluids, either supersonic flow or the piston problem, and is solved
introducing discontinuous solutions or shocks. The same is done in multidimensional
problems.

Using eqn (24) and the incompressibility of the liquid phases, the jump conditions
(14) and (15), can be written as:

[up] = ¢[Sp]ve (36)
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ul = #[Solve (37)
Adding up these two equations, it is seen that
[ur] =0 (38)

i.e. the total Darcy velocity v, is continuous. Making use of this result and of eqns
(29) and (27), it is seen that

[up] = [folur = #[f/ol{Sov?® + S.v°} (39)

which when combined with (36), yields

_ [/fo] oy _ 1 L/D]
Ve = [TS,—D—]{SDVD + S,v°} = ¢ murp (40)

This relation was first derived by Sheldon & Cardwell,*® for one-dimensional prob-
lems. As has been presented here, it applies to problems in several dimensions, as well.

4 Shock formation in immiscible displacement

According to the discussion presented in Section 3, for immiscible displacement, in
the absence of capillary forces, the points in which the saturations remain constant
move with velocity ¢~! fiur. Let z.(Sp,t), be the position at time ¢, of a point at
'which the saturation is Sp . Then, such point satisfies the differential equation

dz.

at
The solutions of eqn (41), define straight lines in the space-time plane, since the slope
is constant in each one of them.

Assume, z1(Sp) is the initial position, at time equal to zero, of a point in which
the saturation of the displacing fluid is Sp . Then:

zo(Sp,t) = 21(Sp) + t67, (So)ur ' (42)

(Sp,t) = 7" f5(Sp)ur (41)

and the solution of the partial differential equation (34), will be single valued, unless
the equation

Oz,

P (Sp, t) = z1(Sp) + tg~! b(Sp)ur =0 (43)
is satisfied for some Sp . Clearing for ¢, one gets:
¢z1(Sp) ¢
t=— = - 44
S(Sour  Spuf(Solus ()

where Spi(z) is the initial distribution of Sp and a prime is used to denote the deriva-
tive of such function. A shock has to be introduced at the minimal time (t4,) which
satisfies (44). Under the assumption that the velocity ur is positive, a t satisfying
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end (44) would be positive, only if Sp;f5(Sp) < 0. If this latter condition is fulfilled,
tsh is obtained when |Sp;f3(Sp)| is maximum, in eqn (44).
On the other hand, let z5(t) be the position of the shock at time t. According to

eqn (40), one has
dwz [fD]
=¢7 (45)
(5o "
In general, the saturation Sp at the shock varies with time. A necessary condition for
remaining constant, is that the shock moves with the velocity of a point which keeps
fixed the value of Sp ; i.e.

Jz.

o (505 t) = ¢~ fo(Sp)ur (46)

Vg =
In view of eqn (40), this condition is

[fol
S 47
fD( D) [SD] ( )
Equation (47) can be fulfilled during a finite period of time, only if the shock advances
into a region of constant Sp . A special case of this situation is when Sp = 0 ahead
of the shock (Spy = 0). For this case:

f(S0) = f‘; (48)

since fp(0) = 0. A point satisfying eqn (48), can be obtained drawing a tangent to
the curve fp(Sp) from the origin. This is the graphical construction first suggested
by Buckley & Leverett.?? Such construction is the basis of the simplified method for
computing oil recovery, due to Welge.?

In the more general situation in which S is a constant different from zero, ahead
of the shock (Sp+ # 0), the relation (47) in its more general form, must be fulfilled.
It can be written more explicitly, as:

fo(Sp) = 7 D(S;’;j — g‘r’)(_SD") (49)

A point Sp; satisfying such condition can be obtained drawing a tangent to the curve

fD(SD) from the point (SD.., fD(SD_)).
5 The Front Tracking Method

This Section is devoted to present the Front Tracking Method, which is well suited
for treating shocks in immiscible displacement (see, for example Ref. 30). In general,
such procedure is applicable to problems for which the basic equations can be written
as a hyperbolic conservation law or a system of such laws. In several dimensions, a
single conservation law is:

U+ V- f(u) =0 (50)
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Comparing eqns (50) and (1), it is seen that a hyperbolic conservation law, can be in-
terpreted as a balance equation for the ‘intensive property v’, defined in a macroscopic
system in which the ‘particles’ move with velocity
f(u
v(x,t) = fu) (51)
u
Observe that the source terms (g), as well as the fluxes through the boundaries (),
vanish. The corresponding jump conditions (eqn (2)) across a surface of discontinuity
are:

[f(u) —uvg]-n=0 (52)
This latter equation yields
r —
Vy-n = L (’U)] .n= f+<u) f_ (u) (53)
[u] Uy — U

This relation is usually referred to, as the Rankine-Hugoniot condition.
Equation (50) can be expanded to obtain

u + f'(u)- Vu=0 (54)

which states that any given value i of u, remains constant on a straight (characteristic)
line, on which the position vector x(,t) satisfies the condition

0x

ot
As in Section 4, when there is crossing of characteristics, a multi-valued solution will
be obtained, which is non-physical and shocks, fulfilling the Rankine-Hugoniot condi-
tion (53), have to be introduced.

(@) = f'(u) (55)

In one dimension, a single nonlinear conservation law reduces to

ug + %f(u(a:,t)) =0 ' (56)

where f is a continuous and piecewise smooth, scalar function. A fundamental in-
gredient of the front tracking method, is the solution of the Riemann problem with
initial data:

w, forz<0 (57)

uy, forz >0

ulz0) = {

where it will be assumed that uy < u, . In general, the solution of this problem may
be quite complex, but the complexity of the solution is determined by the number of
inflection points that the graph of the function f(u) has. Thus, it is easier to under-
stand the general situation, analyzing first a case when f(u) has only one inflection
point, as in Fig. 1. In this case

flw) = (u~-1P°+1 (58)
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so that

fl(u) =3(u—1)* and f"(u) = 6(u—1) (59)
and the only inflection point occurs at v = 1. If w3 > 1 (Fig. 1a), then the graph of
f(u) between uj and wu, is convex and the solution of the Riemann problem is made
of two space-time regions in which u is constant, connected by a rarefraction wave
without a shock. Assuming u; < 1, define ur as the value u at the point of contact of
a tangent drawn from (w, f(w)) to the graph of f(u), as illustrated in Fig. 1b. Then,
one of the following possibilities takes place:

A. u, < ur In this case, the two space-time regions in which u is constant, are
joined by a straight shock, whose constant speed of propagation is determined
by the Rankine-Hugoniot condition.

B. u; > ur In this case, the space-time region in which u = 1, is limited by a
shock whose speed of propagation, as given by the Rankine-Hugoniot condition,
is f'(ur). Between this shock and the space-time region in which u = u,, there
is a rarefaction wave which joins smoothly with this latter region.

The more general situation in which there may be an arbitrary number of in-
flection points between u; and u; , is a combination of the case described above
and can be treated in a very systematic manner introducing the concept of lower
convex envelop,®® to be denoted by f. . This is defined with respect to the interval
[ur, ue], in which a partition: w = up < uy < ... < uny = u, , is introduced, with the
property that either f.(u) = f(u) or fo(u) < f(u) holds, in each one of the subinter-
vals. If fo(u) = f(u), the solution is a rarefraction wave, and the solution satisfies
u(z,t) = (fo) }(€) there, where ¢ = z/t. On the other hand, at a subinterval at which
fe(u) < f(u) there is a shock, whose speed is { fo(uis1) — fe(us)}/(uig1 — ui), by virtue
of the Rankine-Hugoniot relation. The value of the solution is u; and w41, at the left
and right of the shock, respectively.

The actual implementation of the above solution may be difficult and simplifica-
tions have been introduced to improve its efficiency.>>** Thus, the original function
f may be approximated by piecewise linear functions and its convex envelop is also
piecewise linear. Furthermore, the rarefraction waves are also replaced by shocks mov-
ing with the speeds predicted by the Rankine-Hugoniot condition. In this manner,
the Riemann problem solution consists of constant states exclusively, separated by
shocks.

To apply the method to problems occurring in practice, the solution u(xr,t,),
at time { , is represented by piecewise constant functions on a grid whose spacing
satisfies a Courant- Friedrichs-Lewy condition. This avoids interactions between the
=olutions of the collection of Riemann problems generated in this manner and allows
the construction of the overall solution as a superposition of them. The front tracking
method 1s not limited to one-dimensional problems, although its extension to several
dimensions is not straight forward. The general two-dimensional Riemann problem
solution is quite complicated and apparently the most successful approach has been

operator splitting, 30
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6 The shock velocity in partially miscible displacement

In this Section, a front of gas advancing into a non-saturated liquid oil, is considered.
In the developments, a formula for the ‘jump of a product’ that has been used in
previous work by the author,'*71° will be applied. It is:

[rs] = 7[s] + s[r] (60)

where the dot stands for the ‘average’ across the surface of discontinuity. More pre-
cisely, for any function ‘r’, one has ‘

F=(ry +r-)/2 (61)

To treat the case of a front of gas advancing into a non-saturated liquid oil, the
unit normal n to the gas front I, will be taken with its sense opposite to v&(i.e.
vé.n < 0), so that the positive side of T is that in which the advancing gas is located.
For simplicity, the residual saturation of the gas will be neglected, so that S, = 0
and the only properties of the gas phase which are relevant, are those defined on
the positive side of ¥. Due to this fact, it is convenient to drop the ‘plus’ sign as a
subindex, when it refers to a property of the gas phase. Thus, for example, we write
Bg instead of By,. Using this convention, we define the parameters 7, ( and w, by
means of the relations:

ve-n=nvé-n v°-n=(vé-n (62)
and 5.5,
Y= B.S, (63)
Then, eqs (21) and (23), can be written as:
w(¢—m)] =0 (64)
[Rw(C—7)] + 1-n=0 (65)

Using formula (60), eqn (64) can be transformed into:

(lw] + w[¢] = nlw] (66)
from whick it follows that ‘
¢=n-it] (67

On the other hand, eqn (64), when use is made of the identity (60) and after simpli-
fying by means of eqn (64), can be written as:

(RJw(C —m +1~7=0 (68)
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Here, as in what follows, use is made of a bar to indicate that the average refers to
the whole expression covered by it. From (68), it follows that

[R)(@C —im)] +1 =9 =0 (69)

which can be further simplified by means of an algebraic identity closely related with
(60); this is: w{ = [w][¢]/4 + «(. Applying this identity and combining the resulting
equation with eqn (67), one gets:

=1 (B (10)
[w]

Equations (62), (67) and (70), determine the velocity of the advancing front,
but as they stand, they look criptic. However, they become more transparent when
they are written in terms of a ‘retardation factor ¢’, which exhibits how the relative
velocities (with respect to the velocity of the oil) of the advancing front ¥ and of the
gas, are related. Thus, define the ‘retardation factor €’ by means of the equation:

(vg —v°.) - n=¢g(vE—-v°,)-n (71)

Using eqn {62), it can be seen that

= %{g—i | (72)
When the auxiliary relations:
1=Gr= o 1= G = (14 (R} (73)

which are implied by eqns (67) and (70), after some algebraic manipulations, are used
in eqn (72), the expression:

1 1
= = 74
T Rles 14 (R, g5t ()

for the retardation factor ‘c’, is obtained. Equation (74), together with (71) yields
the velocity of the advancing gas front. Observe that Ry, > R,_, so that 0 < e < 1.

7 Eulerian-Lagrangian modeling of shocks

Equations (71) and (74) are informative and permit acquiring insight into the manner
in which the advance of the gas front takes place. However, for numerical applications
it was better to start from eqns (21)-(23) and transform them in the manner explained
in Ref. 1. »

For simplicity, in what follows only two phases will be considered: oil and gas. In
addition, only a 1-D formulation will be presented, so that gravity effects will be left
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out and as in Section 6, it will be assumed that the gas moves towards the left (i.e.
vy < 0). In this case the jump conditions can be transformed into (see Ref. 1, for

details):

oS + [f] vs + D] M =0 (75)
(2FTe + Ag)S + 2 [¢ (R,g—‘: + g—ﬂ vz 4200 + [RADM =0 (76)

Here the notations : L
o fi]: weE

are understood and capilary pressure has been neglected. In Ref. 1, for the numerical
treatment, eqns (75) and (76) were used as a system of equations for the unknowns
S, vg and M, all of them defined on the space-time surface of discontinuity L(t).
However, this system is not determined since it is 2 by 3. The additional equation
that was needed, was obtained weighting the differential equations (12) and (13) in a
suitable manner, as it is explained next.

The one-dimensional versions of eqns (12) and (13), are:

8 [ O\ 8 (45 _
5 (%) - () -0 %)

5} 0p, Opy 0 Se . Sg _

Oz <Rﬂ/\° Oz e 8:1:) ot {¢<R°E Bg>} =0 (79)
In this Section these equations will be weighted using convenient space-time weights,
deriving in this manner equations suitable for discretization. The weights that will
be chosen lead to what is essentially, a cells method.

It will be assumed that Cu = ~VsAt/Az < 1. The position of the gas front
will be denoted by zz(t). The space interval will be divided into a finite number of
equally spaced cells. Taking time ¢, as starting time, a procedure for constructing
the solution at time t,,, will be developed. The index ‘i’ will be reserved to denote
the cell containing the front at time ¢4, . Since Cu < 1 and Vg < 0, only two cases
must be distinguished. Either, during the time interval (t,,%n41) the gas front does
not cross any inter-cell boundary (Case A); or it crosses one inter-cell boundary (Case
B). Observe that in Case B the inter-cell boundary that is crossed is z;4/2.

Case A

A system of three space-time test functions, will be used in cell ‘I’ (i.e. [Z;_1/2, Tiy1/2])-
It is:

wi(z,t) = 1 | (80)
wi(z,t) = { (81)


http:VEl::.tj
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for the oil and
0, z<zg(t)

w(z,t) = { 1, z>zg(t)

for the gas. The resulting equations are:

[ () s [ (55
th Oz i+1/2 Tie1/2
tnit 1‘-+x/2
/ (Aoa—pﬂ) dt + ( ) (83)
tn Oz i=1/2 Zi_i/2

tngl |+1/2
L7008, [ (o) e
. Oz i+1/2 J-'E(t)
n+l ao z-4-1/2
[ (o) u [ () e
Z(t) zﬂ(‘m{-x)

g1 Tit1/2 n
/ + {R,)\o gapg} dt/ +1/ {¢(Rs§3+§£>} dz =
Oz i+1/2 Tg(tn) BK
tnt1 0p, 6 S,
/ {R.A 9o ”S+¢( L ;)Vz} dt+
tn o 3 =(t)

Tip1/2 So Sg n+1
[ ez e o

(e)n+t
In these equations the usual notation for line integrals has been used. In particular
dt = (1 + Vi)~ dS, where dS is the length in space-time.

Equations (83)-(85) constitute a system of three equations for cell ‘i’, which must
be coupled with the system of jump conditions (75) and (76) and the equations of the
remaining cells ( two for each cell, when a two-phase system is considered), to obtain
a determined system. Assume, for the sake of definiteness, that we are solving for
oil pressure and saturation of the gas. Cells, other than cell ‘i’, can be treated in a
standard manner, solving for oil pressure and gas saturation at the center of the cells.
However, cell ‘1’ must be treated in a special manner. We have available a system of
five equations, constituted by eqns (75),(76) and (83)-(85). A possible choice (and
this one was used in the present study) of the corresponding five unknowns is: the
jump and average of the pressure gradient (S™*! and M™*1, respectively), the velocity

vEt! of the gas front, the gas saturation at the gas front Sis ! (these four unknowns
defined on £(t)) and the oil pressure p;'' at the center of cell ‘i’. In this manner a
determined system is achieved. A special feature of this procedure is that one does
not solve for saturation at the center of cell ‘i’

(82)

°°l

bu]m

Case B
The system of space-time weights to be used in cell ‘i’ (i.e. [2i_1/2, Zit1/2]), 18t

wi(z,t) =1 (86)
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for the oil and 0 0
g _ y T <zp(t
w@wo={ ¢ 570 (87)

for the gas. The system of space-time weights to be used in cell ‘i+1" (i.e. [Ziy1/2, Tita/2]),
is:

wo(z,t) =1 (88)

for the oil and 0 0
g . , zT<zp(t
wy(e,t) = { 1 > zs(t) (89)

for the gas. In addition, a space-time weight with support in the union of cells ‘i’ and
‘141", is applied to the oil equation. It is defined by

wen={ 7 5o (0

Corresponding to these five weighting functions, five equations are derived for the
union of cells ‘i’ and ‘i+1’. Putting them together with the jump conditions (eqns (75)
and (76)) a system of seven equations is obtained. The corresponding seven unknowns
selected for the applications in the present paper were: the jump and average of the
pressure gradient at the gas front at time t,4;, the velocity of the advancing front vy,
the values p*' and p;"-trll, of the oil pressure at cells ‘1’ and ‘i+1’, respectively, and
the saturations of the gas Sit} and Sit! at the center of cell ‘i+1” and at the gas
front, respectively. Again, as in Case A, a special feature of the procedure is that one
does not solve for the saturation at the center of cell ‘i’

8 Finite differences for discontinuous functions

For the construction of an Eulerian-Lagrangian approach to shock modeling it is
essential to apply finite difference formulas to functions with jump discontinuities.
Since the use of such formulas is non-standard, in this Section we present an example, .
to illustrate the procedure. S L

Consider an interval of the real line and a uniform partition in it, as shown in
Fig.2, where a notation usual in applications of the cells method has been adopted.
Thus, the ‘nodes’ will be the centers of the subintervals of the partition. The ith
subinterval (cell) of the partition will be [; /s, Zi41/2], whose center is z;, and it is
limited by the interelement boundary points z,_;/ and z;y1/2. In Fig. 2, we have
illustrated three neighboring cells (cells ‘i-17, ‘i’ and ‘i+1’). Assume the first derivative
of the oil pressure p, , has a jump discontinuity at zg and 2;_1/; < =g < Zigy)2 Po
itself being continuous. Our purpose is to construct a second order approximation to

(%Pf)i—uz' If z; < zx one can apply the usual centered finite difference formula:

apo - Poi — Poi-1 | 2
(61: >i~1/2 = A + O(h*) (91)
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However, when zp < z;, eqn (91) is not applicable and a modified formula, accounting
for the discontinuity, is needed.
In what follows the notation

3Po] [azpo]
| =8 ; =R (92)
[6: b 9z* | ¢
is adopted and an auxiliary function p, , defined by:
. [ po—3S(x—zx)~IR(z~z5)? ifzzr<c=z (93)
T Pot3S(z~z5)+ R(z ~2x)?, ifz<ap

X X X
X1—1 1 % 1+1
| K X— | X | Case A
X X
1-1/2 1+1/2
b4 X
xl-—i XZ i 141
| X—X X Case B
X X
1-1/2 1+1/2
Figure 2.

This function is C*. Therefore, writing Az = h, one has:

(8[70) —= ﬁoi"‘ﬁos’-—l +O(h2)
i~1/2

Oz h
PPt Se ) - Bhie pae ) o) (o)

with ¢ = (zg — z;)/(h/2). Here, the assumption that the partition is uniform, has
been used. On the other hand

8ﬁ0 apo S Rh 2
ht 4 = [ Lo °_ 9
(az)i—lﬂ <8$>a—1/2+ 2 4 €+ +00 (%)
Combining (94) and (95), it is obtained:
apo Dot ™ Poi-1 S Rh 2 2
SRl L h
(3, = Bt gt Tge v oo (96)

The jump ‘R’ of the second derivative is not known and in applications of formula (96)
to partial differential equations, it is necessary to eliminate it. The second derivative
of p, will be computed in two alternative forms:
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(a) - Firstly, the standard centered difference formula is applied to p,. For our
purposes it is only necessary to consider the case when z5 < z; . Using eqn (93) it is
seen that

X h h?
Poict = Poi-t = 78(€+2) + FRE+ 2)? (97)
X h R? )
Doiz1 = DPois1 + 25(5 -2) - '1‘672(5 -2) (98)
. h h? 2
Poi = Dai+ ;1‘55 - 1'6735 (99)

Therefore
. . R h h? 2
Poi—1 + Poi+1 = 2Poi = Poi-1 + Poit1 — 2Poi — 55(5 +2) + ER(f + 4¢) (100)

and

9%po __ Poi-1 + Foiv1 — 2poi S R, .. 2 -
(33:2)"' 5 = op(E+2)+ (0 + 48 + O(hY) (101)

(b) - Secondly, the first derivative of p, is differentiated. Thus,

9*p, _ (%%)H—l/? - (%%)E-o_ +O(h)
O0x? i - Tiy1/2 — Tz

which can also be written as

(62 Ao) - (%E;Ea)i+l/2 - (%%)2.;.

5 s oW (102)

Taking the derivative of eqn (93)
Opo _ 0Po _ :S: (103) -
Jz ) g, oz )y, 2

8ﬁo _ apo _g_ﬁ(x‘ _ )
Oz i+1/2~ 9z 12 2 2 T

This latter equation can be transformed into

(ap°> S Peim P S Rhy (104)
Oz i+1/2

and

because

<8Po> _ Poi+1 — Poi + O(hz)
8:1: i+1/2
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Therefore 923 0 R
o Poi+1 — Pos
= —d —— h
(a> h(l_o{ ; oz+} X o) (105)
where the notation 5
Po

dox: = 106
2= (% ) (106)

is understood. Using the relation dy54 = dox + S/2, combining eqns (101) and (105),
and clearing for R, one gets

_w” [ (€4 Dpoigs + (€ = Dpoi—t — 2€po; : 45
R"T{ L ‘2({02“5}+m+0(h) (107)

where w™ = —8/(€ + 2)2(¢ — 1). This equation case is applied when zg € [z;-1/9, zi].
Similarly, when zg € [y, Zi11/2), one has

_wt [(E 4 Dpoirr + (€ = 1)poi-1 — 26poi : 48
vah—{ h _2d02+5}+h—(§—:—25+0(h) (108)

where wt = 8/(¢ — 2)%(¢ +1).
9 Numerical results

In this Section, some numerical results that were obtained! using the Eulerian-
Lagrangian procedure for modelling shocks; together with a finite difference black
oil simulator, neglecting capillary pressure, are presented.

A linear reservoir is considered, producing at a constant oil rate of 800 m /day
at the left boundary, and a no flow boundary at the right end (L = 550 meters) .
This reservoir is composed of two zones, a left undersaturated oil zone and a right
saturated zone, where the oil and gas phases coexist. Initially, the pressure is the
same for all positions, Sg = 0.7 in the saturated zone, and the front is located at z=
275 meters.

The PVT properties for the oil phase consist of constant viscosity and two values
of B, and R, , one at the left side of the front and another at the right side, respec-
tively. For the gas phase the PVT properties used, are typical in the oil industry.
Straight line relationships are used for the relative permeabilities,

In order to check the validity of the simulator results, we have considered two
cases: firstly, the undersaturated zone was taken as incompressible, and secondly, a
non-zero value was given to the rock compressibility.

The analytical solution for the first case in the undersaturated zone dictates a con-
stant pressure gradient. Figure 3, shows a comparison of pressure profiles at different
times for this case. Two kinds of profiles are presented. The solid lines correspond
to the solution obtained when the proposed formulation is included, and the dashed
lines correspond to the traditional formulation in which jumnps are not considered. As
already mentioned, the pressure gradient is constant in the incompressible zone.

To correlate the transient (one phase) solution for a slightly compressible liquid
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Figure 5: Comparison on pressure drop behavior for new and old formualations.
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Figure 8: Average of the pressure gradient at the front for the compressible and
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with a multiphase flow solution, Raghavan & Camacho,?*=37 have proposed the use
of a function of pressure and saturation, called pseudopressure, which is defined as

follows: EAW (5[ k. 8P
m(p) = , /zzo [ﬂo BOB—:cJ dr (109)

For a linear system containing a slightly compressible liquid, Nabor & Barham®
have shown that the pressure drop behaves linearly with time in a log-log plot, with a
slope of one-half during the transient period. Once the outer boundary is manifested
in the response, the solution deviates from a straight line moving up for a closed
outer boundary and achieving a constant value, when a constant pressure in the outer
boundary is prescribed. When, as in the traditional approach, the jumps are not
considered in the formulation, the pseudopressure will deviate below the straight line
for a closed outer boundary, after the transient period. To overcome this limitation,
Camacho & Raghavan®®" suggested to include an additional integral in the right
hand side of eqn (109). In this manner, variations in the average properties are taken
into account.

For a constant pressure (constant saturation) outer boundary, eqn (109) yields a
constant value, equal to the position of this boundary, after the transient period has
ended. Figure 4 shows the behavior of the pseudopressure for the compressible case.
The solid line corresponds to the solution obtained when the jumps are included, and
the dots correspond to the traditional formulation. It can be observed the presence of
a straight line with one-half slope during the transient period, for both formulations.
Observe that when the jumps are considered in the formulation, the pseudopressure is
equal to the position of the front, since this has a similar effect to an outer boundary
of constant pressure. For the formulation without jumps, the pseudopressure falls
below because of the reason explained before.

The behavior of pressure at z = 0 is shown in Fig. 5. In Fig. 6 it is presented
a comparison of pressure profiles at different times. The results of Figs 5 and 6
correspond to those of Fig. 4. The solid lines represent the proposed formulation and
the dots the traditional formulation.

Figures 7 to 10 show the behavior of vy, m, §, and, zg versus time, respectively,
for both compressible and incompressible inner zone cases. The solid lines represent
the compressible case and the dots the incompressible one.
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