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ABSTRACT 

In a sequence of papers the authors have investigated shock 
modeling in miscible displacement, specially in connection 
with variable bubble-point problems in Petroleum Engineering. 
The conclusions in connection with the mechanisms of shock 
generation are summarized here. The main conclusion is that 
there is a clear difference between the mechanisms of shock 
generation in miscible and immiscible displacements. In 
particular, Bucley-Leverett Theory which has been the main 
tool to understand shocks in immiscible displacement, is not 
applicable to shocks in miscible displacement models. In 
addition, some of the implications of these results, for the 
numerical model ing of shocks in miscible displacement are 
discussed. 

1 INTRODUCTION 

In a sequence of papers [1,2,3], the authors have 

investigated the different kinds of shocks that can be 

generated when modeling petroleum reservoirs and the procedures 

available for numerically modeling them. This paper is devoted 

to summarize our conclusions, so far, in connection w1 th 

shock generation. 

When discussing this topic. it 1s necessary to distinguish 

between "miscible" and "immiscible" displacement. By immiscible 

displacement, i t is usually understood [4J. one in which the 

different phases involved do not mix at all and there 1s not 
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mass exchange between them. This is the case, for examp1e, when 

water is injected through some wel1s, in secondary recovery. 

On the other hand, if complete mixing or "miscibili ty" is 

attained, so that only one phase is formed, the term "miscible" 

displacement is most frequently app1ied. This is the case, for 

example, when CO is injected to form a single fluid phase with 
2 

the resident hydrocarbon. 

Another situation that can occur (1), to which we wiU I 
refer as "partial mixing", is the case when two or more phases 

can exchange mass but in which complete mixing does not ~ake 
I 

place, so that each one of the different phases keeps its own 

identity. This happens, for example, in reservoirs containing 

liquid oi1 and soluble gas, when the bubble point varies and a 

gas phase is present, at least in part of the region modeled. 

The starting point for the understanding of shocks in 

immiscible displacement, was the classical Buckley-Leverett 

theory [5-7], which was further enlighten by the work of 

Cardwell and Sheldon (8,9], who explained clearly the way in 

which shocks are generated in such processes. The mechanism in 

this case, is similar to that occuring in the theory of 

inviscid compressible fluids, in which shocks are generated 

when characteristics intersect. For a more complete explanation 

of these p01nts, the reader 1s referred to [1]. 

Shocks which occur when the phases are treated as 

partially miscible, as is the case when a gas front advances 

into a region occupied by undersaturated liquid oil, are not 

generated by the crossing of characteristics and have not 

received as much attention. In this paper it is shown, that 

such shocks are generated by the sudden transformation of an 

undersaturated oil particle into a saturated one, when such 

particle is reached by a saturating phase, as a gas phase. For 

immiscib1e disp1acement, i t is generally accepted that shocks 

can occur only when capi llary forces are neglected. On the 

other hand, for partially miscible displacement, the resul ts 

summarized in this paper indicate that shocks may occur even 

when capi1lary forces are taken into account, in the beta or 
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black-oil model. This last statement implies an evolution in 

the understant ing of the processes of shock generation, wi th 

respect to previous works (see for example [1]), 

One of the most successful methods that have been proposed 

for modeling shocks in immiscible displacement, is "front 

tracking". This was introduced by Richtmyer [10], and was 

developed extensively by Glimm, McBryan and coworkers (see, for 

example [11]). Many descriptions of the method at different 

states of development have been published (see, for example 

[12) or [13J). The reader is referred to [1], for a more 

detailed discussion. 

One of our conclus1ons, which 1s specially relevant for 

the numer1cal modeling of shocks, 1s that the front-tracking 

method, which is based on the use of characteristics, is not 
j; 

app11cable to partially miscible displacement, as is 
¡ 

tI 

explained in Section 5. Due to this fact, it is necessary to l' 
¡:look for competitive alternatives. For this purpose, the 
11 
1, 

authors have proposed a procedure: the Eulerian-Lagrangian I1 

1:" 

modeling of shocks [3]. This method is being tested at present, 1I 

n 
and some publications have already been devoted to i t [1,2). 

However, additional research which is needed, is underway. The 

interested reader is referred to the aboye publications, since 

in this paper we have prefered restricting our attention to the 

mechanisms of shock generation, exclusively. 

To give our developments a firm basis, the resul ts 

presented in this articIe are derived from first principIes. 

Thus, Section 2 is devoted to present the basic equations, which 

constitute the starting point of our developments. Section 3, 

in which shock generation in immiscibIe dispIacement is 

discussed, the classical Buckley-Leverett theory is revisited. 

Shock generation in partially miscible displacement is 

discussed in Section 4. Sorne of the implications that the 

results presented have in the modeling of shocks, are examined 

in Section 5. 
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2 THE BASIC EQUATIONS 

To give to our developments a firm physical and 

mathematical basis, we start from first principIes. In the case 

·of multi-phase systems, each phase " moves with its own 

particle velocity y". Here, ." = 1•... , N, where N is the total 

number of components. In any phase there may be several 

components, but all components contained in the same phase move 

with the same velocity. The balance equations satisfied by any 

intensive property ~" associated with component ", are (see the 

Appendix) : 

(la) 

and 

[~"(y"-y¿)- !"Jon = g~ (lb) 

Here, the vector "!' is the flux of " ~ across surfaces in 

space, while the quantities g" and g~ represent external supply 

of ~" [14,15J, per unit volume and unit time, in the case of 

g", while g~ represents external supply of ~" through the 

discontinuity, per unit area and unit time. In addition, y¿ 

stands for the velocity with which the discontinuity moves. In 

all the applications that follow, the intensive properties are 

densities (mass per unit of total volume) of each one of the 

components of the systems to be considered. In them, the fluxes 

!' are produced by diffusive processes such as molecular" 

diffusion and dispersion. 

Consider a "black oil" or "beta" model [16], which is 

based on the following assumptions: 

á).- There are three phases: water, liquid oil and gas (whose 

particle velocities will be denoted by yW, yO and y9, 

respectively); 

b).- Water and oil are immiscible, while gas is soluble only in 

liquid oil; i.e. the water and gas phases consist of only 

one component, while the liquid oil is made of two 

components (dissolved gas and non-volatile oil). This 

implies that the total number of components are four and 

that the latter two components move with the same 

( 

" 
I 
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velocity; and 

c). - No physical diffusion is presento This includes both 

molecular diffusion and that induced by the randomness of 

the porous medium (dispersion). 

It is lmportant to observe that these assumptions do not 

exclude capillary pressure. 

In what follows, the notations and P , for the 
dg 

effective densities of non-volatile oil and dissolved gas, 

respective1y, together with the re1ation 
PgSTC

P = R P == -.;;....-- Rs Po (2)
d9 s o P 

oSTC 

will be used. Here, the factor R is the "solution gas: oi1 
s 


ratio" [16]. 


,¡ A straight-forward application of Equ. (la) , yie1ds: 

+ r¡. (<j> P S yw) = O (3)(<j> S.Pw)t w w 

(if> S p) r¡.(<j> p S yo) O (4)+ = 
o o t ° ° 

o(<j> S Rp) + r¡.(cf> RpS yo) = (5) 
o s ° t s ° o gI9 

(<j> S p) + r¡.(<j> P S v9) = g9 (6)
9 9 t 9 g- lo 

as the governing differentia1 equations of the black 011 model 

[16]. Here, gO is the mas s of gas tha t 1s dissolved in the 
Ig 

1iquid oi1 per unit vo1ume per unit time, while gg is the mass 
lo 

of dissolved oi1 that goes into the gas phase, per unit vo1ume 

per unit time, and the extraction terms have been set equal to 

zero. Clear1y 

gO + gg = O (7)
I9 lo 

for mass conservation. 

When shocks occur, each one of the four components must 

satisfy the jump conditions which are implied by mass balance. 

By virtue of Equ. (lb), they are: 

[~ p S (vw_v )]·n = O (8a)
't' W W - -¿: ­

[<j> pS (yO-y~)J·n = O (8b) 
o o L. 

(9a) 
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[~ p s (v9-v )]-n
9 9 - -l: -

= g9
l:o (9b) 

In addition, Darcy's Law requires: 

[p ]
1 

= O .
' 

1 = w 
.. 

o, g (10) 

Above, the quanti ties g~g an~ g~o stand for the exchange of 

mass between the gaseous phase and the 1iquid oi1 which takes 

place on l:. As before, mass conservation requires: 

gO
l:9 

+ g9
l:o 

= O (11 ) 

When these quantities are different from zero, and this is the 

case at the gas front when i t advances into a region of 

undersaturated oi1, a mass exchange concentrated on the surface 

l:, between the gaseous and the 1iquid 011 phases must occur. 

This is in contrast wi th the quanti ties gO and g9 of Equs.
19 lo 

(5) and (6), which represent a mass exchange distributed on a 

vo1ume and not concentrated on a surface. 

3 IMMISCIBLE DISPLACEMENT 

In previous work [1], an ana1ysis of the different 

processes of shock generation that can occur in mu1 tlphase 

flow, has been carried out. In that research, two different 

processes of shock generationhave been identified. Name1y: 

i).- Intersection of characteristics, just like in flow of 

compressible fluids; and ii). - The sudden 

transformation of an undersaturated particle i.nto a 

saturated one. 

The first one of these mechanisms takes place in 

immiscible displacement. Such process is described by the 

classical Buckley-Leverett Theory. On the other hand, the 

second one occurs in partial1y miscible displacement, as for 

example, when gas invades a region of undersaturated oil. 

A.- Immiscible Displacement 

In this case, shocks are generated by the first of these 

mechanisms, exclusively [1]. For the sake of completeness and 

comparison. Buckley-Leverett Theory is revised briefly in this 

Section, where, our discussion will be restricted to the case 
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when only two phases are present and each one of them is made 

of one component: non-volatil oil and the displacing fluid. No 

mass exchange between these phases is assumed and capillary 

of pressure is neglected. 

es The Darcy velocities are defined by: 

u -a. = </J S va. 
a. ­ ; a. = o and D (displacing fluid) (12) 

Using them, Equs. (3) and (4) ean be written as: 

(</J Sopo)t +'V'(pu) = O 
0-0 

,he 
+ 'Ve(p!:!)(</J SoPo) t = O 

o oof 
The Iltotal Darey velocity" is defined by 

o o 
u = u + u = </J{So y + So y } Ir. 1 -o -o 

IS. When capillary pressure and gravity force s 

veloeities are given bya 
~kr1 

!:!1 = - 'Vp, l=o,D
J1.1 

(13a) 


(13b) 


(14) 

are neglected, Darey 

(15) 

and the total Darcy veloei ty, as well as the veloci ty of 
mt 

the displaeing fluid, are eolinear. Thus, 
lse 

u = fu, (16)
-o 01mt 

where f is a proportionali ty factor. In view of this 
o 

equation, one can replaee u by fu, in Equ. (13a), to obtain 
-o 01 

(</J Sp)t + \7'(pfu) = O (17)
o o D D1of 

When the fluids are incompressible, the density of the 
len 

displaeing fluid can be caneelled out, in this equation. If in 
a 

addition, the solid matrix is also incompressible, such 

equation reduces to 
in 

(SD)t + 4>"1'V. (f 1tr) = O (18)
o:he 

Equations (14) to (16), together imply 
:he 

1
f (S ) = (19)'or o o k J1. 

1+~ 
k J1.

rO o 

When the liquid phases and.the solid matrix are ineompressible, 

~se Equs. (13) together imply that 'V-u =0. Hence, Equ. (18), can be 
1 

md written as 

lÍs .. 1 
(So)t + 4> f'u '\7S = O (20)

01 olse 
because fo is function of So' only. Here, f' stands for' the 

o 
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1 
11 derivative of f with respect to S. This equatlon ls a flrst 

D o 
JI order differential equatlon for S and when complemented with 

Dl'
,1 suitable boundary conditions, it can be solved unlquely for S .
:1 . o 
Ji 

Such equation states that the rate of advance of a point that 
1I 

has a certain fixed saturation, equals the total Darcy velocityji 
'1 
i u. mul tipl ied by the factor if1-1f'. Here, no gravi ty

1 D 

segregation has been taken lnto account. but it is not 

difficult to incorporate it (see, for example [12]). 

BuckIey and Leverett [5,6], were the first to derive the 

one-dimensional version of Equ. (20) . For such case, one has 

(S ) t + if1-1f' u as I ax = o (21)
o 01 o 

Writing q for the total rate of flow through a section. the 
T 

total Darcy velocl ty can be expressed as u =q lA, where A is
1 T 

the cross-sectional area, and Equ. (21) becomes: 

(S )t + (q IAif1)f'aS lax = O (22)
o T o o 

This is the classical Buckley-Leverett equation. If f' 
D 

is non-constant, the space-time curves in which S remains o 
constant will intersect, in general, leading to mul ti-valued 

solutions which are non-physical. The problem is similar to 

that occurring in the study of compressible fluids, ei ther 

supersonic flow or the piston problem. and is solved 

by introducing d1scontinuous solutions or shocks. The same 1s done 

in multidimensional problems. 

Using Equ. (12) and the incompressibility of the liquid 

phases and the solid matrix, the jump conditions (8), can be 

written as: 

[~] = cj>[So]Yí: (23a) 

[Yo] = if1[So]Yí: (23b) 

Addlng up these two equations, it ls seen that 

[u ] = O (24)
1 

l.e., the total Darcy velocity v, is continuous. Making use of 
1 

this result and of Equs. (16) and (14), it is seen that 

[u ] = [f]u = if1(f ]{S VD + S yO} (25) 
1) 01 D D- ° 

which when combined with (23a), yieIds 
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[f ]
o o o 

Y¿ = 1ST {So y + So y } = (26) 
o 

This relation was first derived by Sheldon and Cardwell [25J, 

for one-dimensional problems. As has been presented here, it 

applies to problems in several dimensions, as'well. 

B.- Shock Formation in Immiscible Displacement 

According to the discussion presented in Section 3, for 

immiscible displacement, in the absence of capillary forces, 

the points in which the saturations remain constant move with 

velocity ~-1f'u. Let x (S ,t), be the position at time t, of a 
o-r e O 

point at, which the saturation is S . Then, such a point satisfies o 
the differential equation 

8x 
e 

(S ,t) = ~ -1 f' (S )u (27)
8t D O o-r 

The solutions of Equ. (27), define straight lines in the 

space-time plane, since the slope is constant in each one of 

them. 

Assume, x (S ) is the inltial position, at time equal to 
1 O 

zero, of a point in which the saturation of the displacing 

fluid is S. Then: 
D 

x (S ,t) = x (S ) + t~-lf' (S )u (28) 
e DIO O D-r 

and the solution of the partial differential equation (21), 

will be single valued, unless the equation 
8x 

e -1-(S t) = X' (S ) + t~ f" (S)u = O (29)
8x O' 1 O O o-r 

is satisfied for sorne S . Clearing for t, one gets:o 
~x' (S ) ~ 

1 o 
t = - ----= (30) 

f' , (S )u S' f" (S )u 
o D-r 01 o D-r 

where S (x) is the initial distribution of S and a prime 1s 
DI O 

used to denote the derivative of such function. A shock has to 

be introduced at the minimal time (t ) which satisfies (30).
sh 

Under the assumption that the veloci ty u 1s positive, a t 
-r 

satisfying Equ. (30) would be posi tive, only if S' f" (S ) <O. 
DI D O 

If this latter condition i8 fulfilled, t is obta1ned when 
sh 

15' f" (S ) I is maximum, in Equ. (30).
DI D D 

On the other hand, let x¿(t) be the position of the shock' 

at time t. According to Equ. (26), one has 
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(31) 


In general, the saturation S at the shock varies with time. A 
D 

necessary condi tion for remaining constant, 1s that the shock 

moves wi th the veloci ty of a point which keeps fixed the value 

of S . 1. e. :
D' ax 

v~ = at
e 

(S ,t) = <P 
-1 

f' (S )u (32)
'" D D Di 

In view of Equ. (26), this condi tion is 

[f ] 
f~(SD) = [SD] (33) 

o 
Equ. (33) can be fulfílledduring a finite period of time, only 

if the shock advances into a regíon of constant S. A special
D 

case of this situation is when S =0 ahead of the shock (S =0).
D D+ 

For this case: 

f 
o

f' (S ) = (34)
D D S 

D 

since f (0)=0. A point satisfying Equ. (34), can be obtained 
D 

drawing a tangent to the curve f (S ) from the origino This is
D D 

the graphical construction first suggested by Buckley and 

Leverett [22]. Such construction is the basis of the simplified 

method for computing oil recovery. due to Welge [7]. 

In the more general si tuation in which S is a constant 
D 

different from zero, ahead of the shock (S *0), the relation 
D+ 

(33) in its more general form, must be fulfilled. It can be 

written more explicitly. as: 

f (S ) - f (S ) 
f' (S ) = o D+ D D- ( 35 ) 

D D S - S 
0+ D­

A point S satisfying such condition can be obtained drawing a 
D+ 

tangent to the curve f (S ) from the point (S .f (S ». 
D D 0- D D­

4 PARTIALLY MISCIBLE DISPLACEMENT 

In Section 3, we have seen that in immiscible displacement 

shocks correspond to discontinuities of the saturation fluid S 
D 

and tha t shocks are generated when space-time lines carrying 

constant values of S. intersect. In the present Section. it 
D 

will be shown that on the contrary, in miscible displacement, 

shocks are associated with discontinuities of the solution 



Free and Moving Boundary Problems 445 

gas:oil ratio R and that lines carrying constant values of R 
s s 

can not lntersect. Thus, the lntersectlon of characteristlcs as 

a shock generating mechanism must be ruled out, in this case. 

In addi tion, i t will be shown that when a particle of 

undersaturated 011 is reached by a gas front, the transition 

from an undersaturated state to a saturated one, is 

discontinuousand generates a shock. 

A.- Bubble-Point Conservation PrincipIe 

In this Section, two phases will be considered: liquidoil 

and gas. As was explained previously, in a Beta or Black Oil 

model, diffusion is excluded. Due to this fact, the following 

general result holds. 

In the absence of a gas phase, oi 1 part icles conserve their 

bubble- point. 

Proof. When the gas phase 1s not present, the governing 

differential equations are: 

(e/> S p) + \1. (e/> PS yo) = O (36)
° oto ° 

(e/> SR p) + \1-(e/> R pS yo) = gOlg (37) 
o s ° t s ° o 

In the presence of (36), Equ. (37) can be replaced by 

o1> S p {(R ) + yO."ílR } = g (38) 
s° ° s t Ig 

Observe that when the gas phase is not present o 
=0 andgI9 

Equ. (38) may be reduced to 

(R ) + y °- "ílR = O (39) 
s t s 

This equation states that in the absence of a gas phase, R 
s 

remains constant on particles moving with the velocity of the 
ooil phase, v. Thus, R remains constant on oil particles and 

- s 

the bubble-point is conserved. 

B.- Shock Generation 

This imposes some limitations on the paths that thevalue 

of R on an oil particle can describe on the R -p plane (see, 
s s 

Fig. 1). The one shown in Fig. la, is feasible and corresponds 

to the well known phenomenon which occurs when a single-phased 
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mixture of oi1 and gas, starting at state "n", is depressurized un< 
beyond the bubb1e point, so that free gas becomes ava11able and SU( 

the liquid oi1 remains saturated when depressurization is aci 

continued. Then the mixture is pressurized again until all the or 
gas present 1s dissolved and the liquid oil becomes thE 

undersaturated, f1nally reaching state "n+l" t in Fig. la..Of 

course, such path is reversible: we can start at state "n+l" 

and by successive depressurization and pressurization, reach del 

state "n". Observe that the point at which the mixture will jUI 

leave the saturation curve when 1t 1s repressurized, depends on 

the amount of free gas available. In actual reservoir models, 

such amount of gas is supplied by the gas phase, which in turn 

is determined by the relative motion of the gas phase, wi th 

respect to the oil. 

On the other hand, on an oil particle, the values of R 
s Nol 

cannot follow a trajectory such as the one joining points "n" otl 

and "n+l", in Fig. lb, since i t implies that the R 
s 

changes un: 
without reaching the bubble point. That 1s, that R 

s 
changes si< 

when the gas phase is absent, so that the bubble-point pn 

conservation principIe is violated. fo: 

It seems that in actual models, when dealing with variable thE 

bubble-point problems, i t is more efficient to replaee Equ. 

(37) by the "bubble-point eonservation principle", instead of of 

integrating both Equs. (37) and (38) simutaneously, as is by 

usual1y done. When this approaeh is fo1lowed, in the absenee of 

a gas phase all trajeetories of partie1es are horizontal, in WhE 

the p-R
s 

planeo Trajectories like the one shown in Fig. lb, 

which are usua1ly ine1uded (see for example, Figs. 12.6b and c, 

of [16]), must be exeluded when an oil particle is fo1lowed. 

On the other hand, a trajectory sueh as the one 

illustrated in Fig. le, is admissib1e for an 011 partic1e. It 

corresponds to an oi1 partic1e whieh is initially ROl 

undersaturated (point "n") so that the gas phase is absent Vil 

neeessarily, and at sorne point the oi1 partie1e is reached by a 

gas phase (point SR) so that it suddenly becomes saturated and 
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under further pressurization R moves on the saturation curve. 
s 

Such trajectory has a point of discontinui ty at SH and in 

actual reservoir models, it gives rise to a discontinuous front 

or shock. This is the mechanism of shock generat10n which 15 

the maln subject of the present papero 

When a gas front advancés into a reglon of undersaturated 

oi1 the surface where the properties are discontinuous wi11 be 

denoted by L and wil1 be referred to, as the shock. On L, the 

jump conditions (8b) and (9), must be sat1sfied. They are: 

(40a) 

(40b) 

[~p S (vq-v )]·n = gq (40c)
q q - -L - Lo 

Notice, in one side of ¿ no free gas is availab1e, whl1e the 

other one is occupied by the advancing gas. To be speciflc, the 

unit normal vector "n" to ¿ will be taken pointing towards the 

side of the advancing gas. Then S =0, and only the gas 
g­

properties on the posi tive side are defined. Thus, in what 

follows the subindex "plus" will be dropped when referring to 

the gas properties. 

In the developments that follow, a formula for the jump11 

of a product 11 tha t has been used extensively in previous work 

by Herrera [16-19], wi 11 be appl ied. It ls: 

[rs] = r[s] + s[r] (41) 

where the dot stands for the "average" across the surface of 

discontinui ty. More precisely, for any function "r" , one has 

r = (r +r )/2 (42) 
+ ­

In the presence of (8b) , Equ. (9a) can be wrltten as: 
• 

(43) 

However, the product ~p S (yO_y~) 15 contlnuous, by
o o ¿.. 

virtue of Equ. (6b). Thus 

(44) 
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and (43) becomes 
4> p s (vo-v)[R]"n = g¡:g° (45)

+ 0+ 0+ -+ -¡: S -

Furthermore, add1ng Equs. (45) and (9b), it 1s obtained: 

Let us define the "retardat10n factor e" by: 

(v - vO)·n = e(vg - vO)·n (47)-¡: -+ - - -+­

Observe that y¡: - y:, 1s the relative velocity of the advanc1ng 

gas front w1 th respect to the oU, while yg - y: is the 

relative velocity of the particles in the gas phase also with 

respect to the oil. The retardation factor e, which as will be 

seen is always positive and less than one, expresses how 

smaller the relative velocity of the gas front is in comparison 

to that of the gas. 

Noticing that 

(vg-v ) = (v9 - vOl - (v - VD) (48)- -¡: - -+ -¡:-+ 
and clearing for e in Equ. (12), it is seen that 

1 
e = (49)

p S 
1 + [R 1 0+ 0+ 

S P 
9 9 

The whole system of jump cond1 tions can now be replaced by 

Equs. (8), together w1th (47), where e is given by Equ. (49). 

Observe that, as stated, O<e~l, since R -=R . This shows that 
s+ s­

the relative velocity of the gas front with respect to the oi1, 


is not equa1 to the relative velocity of the gas, but. 1 t 1s 


reduced by a "retardat10n factor" e. 


5.- NUMERICAL IMPLICATIONS 


One of the most effective procedures for dealing wi th 

shocks in Petroleum Eng1neering, is the Front-Tracking Method 

[10-13]. Such method is based on the use of characteristics, 

since a Riemann problem 1s solved at each time step (see (1). 

for example). However. the shock wh1ch occurs in partially 

miscible disp1acement and which have been described in Section 

4 of th1s paper, is not generated by the crossing of 

characteristics. Thus, the Front-Tracking Method 1s not 



ng 

he 

th 

be 

:)w 

:)n 

l, 

ls 

:h 

>, 

I , 

.y 

>n 

Free and Moving Boundary Problems 449 

applicable. In such si tuations al ternative procedures must be 

applied. A procedure, that has been proposed by the authors 1s 

Eulerian-Lagrangian, modeling of shocks (see [1,2]). This method 

is being the subject of research at present whose results will 

be reported elsewhere. 
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APPENDIX 
The reader can find a convenient presentation of the 

"Balance Equations of Continuum Mechanics", in [14]. They have 

been written in Equs. (1). However, our notatlon differs 

slight1y from the notation of [14] and also Equ. (lb) is in a 

form sllghtly more general than that presented in [14]. Thus, 

this Appendix Is devoted to explain those differences. 

In the notation here followed, which was introduced in 
a.

[15], the mass M of any component a., in a region Q is written 

as 

(A. 1) 

In particular, the masses of water, non-volatile oil. disolved 

gas and gas in the gas phase, are: 

MW=J rpS p dx' HO=J rpS p dx' Wq=J rpS p dx' Mg=J....,rpS p d~ (A.2)
Q W w -' Q o o -' Q ° dg -' ~'g 9 

This permits identifying 

I/1w = rpS p ; -.po = rpS P ; litg = rpS p ; 1/19 = rpS P (A. 3) . 
w w ° o ° dg 9 9 

Then (3) to (6) follow by sustitution of (A.3) into (la). and 

(8) and (9) by sustitution of (A.3) into (lb). 

In addition, Equ. Ob) Is more general than Equ. (1. 3-6) 

of [14], because we have included the term g~ which accounts 

for the possi bi 1 i ty of having mass supply through a 

dlscontinuity surface. As was explained at the end of Section 

2, thls is essentlal in order to be able to model a gas front 

which advances into a region occupied by undersaturated oi1. 
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