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ABSTRACT

In a sequence of papers the authors have investigated shock
modeling in miscible displacement, specially in connection
with variable bubble-point problems in Petroleum Engineering.
The conclusions in connection with the mechanisms of shock
generation are summarized here. The main conclusion is that
there is a clear difference between the mechanisms of shock
generation in miscible and immiscible displacements. In
particular, Bucley-Leverett Theory which has been the main
tool to understand shocks In immiscible displacement, 1is not
applicable to shocks 1In miscible displacement models. In
addition, some of the implications of these results, for the
numerical modeling of shocks iIn miscible displacement are
discussed.

1 INTRODUCTION

In a sequence of papers [1,2,3], the authors have
investigated the different kinds of shocks that can be
generated when modeling petroleum reservoirs and the procedures
available for numerically modeling them. This paper is devoted
to summarize our conclusions, 'so far, in connection with
shock generation.

When discussing this topic, it is necessary to distinguish
between "miscible" and "immiscible" displacement. By immiscible
displacement, it is usually understood [4], one in which the

different phases involved do not mix at all and there is not
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mass exchange between them. This i1s the case, for example, when
water is injebted through some wells, in secondary recovery.

On the other hand, if complete mixing or "miscibility" is
attained, so that only one phase is formed, the term "miscible"
displacement is most frequently applied. This is the case, for
example, when CO2 is injected to form a single fluid phase with
the resident hydrocarbon.

Another situation that can occur [1], to which we will
refer as "partial mixing", is the case when two or more phases
can exchange mass but in which complete mixing does not take
place, so that each one of the different phases keeps its own
identity. This happens, for example, in reservoirs containing
liquid oil and soluble gas, when the bubble point varies and a
gas phase is present, at least in part of the region modeled.

The starting point for the understanding of shocks in
immiscible displacement, was the classical Buckley-Leverett
theory [5-7], which was further enlighten by the work of
Cardwell and Sheldon [8,9], who explained clearly the way in
which shocks are generated in such processes. The mechanism in
this case, 1s similar to that occuring in the theory of
inviscid compressible fluids, in which shocks are generated
when characteristics intersect. For a more complete explanation
of these points, the reader is referred to [1].

Shocks which occur when the phases are treated as
partially miscible, as is the case when a gas front advances
into a region occupied by undersaturated liquid oil, are not
~ generated by the crossing of characteristics and have not
received as much attention. In this paper it is shown, that
such shocks are generated by the sudden transformation of an
undersaturated oil particle into a saturated one, when such
particle is reached by a saturating phase, as a gas phase. For
immiscible displacement, it is generally accepted that shocks
can occur only when capillary forces are neglected. On the
other hand, for partially miscible displacement, the results
summarized in this paper indicate that shocks may occur even

when capillary forces are taken into account, in the beta or
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black-oil model. This last statement implies an evolution in
the understanting of the processes of shock generation, with
respect to previous works (see for example [1]).

One of the most successful methods that have been proposed
for modeling shocks in immiscible displacement, 1is "“front
tracking”. This was introduced by Richtmyer [10], and was
developed extensively by Glimm, McBryan and coworkers (see, for
example [11]). Many descriptions of the method at different
states of development have been published (see, for examplé
[12] or [13]). The reader 1is referred to [1], for a more
detailed discussion.

One of our conclusions, which is specially relevant for
the numerical modeling of shocks, is that the front-tracking
method, which is based on the use of characteristics, is not
applicable to partially miscible displacement, as is
explained in Section 5. Due to this fact, it is necessary to
look for competitive alternatives. For this purpose, the
authors have proposed a procedure: the Eulerian-Lagrangian
modeling of shocks [3]. This method is being tested at present,
and some publications have already been devoted to it [1,2].
However, additional research which is needed, is underway. The
interested reader is referred to the above publications, since
in this paper we have prefered restricting our attention to the
mechanisms of shock generation, exclusively.

To give our developments a firm basis, the results
presented in this article are derived from first principles.
Thus, Section 2 is devoted to present the basic equations, which
constitute the starting point of our developments. Section 3,
in which shock generation in immiscible displacement 1is
discussed, the classical Buckley-Leverett theory is revisited.
Shock generation in partially miscible displacement is
discussed in Section 4. Some of the implications that the
results presented have in the modeling of shocks, are examined

in Section 5.
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2 THE BASIC EQUATIONS

To give vto our developments a firm physical and
mathematical basis, we start from first principles. In the case
-of multi-phase systems, each phase o moves with 1its own
particle velocity g@. Here, @ = 1,..., N, where N is the total
number of components. In any phase there may be several
components, but all components contained in the same phase move
with the same velocity. The balance equations satisfied by any

intensive property wa associated with component «, are (see the

Appendix):

wf + V'(wax“)—V-za= ga (1a)
and

[wa(xa—zz)— 3“]*2 = gg (1b)

o« o .
Here, the vector T, 1is the flux of Y across surfaces in

space, while the quantities ga and g; represent external supply
of wa [14,15], per unit volume and unit time, in the case of

ga, while g; represents external supply of wa through the

discontinuity, per unit area and unit time. In addition, Vs
stands for the velocity with which the discontinuity moves. In
all the applications that follow, the intensive properties are
densities (mass per unit of total volume) of each one of the
components of the systems to be considered. In them, the fluxes
Ia, are produced by diffusive processes such as molecular
diffusion and dispersion. )
Consider a "black o0il" or "beta" model [16], which is
based on the following assumptions:
a).- There are three phases: water, liquid oil and gas (whose

g

o
and v,

particle velocities will be denoted by xw, v
respectively);

b).~- Water and oil are immiscible, while gas is soluble only in
liquid oil; i.e. the water and gas phases consist of only
one component, while the 1liquid o1l 1is made of two
components (dissolved gas and non-volatile oil). This
implies that the total number of components are four and

that the latter two components move with the same
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velocity; and
c).- No physical diffusion is present. This includes both
molecular diffusion and that induced by the randomness of
the porous medium (dispersion).
It is 1important to observe that these assumptions do not
exclude capillary pressure.
In what follows, the notations 50 and Edg, for the
effective densities of non-volatile o0il and dissolved gas,

respectively, together with the relation

p

SR 5 (2)

s o
poSTC

pdg = Rs.poE

will be used. Here, the factor Rs is the "solution gas:oil
ratio" [16].

A straight-forward application of Equ. (la), yields:

(pSp), + (s prwxw) =0 (3)
(¢ SOEO)t ¥ V'(¢ 'Bosoy‘o) =0 . (4)
- - Q - 0o
(¢ SORSpo)t + Ve (o spOSOy_ ) = gIg (5)
. gy - 9
(¢ Sgpg)t + Vs (¢ pgng ) =g (6)

as the governing differential equations of the black o0il model
[16]. Here, g;g is the mass of gas that 1s dissolved in the
liquid oil per unit volume per unit time, while gzo is the mass
of dissolved oil that goes into the gas phase, per unit volume
per unit time, and the extraction terms have been set equal to

zero. Clearly
o g _
gy +g =0 (7)
for mass conservation.
When shocks occur, each one of the four components must
satisfy the jump conditions which are implied by mass balance.

By virtue of Equ. (1b), they are:
w —
[¢ prw(x -gz)] n=0 (8a)
- o _
) pOSO(x -zz)] n=20 (8b)

[¢ p SR (v°-v)]en = g;g (9a)
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¢ pgSg(y_g-xz)]-g = g%o (9b)
In addition, Darcy’s Law requires:

[pll =0; 1l=w, o, g (10) )
Above, the quantities ggg and g%o stand for the exchange of

mass between the gaseous phase and the liquid oil which takes
place on Z. As before, mass conservation requires:

ggg + g =0 (11)
When these quantities are different from zero, and this is the
case at the gas front when it advances into a region of
undersaturated o0il, a mass exchange concentrated on the surface
2, between the gaseous and the liquid o0il phases must occur.
This is in contrast with the quantities g?g and g?o of Equs.
(5) and (6), which represent a mass exchange distributed on a
volume and not concentrated on a surface.
3 IMMISCIBLE DISPLACEMENT

In previous work [1], an analysis of the different
processes of shock generation that can occur in multiphase
flow, has been carried out. In that research, two different

processes of shock generation have been identified. Namely:

i).- Intersection of characteristics, just like in flow of
compressible fluids; and ii). - The sudden
transformation of an undersaturated particle into a
saturated one.

The first one of these mechanisms takes place in
immiscible displacement. Such process 1is described by the
classical Buckley-Leverett Theory. On the other hand, the
second one occurs in partially miscible displacemeht, as for
example, when gas invades a region of undersaturated oil.

A.- Immiscible Displacement

In this case, shocks are generated by the first of these
mechanisms, exclusively [1]. For the sake of completeness and
comparison, Buckley-Leverett Theory is revised briefly in this

Section, where, our discussion will be restricted to the case
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when only two phases are present and each one of them is made
of one component: non-volatil oil and the displacing fluid. No
mass exchange between these phases is assumed and capillary
pressure is neglected.

The Darcy velocities are defined by:

u =¢S, v& o = o and D (displacing fluid) (12)
Using them, Equs. (3) and (4) can be written as:
(¢ SDpD)t + V-(ngD) =0 (13a)
(¢ Sp), +V(pu) =0 (13b)
oo t oo
The "total Darcy velocity" is defined by
- — = D o
wosu o+tu ¢{SD v+ So v} (14)

When capillary pressure and gravity forces are neglected, Darcy

velocities are given by

5krl

u, = - m Vp, Il=o0,D (15)
and the total Darcy velocity, as well as the velocity of
the displacing fluid, are colinear. Thus,

u = fu, (16)

=D DT
where fD is a proportionality factor. In view of this
equation, one can replace gD by ngT, in Equ. (13a), to obtain

(¢ SDpD)t + V-(prDgT) =0 (17)

When the fluids are incompressible, the density of the
displacing fluid can be cancelled out, in this equation. If in
addition, the solid matrix 1is also incompressible, such

equation reduces to

-1 _
(SD)t + ¢V (ngT) =0 (18)
Equations (14) to (16), together imply
1
1 + ro D
krD“o

When the liquid phases and.the solid matrix are incompressible,
Equs. (13) together imply that V'QT=O. Hence, Equ. (18), can be

written as

-1, . -
(SD)t + ¢ ngT VSD 0 , (20)
because fD is function of SD, only. Here, f; stands for the
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derivative of.fD with respect to SD. This equation is a first
order differential equation for SD and when complemented with
suitable boundary conditions, it can be solved uniquely for‘SD.
Such equation states that the rate of advance of a point that
has a certain fixed saturation, equals the total Darcy velocity
u, multiplied by the factor ¢4f5. Here, no gravity
segregation has been taken into account, but it 1is not
difficult to incorporate it (see, for example [12]).

Buckley and Leverett [5,6], were the first to derive the
one-dimensional version of Equ. (20). For such case, one has

(S,), + ¢ £luds /ox =0 (21)

Writing 9. for the total rate of flow through a section, the
total Darcy velocity can be expressed as g%=qT/A, where A 1is

the cross-sectional area, and Equ. (21) becomes:

(SD)t + (qT/A¢)fBBSD/6x =0 (22)

This 1is the classical Buckley-Leverett equation. If fg
is non-constant, the space-time curves in which SD remains
constant will intersect, in general, leading to multi-valued
solutions which are non-physical. The problem 1is similar to
that occurring in the study of compressible fluids, either.
supersonic flow or the piston problem, and 1is solved
by introducing discontinuous solutions or shocks. The same is done
in multidimensional problems.

Using Equ. (12) and the incompressibility of the liquid
phases and the solid matrix, the jump conditions (8), can be

written as:

(ul = ¢[S lvs (23a)
[Ho] = ¢[So]y_z (23b)
Adding up these two equations, it is seen that
ful] =0 (24)
-7

i.e., the total Darcy velocity v, is continuous. Making use of
this result and of Equs. (16) and (14), it is seen that
_ D o
[QD] = [fD]gT = ¢[fD]{SD v o+ So v} (25)
which when combined with (23a), yields
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[fn] D o -1[fn]
_\{2=[S—D]{Sny_ +S°g}=¢@% (26)

This relation was first derived by Sheldon and Cardwell [25],
for one-dimensional problems. As has been presented here, it
applies to problems in several dimensions, as well.

B.- Shock Formation in Immiscible Displacement

According to the discussion presented in Section 3, for
immiscible displacement, in the absence of capillary forces,
the points in which the saturations remain constant move with
velocity ¢-1f;gT. Let xC(SD,t), be the position at time t, of a
point at which the saturation is SD.Then,snuﬂla point satisfies
the differential equation

ax

Seo(S,,t) = ¢ 62 (S Ju (27)
The solutions of Equ. (27), define straight 1lines 1in the
space-time plane, since the slope is constant in each one of
them.

Assunme, xI(SD) is the initial position, at time equal to
zero, of a point in which the saturation of the displacing
fluid is SD. Then:

x (S, t) = x (S) + t¢ 1f;)(SD)gT (28)
and the solution of the partial differential equation (21),

will be single valued, unless the equation

ox
c - ’ I -
3% (SD,t) = xI(SD) *te L] (SD)gT = 0 (29)
is satisfied for some SD. Clearing for t, one gets:
¢x’ (S ) ¢
t=-——2 - (30)
£ (S Ju S’ £2’ (S )u
D D =T DI D D' °T

where SDI(X) is the initial distribution of SD and a prime is
used to denote the derivative of such function. A shock has to
be introduced at the minimal time (tsh) which satisfies (30).
Under the assumption that the velocity u is positive, a t
satisfying Equ. (30) would be positive, only if S;If;’(SD)<O.
If this latter condition is fulfilled, tsh is obtained when
|S;1f;’(sn)| is maximum, in Equ. (30). |

On the other hand, let xz(t) be the position of the shock’

at time t. According to Equ. (26), one has -
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-

v
aT ¢ ERl

In general, the saturation SD at the shock varies with time. A

(31)

- necessary condition for remaining constant, is that the shock

moves with the velocity of a point which keeps fixed the value

of S; i.e.:
D

ax v
= _ ¢ = “1e )
Vs T ot (Sn’t) ¢ fD(SD)ET (32)
In view of Equ. (26), this condition is
[fD]
fD(SD) = —[—S—D—] (33)

Equ. (33) can be fulfilled during a finite period of time, only
if the shock advances into a region of constant SD. A special
case of this situation is when SDEO ahead of the shock (SD+=O).

For this case:

[0

£(8,) = §§ (34)

since fD(O)=0. A point satisfying Equ.(34), can be obtained
drawing a tangent to the curve fD(SD) from the origin. This is
the graphical construction first suggested by Buckley and
Leverett [22]. Such construction is the basis of the simplified
method for computing oil recovery, due to Welge [7].

In thé more general situation in which SD is a constant
different from zero, ahead of the shock (SD;¢O)’ the relation
(33) in its more general form, must be fulfilled. It can be
written more explicitly, as: )
508, — 1,15,

SD+- SD-
A point SD+ satisfying such condition can be obtained drawing a

(35)

f;(SD) =

tangent to the curve fD(SD) from the point (SD_,fD(SD_)L
4 PARTIALLY MISCIBLE DISPLACEMENT

In Section 3, we have seen that in immiscible displacement
shocks correspond to discontinuities of the saturation fluid SD
and that shocks are generated when space-time lines carrying
constant values of SD, intersect. In the present Section, it
will be shown that on the contrary, in miscible displacement,

shocks are associated with discontinuities of the solution
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gas:o0il ratio RS and that lines carrying constant values of Rs
can not intersect. Thus, the intersection of characteristics as
a shock generating mechanism must be ruled out, in this case.

In addition, it will be shown that when a particle of
undersaturated oil is reached by a gas front, the transition
from an undersaturated state to a saturated one, is
discontinuous and generates a shock.

A.- Bubble-Point Conservation Principle

In this Section, two phases will be considered: liquid-oil
and gas. As was explained previously, in a Beta or Black 0il
model, diffusion is excluded. Due to this fact, the following
géneral result holds.

The Bubble-Paint Gonserwsation Pnrinciple.

In the absence of a gas phase, o0il particles conserve their
bubble- point.
Proof. When the gas phase 1is not present, the governing

differential equations are:

(¢ 50,50)t + Ve (¢ Eosof) 0 (36)

sv°®) = g° (37)
s 0 o Ig

I

( SRp) + V(¢ R
o s ot
In the presence of (36), Equ. (37) can be replaced by
¢ Sp{(R) + vy VR} =g (38)
o o s t s Ig
Observe that when the gas phase 1s not present g:g=0 and

Equ. (38) may be reduced to
(R), + v>:UR =0 (39)

This equation states that in the absence of a gas phase, Rs
remains constant on particles moving with the velocity of the
0il phase, go. Thus, RS remains constant on oil particles and

the bubble-point is conserved.

B.- Shock Generation

This imposes some limitations on the paths that the 'value
of R on an oil particle can describe on the Rs—p plane (see,
s
Fig. 1). The one shown in Fig. la, is feasible and corresponds

to the well known phenomenon which occurs when a single-phased
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mixture of oil and gas, starting at state "n", is depressurized
beyond the bubble point, so that free gas becomes available and
the 1liquid o0il remains saturated when depressurization is
continued. Then the mixture is pressurized again until all the
gas present 1is dissolved and the 1liquid o©oil Dbecomes
undersaturated, finally reaching state "n+1", in Fig. 1la. Of
course, such path is reversible: we can start at state "n+1"
and by successive depressurization and pressurization, reach
state "n". Observe that the point at which the mixture will
leave the saturation curve when it is repressurized, depends on
the amount of free gas available. In actual reservoir models,
such amount of gas is supplied by the gas phase, which in turn
is determined by the relative motion of the gas phase, with
respect to the oil.

On the other hand, on an oll particle, the values of Rs
cannot follow a trajectory such as the one joining points "n"
and "n+1", in Fig. 1b, since it implies that the Rs changes
without reaching the bubble point. That is, that Rs changes
when the gas phase is absent, so that the bubble-point
conservation principle is violated.

It seems that in actual models, when dealing with'variable
bubble-point problems, it 1is more efficient to replace Equ.
(37) by the "bubble-point conservation principle", instead of
integrating both Equs. (37) and (38) simutaneously, as is
usually done. When this approach is followed, in the absence of
a gas phase all trajectories of particles are horizontal, in
the p—RS plane. Trajectories like the one shown in Fig. 1b,
which are usually included (see for example, Figs. 12.6b and c,
of [16]), must be excluded when an oil particle is followed.

On the other hand, a trajectory such as the one
illustrated in Fig. 1c, is admissible for an oil particle. It
corresponds to an oil particle which is initially
undersaturated (point “n") so that the gas phase is absent
necessarily, and at some point the oil particle is reached by a

gas phase (point SH) so that it suddenly becomes saturated and
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under further pressurization Rs moves on the saturation curve.
Such trajectory has a point of discontinuity at SH and in
actual reservoir models, it gives rise to a discontinuous front
or shock. This 1is the mechanism of shock generation which is
the main subject of the present paper.

When a gas front advances into a region of undersaturated
0il the surface where the properties are discontinuous will be
denoted by ¥ and will be referred to, as the shock. On Z, the

jump conditions (8b) and (9), must be satisfied. They are:

(¢ Eoso(g°-zz)]-g =0 (40a)

(¢ pOSoRS(z —xz)]°g = 8y, (40b)
g_ . = g

[¢ pgSg(z xz)] n = gs (40c)

Notice, in one side of ¥ no free gas is available, while the
other one is occupied by the advancing gas. To be specific, the
unit normal vector "n" to £ will be taken pointing towards the
side of the advancing gas. Then Sg_=0, and only the gas
properties on the positive side are defined. Thus, in what
follows the subindex "plus" will be dropped when referring to
the gas properties.

In the developments that follow, a formula for the " jump
of a product” that has been used extensively in previous work
by Herrera [16-19], will be applied. It is:

[rs] = rls] + slr] (41)
where the dot stands for the "average" across the surface of
discontinuity. More precisely, for any function "r", one has
ro= (r*r)/2 (42)

In the presence of (8b), Equ.(9a) can be written as:

.

¢ p,S (v"-vg )[R 1n = g2 (43)

However, the product ¢p S (xo—xz) is continuous, by
o O

virtue of Equ. (6b). Thus

¢ Eoso(f—gz) =¢p S (v-v.) (44)

+ o+ o+ T+ T
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and (43) becomes
- (o] — - o
¢.p. 5 (¥ -v.)IR ln = 8, (45)
Furthermore, adding Equs. (45) and (9b), it is obtained:

Let us define the "retardation factor &" by:

(ve = v)en=¢ely’ -y)n (47)
Z + +
Observe that Yo = xj, is the relative velocity of the advancing
gas front with respect to the oil, while zg - xz is the

relative velocity of the particles in the gas phase also with
respect to the oil. The retardation factor g, which as will be
seen 1is always positive and less than one, expresses how
smaller the relative velocity of the gas front is in comparison
to that of the gas.
Noticing that
(zg—zz) = (v? - _\1:) - (xz - xi) (48)

and clearing for € in Equ. (12), it is seen that

e= 1 = C(49)

o+ O+
1+ [Rs]p S
g g

The whole system of jump conditions can now be replaced by
Equs. (8), together with (47), where £ is given by Equ. (49).
Observe that, as stated, 0<e=1, since R§+2Rs-’ This shows that
the relative velocity of the gas front with respect to the oil,
is not equal to the relative velocity of the gas, but it is
reduced by a "retardation factor" e.
5. - NUMERICAL IMPLICATIONS

One of the most effective procedures for dealing with
shocks in Petroleum Engineering, is the Front-Tracking Method
[10-13]. Such method is based on the use of characteristics,
since a Riemann problem is solved at each time step (see [1],
for example). However, the shock which occurs in partially
miscible displacement and which have been described in Section
4 of this paper, 1s not generated by the crossing of

characteristics. Thus, the Front-Tracking Method is not
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applicable. In such situations alternative procedures must be

applied. A procedure, that has been proposed by the authors is

Eulerian-Lagrangian, modeling of shocks (see [1,2]). This method

is being the subject of research at present whose results will

be reported elsewhere.
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APPENDIX

The reader can find a convenient presentation of the
"Balance Equations of Continuum Mechanics", in [14]. They have
been written 1in Equs. (i). However, our notation differs
slightly from the notation of [14] and also Equ. (1b) is in a
form slightly more general than that presented in [14]. Thus,
this Appendix is devoted to explain those differences.

In the notation here followed, which was introduced in
{15], the mass M® of any component «, in a region Q is written
as

M = s p%(x, t)dx (A. 1)
In particular, the masses of water, non-volatile o0il, disolved
gas and gas in thé gas phase, are:
M'=[#S p dx; M= ¢S b dx; =¢S5, dx; M'=[ ¢S p dx (A.2)

This permits identifying

W= gSps U= eSp U =¢Sp, s ¥ = ¢S e (A3).
Then (3) to (6) follow by sustitution of (A.3) into (1a), and
(8) and (9) by sustitution of (A.3) into (1b).

In addition, Equ. (1b) is more general than Equ. (1.3-6)

v

of [14], because we have included the term gg which accounts
for the possibility of  having mass supply through a
discontinuity surface. As was explained at the end of Section
2, this is essential in order to be able to model a gas front

which advances into a region occupied by undersaturated oil.
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