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The localized adjoint method, when applied using an Eulerian-Lagrangian frame, has been quite
successful in treating advection-dominated transport. The resulting methodology is known as
ELLAM. In previous work, bilinear functions were used as test functions. In this paper, local
constant functions are used instead, leading to procedures which are appealing because, in addition
to other advantages of ELLAM methods, they ensure local mass conservation, are easy to apply
and can be combined without difficulty with existing solute-transport codes which are based on
finite volumes. In addition, the procedures for deriving the algorithms presented here are used as an
illustration of a general methodology for treating numerically partial differential equations, which
is advocated by the authors. Such methodology consists in identifying the information about the
sought solution which is contained in the approximate one and then using this insight to choose the
interpolation procedure to be applied. @ 1994 John Wiley & Sons, Inc.

I. INTRODUCTION

The numerical solution of the advective-diffusive transport equation is a problem of
great importance because many problems in science and engineering involve such a
mathematical model. When dissipation dominates, most numerical methods produce
adequate results. However, when the process is advection dominated the problem is
especially difficult and most numerical schemes exhibit either nonphysical oscillations
or excessive numerical dissipation, or both. Upstream weighting, which often is used to
address these problems, frequently generates artificial dissipation whose magnitude is of
the order of the size of the grid spacing.

'!\vo important classes of numerical schemes that have been used to overcome the
difficulties in advection-dominated problems are based on applying localized adjoint
methods (LAM) [1-8]. They are derived from two approaches: optimal spatial methods
(OSM) and characteristic methods (CM). In the first one of these approaches, a Eulerian
frame of reference (fixed grid) is employed to apply the LAM methodology [9]. These
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techniques yield methods that are optimal in space, in the sense that in one-dimensional
problems the space solution is exact at the nodes, in the constant-coefficient case, and
highly accurate in the nonconstant-coefficient case [6,7]. However, they introduce very
large time-truncation errors.

In the second approach, a Lagrangian (characteristic) frame of reference is employed to
apply the LAM methodology, leading to what is called the Eulerian-Lagrangian localized
adjoint method (ELLAM) [10-13]. Like characteristic methods [14-20], in general, this
method has the advantage that Courant number restrictions of purely Eulerian methods are
removed to a large extent. However, they present several important additional advantages.
Characteristic methods, in general, have three kinds of limitations: inability to rigorously
treat boundary fluxes when characteristics intersect inflow or outflow boundaries. This is
reflected in their inability to ensure mass conservation and the introduction of numerical
dispersion for some methods, due to low-order interpolation or integration [21]. In contrast
to other characteristic methods, ELLAM permits a systematic incorporation of boundary
conditions and yields mass conservative schemes [10, 12].

There are several ways in which ELLAM can be implemented, depending on the test
functions used. The first that was applied is a finite-element formulation which used, as
test functions, bilinear functions that were advected with the velocity of the fluid [10]. In
this paper, we present an alternative to such an approach, in which the test functions are
piecewise constant, and are advected with the transport velocity of the problem. We call
such a method ELLAM cells, to distinguish it from the previous one [10], which we call
bilinear ELLAM (BELLAM). The procedure we propose has the advantages of ELLAM
methods, described above, but in addition it ensures local mass conservation and yields
algorithms ..that are more convenient for existing solute-transport codes which are based
on finite volumes. Also, the simplicity of the implementation of the method is appealing.

It must be mentioned that we are aware of another procedure in which similar (but
different, as is explained later on) test functions are used [22]. However, the point of
view and the manner in which the schemes are implemented are so different in the two
methods that they are clearly distinct. Some of these differences and the relative merits
of these approaches will be discussed in detail in several sections of the article. Here,
we only cite a few.

To distinguish between these two methods, we will call FVELLAM the method
introduced in [22], as suggested in that paper, and will reserve the term ELLAM cells
for the method we propose in the present article. Typical finite-volume methods lump the
storage integrals and assume that the concentration is piecewise constant within each cell.
However, it was found in [22], and we have corroborated, that such a procedure introduces
unacceptable levels of numerical dispersion. To improve the situation, in FVELLAM a
linear variation (actually, bilinear: linear on each side of the cell center, separately) on
each cell was assumed. In passing, we comment that this is quite similar to a finite-element
approach, since such an assumption is equivalent to using a bilinear basis function.

On the other hand, the point of view adopted in this article, which is explained in the
following sections, advocates identifying first the information about the exact solution
contained in the approximate one and then processing it, in the most efficient manner
that is possible, without prejudging its shape. This allows the derivation of more precise
approximations, because assuming the shape of the solution unduly restricts the accuracy
of the algorithms that can be obtained. This was corroborated by the fact that many of
the numerical difficulties that were encountered when developing FVELLAM [22] did not
occur in the development of ELLAM cells.
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Apparently, most of the other differences between the two methods derive from this
one and were due to ad hoc modifications that were introduced in FVELLAM, in order to
improve difficulties that were not encountered in ELLAM cells. To mention just one, in
spite of the fact that initially in FVELLAM, it was intended that piecewise constant
functions be used as test functions, they were modified to be what the authors call
"approximate test functions," which are nonconstant [22]. In contrast, in ELLAM cells the
use of test functions which are piecewise constant did not produce any numerical difficulty.
On the contrary, the numerical formulation is simpler than that of bilinear ELLAM.

II. BACKGROUND

In previous work [4, 11], it has been pointed out that in the construction of approximate
solutions two important processes occur: (i) gathering information about the sought
solution, and (ii) interpolating or, more generally, processing such information. These
two processes are distinct, although in many numerical methods they are not differentiated
clearly. The information about the exact solution that is gathered is determined mainly
by the weighting functions used. Since this information does not determine uniquely the
sought solution, some processing of it is required in order to fill the gaps of information
and exhibit at the end a unique approximate solution.

Different methods of solution follow different strategies for carrying out this process
of extending the information that is available (interpolation, extrapolation, or both). For
example, in finite-element methods some basis functions are chosen and the approximate
solution is assumed to be a superposition of such functions. In this case, the information
about the exact solution which is gathered by the weighting functions is interpolated in a
manner which is determined by the family of basis functions chosen.

Clearly, it is disadvantageous to carry out the process of extending the information
blindly, not knowing what is the actual information that is available. However, this is
what is usually done. On the contrary, it is advantageous to make use of the insight gained
when the available information has been identified, since the selection of the best procedure
for extending such information is strongly dependent on the information that is at hand.

Due to these facts, in recent works the authors [4,11-13] have advocated an approach
for developing numerical methods in which the processes (i) and (ii) are clearly separated,
the information about the sought solution that is at hand is identified, and then the process
of extending it is based on that knowledge.

The procedure used for deriving the algorithms presented in this article is an illustration
of such methodology. Using Herrera's algebraic theory of boundary-value problems [4-6]
(some background material for the development of this theory is presented in [23] and
additional results of the theory are given in [24] and [25]), which permits localizing
the adjoint, the information contained in the approximate solution is identified and
analyzed [1,11]. This is what should be properly called the localized adjoint method.
Then, depending on the information that is identified, interpolation procedures suitable for
handling it efficiently are selected and applied. In most cases the introduction of basis
functions is not required and, even more, their use is frequently inconvenient, such as for
the problem treated in this article. These points will be discussed further, later on.

An important point to be made is that the use of the algebraic theory for the analysis
of the information has clear advantages over other options, such as the standard theory
of distributions, because of at least two reasons: the use of the algebraic theory permits
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the localization of the adjoint and the simultaneous use of discontinuous trial and test
functions is feasible.

III. METHOD FOR ANALYZING THE INFORMATION

As mentioned previously, a convenient manner of carrying out the analysis of the
information contained in approximate solutions is by application of Herrera's algebraic
theory of boundary-value problems [5,6,23,24]. A special feature is that the analysis is
carried out using exclusively simple inner products which are defined locally. The theory
implies a kind of operator extension which differs from the theory of distributions [25].

The main result required is a Green formula for functions with jump discontinuities
(Green-Herrera formula), which is explained in this section in a brief manner. In its
original form it was presented in [5,6,24], but the interested reader will find detailed and
updated expositions, for partial differential equations and systems of such equations, in
[1] and [11]. In some specific applications, it is feasible to derive the results which are
needed in an ad hoc manner, instead of deriving them from the general formulas of the
theory (see, for example, [10]). However, the framework of the general theory supplies the
guidelines that permit understanding more thoroughly the methodology of analysis, which
is applicable to a great variety of problems, including systems of differential equations [11].

Consider functions defined in a region f1 (possibly space-time), which may have jump
discontinuities across some internal boundary I.. In applications to finite-element methods,
I. could be the union of all the interelement boundaries. The general boundary-value
problem treated by the theory is one with prescribed jumps across I.. The differential
equation is

inn.;f;u = in

Certain boundary and jump conditions are specified on the boundary 00. of 0. and on I,
respectively. When 0. is a space-time region, initial conditions may be thought as part of
the boundary conditions, since they apply in part of the boundary of 0..

Given a differential operator :£ and its adjoint :£*, the Green-Herrera formula is

( w:£udx -( ~(u,w)dx -( §!(u,w)dx

In Jan JI

= ( u:£*wdx -( ceo*(u,w}dx -( X*(u,w}dx, (3.2)
In Jan JI

where ~ and :J! are bilinear functions of u and w, defined pointwise, while ceo* and x*
are the transposes of ceo and X, respectively, which are also bilinear in u and w.

Equation (3.2) can be obtained applying successive integration by parts. However, a
more systematic way, which permits exhibiting the framework that can be used in a very
general class of problems, is presented here. It starts from the definition of formal adjoint,
which requires that :£ and :£* satisfy

w;;£u -u;;£*w = V .{~(u,w)} (3.3)

for a suitable vector-valued bilinear function ~(u, w). Integration over n of Eq. (3.3)
and application of generalized divergence theorem [26] yield:
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({w5£u-u5£*w}dx= ( ffia(u,w)dx+ (ffiI(U,w)dx,
In Jan JI

where the bilinear functions ffia and ffiI are defined on an and I, respectively, by
ffia(u, w) = .Z2.(u, w) .!!

and
~I(U,W) = -[-.l2(U,W)] .ll.. (3.5)

Here, the square brackets stand for the "jumps" across I of the function contained inside,
i.e., limit on the positive side minus limit on the negative side. The positive side of I is
chosen arbitrarily and then the unit normal vector ll. is taken pointing towards the positive
side of I. Observe that generally .<£u will not be defined on I, since u and its derivatives
may be discontinuous. Thus, in the theory, it is understood that integrals over .0. are
carried out excluding I. Consequently, differential operators must be always understood
in an elementary sense and not in a distributional sense.

In the general theory of partial differential equations, Green's formulas are used exten-
sively. For the construction of such formulas it is standard to introduce a decomposition
of the bilinear function ~iJ. Indicating transposes of bilinear forms by means of a star,
the general form of such decomposition is

~iJ(u,w) = .Z;?.(u,w) .ll. = ~(u,w) -C(6*(u,w), (3.6)

where ~(u, w) and C(6(w, u) = C(6*(u, w) are two bilinear functions. When considering
initial-boundary-value problems, the definitions of these bilinear forms depend on the
type of boundary and initial conditions to be prescribed. They are chosen satisfying the
requirement that for any u that fulfills the prescribed boundary and initial conditions,
~(u, w) is a well-defined linear function of w, independent of the particular choice of u.
This linear function will be denoted by giJ [thus its value for any given function w will be
giJ(w)], and the boundary conditions can be specified by requiring that ~(u,w) = giJ(w)
for every test function w.

The linear function C(6*(u, .), on the other hand, cannot be evaluated in terms of the
prescribed boundary values, but it also depends exclusively on certain boundary values of
u (the "complementary boundary values"). Generally, such boundary values can only be
evaluated after the initial-boundary-value problem has been solved.

In a similar fashion, convenient formulations of boundary-value problems with pre-
scribed jumps require constructing Green's formulas in discontinuous fields. The Green-
Herrera formula is obtained, introducing the general decomposition

~I(U,w) = :J(u,w) -X*(u,w) (3.7)

pagegoal = 48pc
of the bilinear function mI(U, w) .This has been done in general for differential operators
whose coefficients may be discontinuous [5]. However, the decomposition is especially
easy to obtain when the coefficients are continuous, since for this case it stems from the
algebraic identity

[:42.(u, w)] = :42.([u], w) + :42.(u, [w])

if :J and X* are defined by

1(u,w) = -~([u],w) ~,
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(3.9b)X*(u,w) = X(w,u) = ~(it,[w]) .fl..

[u] = u+ -u-, it = (u+ + u-)/2. (3.10)

An important property of the bilinear function :Ji(u, w) is that, when the jump of u is
specified, it defines a unique linear function of w, which is independent of the particular
choice of u. When considering initial-boundary-value problems with prescribed jumps, the
linear function defined by the prescribed jumps in this manner will be denoted by jI [thus
its value for any given function w will be jI(W)] and the jump conditions at any point of
I can be specified by means of the equation :Ji(u,w) = jI(W). If the sought solution is
required to be smooth, one would usually have jI(W) = O.

In problems with prescribed jumps, the linear functional value problem has been solved
and certain information about the average of the solution and its derivatives on I is known.
Such information is called the "generalized averages."

A weak formulation of the boundary-value problem with prescribed jumps is

( w.:t'udx -( ~(u,w)dx -(:Ji(u,w)dx
In Jan JI

= ( windx -( ga(w)dx -(jI(w)dx. (3,11a)
In Jan JI

However, this weak formulation is equivalent to

( u.:t'*wdx -( «l,*(u,w)dx -(X*(u,w)dx
In Jan JI

= ( win dx -( ga(w)dx -(jI(W) dx (3.11b)
In Jan JI

by virtue of Eq. (3.2). Equation (3.11a) is the variational formulation in terms of the
data of the problem, while (3.11b), is the variational formulation in terms of the sought
information.

The analysis of the information contained in approximate solutions is based in the
following observations. When the method of weighted residuals is applied, using a system
of weighting functions {Wi,. .., WN}, an approximate solution satisfies

( a.:t'*wa dx -( «l,*(a, wa) dx -(x*(a, wa) dx
In Jan JI

= ( wafndx -( ga(wa)dx -( jI(wa)dx, a = 1,...,N. (3.12)
In Jon JI

Taking into account that Eq. (3.12) is also satisfied by the exact solution, it is seen that

( (u -u);£,*wadx -( «6*(u -u,wa)dx -( X*(u -u,wa)dx = O. (3.13)
In Jon JI

Equation (3.13) is the basis for analyzing the information contained in approximate
solutions. The term f n (u -u);£,*wa dx gives the information about the exact solution u in
the interior of the region of definition of the problem n; the termf an «6*(u -u, wa) dx
gives the information about the complementary boundary values on an; and the term
fIX*(u-u,wa)dx gives the information about the generalized averages in the
interelement boundaries I.
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Consider now the one-dimensional transient advection-diffusion equation, in conserva-
tive form:

(3.14)

subject to initial conditions

u(x,O) = uo(x) (3.15)

and suitable boundary and jump conditions, which for the time being are left unspecified.
In addition, for convenience, it will be assumed that V ~ 0 everywhere. In space, the
interval of definition of the problem will be [0,1] = fix. Observe that in this case the
adjoint operator is given by

;£*w = -~ -..!!.- (D~ ) -V~
iJt iJx iJx iJx

(3.16)

~

Then

w;£u -u;£*w = V .{~(u, w)}

with

u(X,tn) = un(x), (3.19)

where the function un(x) corresponds to the values of the solution at time tn, which by
assumption have been previously obtained.

A partition {Xl,X3/2,XS/2,...,XE-l/2,XE} into E subintervals of the interval [O,i] is
introduced, for which Xl = 0 and XE = i. The points

Xi = (Xi-l/2 +Xi+l/2)/2, i=2,...,E-1, (3.20)

will be referred to as the "cell centers." Notice that Xl and XE are boundary points of
[0, i] and they are not midpoints of any of the subintervals. The partition will be called
"uniform" when hi = Xi+l/2 -Xi-l/2 = h is independent of i, for i' = 2,..., E -1, and
in addition, X3/2 -Xl = XE -XE-l/2 = h/2.

The region .0. is decomposed into a collection of subregions .0.1,..., .o.E, limited by
space-time curves !.i+l/2, i = 1,..., E -1, each one of them passing through Xi+l/2 at
time tn+l, as shown in Fig. 1. It will be assumed that discontinuities may occur on these
lines exclusively and we write

E-1

I= UI;.
;=1

In Eq. (3.17) the divergence is understood to be in space-time.
When constructing a solution of this problem step by step in time, it is convenient to

decompose the time into subintervals. Let [tn, tn+l] be one such subinterval (Fig. 1); then
assuming that the solution at tn has already been obtained, a procedure for constructing
it at tn+l is required. This is the problem we address in what follows. The region of
definition of such problem is fi = fix X [tn, tn+l] and the initial conditions of Eq. (3.15)
have to be replaced by
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XI(W, u) = -(1 + Vi)-I/2[W ]D~ .(3.22b)ax
The remaining functions can be defined similarly and the details have been given in [11].

IV. ELLAM CELLS

In this section, we address the problem of solving the advection-diffusion initial-boundary-
value problem formulated in Sec. III, taking f 0 = O. The sought solution will be required
to be smooth. More precisely, it will be assumed that u and its first spatial derivative are
continuous across I.

A special notation will be used for the characteristic curves of the first-order differential
equation that is obtained setting D = 0 in (3.14). Thus, let the function X(t; X, i) be such
that, for every x and i, it satisfies

~(t;x, i) = V(X(t;x, i), t) (4.1a)
at

The velocity of propagation of these lines of discontinuity is denoted by VI. In particular,
when VI = V, such a line is a characteristic curve.

The bilinear function X(w, u) is associated with the values of u and its first-order
derivative on I, and can be written as

X(w, u) = XO(w, u) + Xl(W, u), (3.21)

where the two bilinear functions XO(w, u) and Xl(W, u) are defined by
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subject to the condition that

(4.1b)X(t; X, t) = x

Then the graph
x = X(t;x, i) (4.2)

is the characteristic curve which passes through the point (x, n. In particular, for the
characteristic passing through Xi+l/2 at time tn+l, the notation Ii+l/2 will be used. This
is given by

x = X(t;Xi+112.tn+1). (4.3)

The position of Ii+ll2 at time tn will be denoted by X~+ll2 (Fig. 1) and it is given by

X7+112 = X(t;Xi+112.tn+1). (4.4)

This is defined only when Ii+ll2 does not intersect the t axis at times t > tn.
The partition {X1,X312,XS12 XE-112.XE} induces a partition of ,0. into subregions

{,O.l.,O.2, ,O.E}. if for each i = 2 ,£"O.i is defined as the subregion of'o' limited
by the curves Ii-l12 and Ii+l12, while ,0.1 is that part of'o' which lies to the left of I312
and ,O.E is the subregion of ,0. which lies to right of IE-l12 (see Fig. 1). More precisely.

,O.i = {(X.t) E'o' I X(t;Xi-l12, tn+1) < x < X(t;Xi+112.tn+1)}, i = 2, £ -1.

(4.5a)

.0.1 

= {(x,t) E .0. Ix < X(t;X3f2,tn+l)},

and
nE = {(x, I) E n IX(I;XE-lf2,ln+l) < x}. (4.5c)

In view of Eq. (3.16), it is clear that any function which is constant in a subregion of n
satisfies the adjoint differential equation there. Because of the simplicity of such functions,
it is tempting to develop a method of solution using them as test functions. In particular,
we consider the system of weighting functions wa(x, I), a = 2,..., E -1, such that for

each a, wa is the characteristic function of n a, i.e.,

[ 1 if (x, I) E.o.a
Wa(X, I) = 0 if (x, I) ~ n°, (4.6)

a = 2,...,E -1. Applying Eqs. (3.21) and (3.22), with any such wa, it is seen that
X (w, u) = 0 except at Ia-lf2 and Ia+lf2' Furthermore, using the fact that VI = V, one
gets XO(w, u) = 0, so that

X(w, u) = Xl(W, u) = ::t(1 + V2)-1/2D~ on Ia~l/2' ,,'t.I)

For any a = 2,..., E -1,0, a does not intersect the lateral boundary x = I, because
it has been assumed that V > 0 and VI = V (Fig. 2). If in addition, O,a does not
intersect the boundary x = 0, then «6(w, u) vanishes everywhere, except at the interval
of an+lo' (i.e., t = tn+l), where Xa-l < X < Xa+l. There, «6(w, u) = -u. Taking all this
into account, the variational principle (3.11b) becomesl xa+1 f "+1 ( au ) f "+1 . un+ldx + D- dt -I

Xa-1 I. ax Ia+1/2 t.

l X;+1 dt =

X;-l

au )D-
ax Ia-t12

undx.
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Equation (4.8) and a modified version of it designed to incorporate terms contributed by
the boundary when .0. a intersects the time axis will be the starting point of our numerical

treatment. Observe that

un+l dx -1::+1
Xa-1

rXa+l

}Xa-l

un dx = O(hk) (4.9a)

and

It
t"+1 I, ~ r I I I I /

I I I I

I I I ~I
I I I ~E-I
I I I I

! ! ~ ','

I,
I

I
I
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FIG. 2. Case when the domain of test functions intersect the lateral boundaries.

f t'+1 (D~ ) dt - f t'+1(D~ ) dt = O(hk), (4.9b)
t. ax Ia+lI2 t. ax Ia-l!2

where h = max(hi+I/2, hi-I/2) and k = (tn+1 -tn). When h and k are of the same order,
O(hk) = O(h2) = O(k2). Thus in later developments it will be generally required that
integrals such as those appearing in Eqs. (4.9) be evaluated to a precision of O(hk2), at
least. It will be assumed that h = k, so that O(hk2) = O(h2k).

Equations (4.9) supply information about the sought solution in the interval
[Xa-I/2,Xa+I/2] at time tn+1 and about its x derivative on the characteristics Ia-l/2 and
Ia+I/2. Our goal will be to concentrate all the information on the value of the solution at
the "cell center" Xa, at time t = tn+l. To this end, in Eq. (4.8), the integrals from tn tQ
tn+1 will be approximated in a fully implicit manner (i.e., by a one-step backward Euler
approximation at tn+I). This yields
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For uniform spacing and constant coefficients, a central difference approximation scheme
is applied, which yields

I(~ ) - (~ ) Ik = Ua+l + Ua-l -2ua k + O(h3k). (4.11)

oX a+l/2 ox a-l/2 h

The extension of this formula to the case of a nonuniform partition can be done in a
similar manner. However, such an approximation is only O(h2) and the overall error in
(4.11) becomes O(h2k).

In characteristic methods, most of the numerical diffusion is due to the interpolations in
space, which are required because, in general, characteristics do not cross the time levels
of the time discretization at nodes. To improve this situation, all the approximations in
space will be carried out with special care. A special feature of the approximations to be
used is that no assumption is made on the shape of the solution.

The first integral in (4.9a) is approximated byl xa+J I ( o2un+l)un+l dx = U~+l ha + -2 h~ + O(h5) (4.12)
Xa-J 24 oX a

and only the second-order derivative requires a numerical approximation, since the
information is being concentrated in the cell centers. To get a tridiagonal structure for the
matrix, it is convenient to use three-point approximations only. In the case of a "uniform
partition," a central difference approximation yields

i:~:J un+l dx = (Ua+l + U~~l + 22ua )h + O(h5). (4.13)

If the partition is nonuniform, the approximation to the second-order derivative by a three-
point scheme is only first order, and the error in the evaluation of the integral in (4.13)
is only order four.

The second integral in (4.9a) is approximated using an approach similar to (4.12), i.e.,
integrating the Taylor expansion of un around the midpoint of the interval [X:-l,X:+l].
However, since such point is not a cell center, un is not known there and an interpolation
must be used to evaluate it. Using three-point formulas, un and its second-order derivative
can be evaluated to orders three and one, respectively. This permits computing the last
integral in Eq. (4.9a) to order four in h.

V. BOUNDARY CONDITIONS

The numerical approximations presented thus far apply only when the subregion n a C n

does not intersect the lateral boundaries aon U a/n, of the region n. When this is not
the case, boundary conditions must be included. This section is devoted to presenting
procedures for dealing with them.

A. Dirichlet Conditions

For this case, we use E -2 test functions, namely, those associated with subregions
0, 2, ..., 0, E -1. In particular, no test function is applied on the first subregion (0, 1) or on

the last one (O,E). See Fig. 2.
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1. Inflow Boundary

Dirichlet boundary conditions are incorporated in the numerical equations in two manners:
directly, through the boundary terms and indirectly, imposing the condition that, in the
numerical approximations, some of the variables take the prescribed boundary values.

Assume 0. a intersects the inflow boundary, as illustrated in Fig. 2. Then

f xa+1/2 f I0+1 [( au ):£udu = Un+l dx -D-

Xa-1/2 1;-1/2 ~x 1:a+l12

( 1;_1/2

-J 1;+112((D~)Ia+1/2 ax

DdU ) j d~ la-1I2 t

jdt -r .t:-112 Vu(O, t) dt. (5.1)
x=O J ta+lfl

The first two integrals on the right-hand side are similar to those appearing in Eq. (4.8)
and can be handled in the same manner as in Sec. IV. In addition, the last one in this
equation is easy to deal with, since u(O, t) is the prescribed boundary value. The third
integral, however, requires special treatment.

First, observe that

= O(h).

x=O

(5.2)

where, for brevity, we have written t* instead of t*(x). The approximation implied by
Eq. (5.2) has the property that the values of the functions involved, at time t*, are
approximated by their values at time tn+l, on the same characteristic. In this manner,
crossing of characteristics is avoided. Such a property is important in order to preserve
the advantages of characteristic methods.

Equation (5.2) can be used to obtain

au
ax

D(':-1/2 [( au
)J ':+1/2 D~ };a+l/2

+ { Xa+l/2

)Xa-1Il
(5.3)

D.

As an illustration of the numerical implementation for this equation, we explain the case
of constant coefficients. In this case

(5.4)

so that

dt*
dx

1
=-v (5.5)

dUn+l dt*
-a;- (x)--;j;:(x) dx + O(hk2).
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and Eq. (5.3) becomes

(t:-II2 [( au )J t:+112 D a; Ia+112

In Eq. (5.6), the derivative aun+l / ax at Xa+l/2 (a = 2,..., E -1) must be approximated
to order O(h2) to be consistent with the order of approximation. For a nonuniform mesh,
this requires a three-point scheme.

For a = 2, the boundary value ui+1 occurs in equations such as (4.11) and (4.13), and
it must be required that at each time level ui+1 be equal to the prescribed boundary value.
This is the indirect manner of imposing the boundary conditions that we referred to at
the beginning of this section.

2. 

Outflow Boundary

Observe that the last test function to be applied is WE-I. The support of this test
function is fiE-I, which does not intersect the lateral boundary x = 1. Thus, none of
the boundary terms involving the outflow boundary occur in the numerical equations and
the prescribed boundary values are incorporated in the numerical equations in an indirect
manner exclusively, imposing the condition UE+I in approximations such as (4.11) and
(4.13).

B. Flux Conditions

For this case, we use E test functions. Thus the test functions associated with regions
.{}.1 and .{}.E, which were omitted when dealing with Dirichlet boundary conditions, are
applied when dealing with this kind of boundary condition, and the values of un+l at zero
and at I are treated as unknowns.

DdU ) j da:; Ia-l/2 t

dt - 1:;-1/2 F(t) dt
ta+l/2

1. Inflow Boundary
Figure 2 illustrates a case in which 0. a intersects the inflow boundary. For flux boundary

conditions, it is more convenient to write Eq. (5.1) in the form1
l xa+ll2 f tO+1[( au ) . ..<£udu = un+l dx -D- -I

{}a Xa-112 t;-112 ax Ia+112

f t;-II2' au

)-ID-
t;+112 )x Ia+1I2

Here,

.=0

is prescribed.
Since F(t) is a datum, the corresponding integral offers no special difficulty in being

approximated to any desired order of accuracy. The other integrals can be treated in a
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is similar to one used in (5.3). However, the term (D~)x=o which appears in Eq. (5.3), is
missing here, because it was incorporated in the flux F. Due to this fact, approximation
(5.8) is only O(k2), which is not consistent with the order of approximation that has been
used in all other terms.

However, such a shortcoming was not manifested in the numerical results that were
obtained using Eq. (5.8). In all our numerical experiments this approximation was used,
since the development of an algorithm fully consistent with the order of accuracy that
was set at the beginning of our discussion would require a procedure considerably more
elaborate.

In addition, it must be mentioned that when the support of a weighting function intersects
any of the comers of the domain 0., the treatment presented requires slight modifications,
whose details we leave out. At the inflow boundary, this happens for two test functions.
One is Wi and there is one more, whose support intersects the comer (0, In), as shown
in Fig. 2.

2. 

Outflow Boundary

The only weighting function whose support intersects the outflow boundary is WE.
Applying it, we get

{
1/ 1/ f '.+1 J{ E ~udu = Un+l dx -.un dx -F(t)dt

n XE-1!2 XE-112 '.

VI. NUMERICAL RESULTS

To test the efficiency of the procedure, comparisons with the bilinear version of the ELLAM
(BELLAM) were carried out. To be in a better position to do the comparison, the same
examples as in [10], which include significant boundary behavior, were solved. They are
described next. For the purpose of comparison, it is convenient to take, as we do in this
section, fix = [a, b], instead of [0,1], which was used in the theoretical discussions.

We consider an advancing Gaussian hill that may cross an inflow or outflow boundary.
Its general expression is

Ua(x,t) = 1 ((1 + 41TDt)1/2 exp -1T(X -Vt)2

1 + 41TDt

manner similar to what was done in the case of Dirichlet conditions. The approximation

Using three-point approximations, one can evaluate the first two integrals of the right-
hand side of this equation to O(h4). The third one offers no difficulty, since F(t) are
data. Finally, an approximating procedure analogous to Eq. (5.8) can be applied to the last
integral. However, the comments that were made immediately after Eq. (5.8) hold here too.
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and the initial and boundary conditions are chosen in such a way that the exact solution
of the problem is (6.1). Thus the initial conditions are

u/(x) = exp( -1Tx2) (6.2)

while the boundary conditions are

(6.3a)u(a,t) = Ua(a,t)

and

(6.4a)

au ) dUD )Vu -D -(b, t) = I VUa -D- (b, t) I

, ax , ax

whenever flux boundary conditions are considered. In the numerical examples, only
Dirichlet and flux boundary conditions were treated.

Several combinations of initial and boundary conditions are prescribed for Eq. (3.1),
but in such a manner that for any of them the exact solution is given by Eq. (6.1). Also,
domains considered were I = [f,9],O = [-3, f], and N = [-3,9], with which the pulse
crosses an inflow boundary, an outflow boundary, and neither, respectively.

(6.4b)

A. Comparison Based on the Euclidean Norm

As explained in previous sections, in the method presented in this article, the information
about the sought solution was concentrated in the cell centers at time tn+l exclusively,
and no base functions were used. This implies that no assumptions were made about the
shape of the solution. This is in contrast with previous ELLAM work, in which shape
functions were assumed [10,21].

One consequence of this way of handling the information is that some of the standard
procedures for measuring the errors of approximate solutions are not appropriate. In [10],
for example, in which bilinear base functions were used (the space of such functions,
which are piecewise linear and continuous in fix, will be denoted by ~, the L2 error of
the approximate solution that BELLAM yields (and such approximate solution necessarily
belongs to ~), was compared with the L 2 error of the projection of the exact solution

on ~. This ratio is necessarily greater or equal to 1, because of the minimal property of
the projection.

When all the information is concentrated at the cell centers, the best we can do is to
obtain the exact values at those points. This, however, does not define a function of the
space ~, and a direct comparison using the L 2 norm is not possible. Of course, one could

try to use linear interpolation of the approximate values at the cell centers to associate an
element of ~ to the approximate solution. However, if one proceeds in that manner, even
the optimal solution (i.e., that whose values at the cell centers are the exact values) would
give an L 2 error that in general will be greater than that of the projection, again because

of the minimal property of the projection. To illustrate this fact and its importance in the
different cases tested, Table I compares the L 2 error of the linear interpolation, when the

u(b,t) = ua(b,t)

whenever Dirichlet conditions are considered. In addition, they are
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TABLE I. Comparison of L 2 errors between the projection of the exact solution on the space
of piecewise linear functions and the function of this space, whose values are exact at the nodes
("interpolation").-

Error
Domain .1.x Projection Interpolation

N 0.267 0.715E-02 0.159E-01
N 0.053 0.265E-03 0.646E-03
I 0.267 0.715E-02 0.159E-01
I 0.053 0.265E-03 0.646E-03
0 0.267 0.497E-02 0.102E-01
0 0.053 0.177E-03 0.429E-03

values at the cell centers are the exact ones, with the error of the projection of the exact
solution, on ,g. It can be seen that in all cases, the L 2 error of the linear interpolation

of the exact values is at least twice that of the projection on ,g. Thus, if this measure
of the error is used, one would not be able to discriminate between different methods on
the basis of performance.

Before leaving this point, we would like to remark that when the information about
the exact solution consists of the exact values at the cell centers, the extension of this
information to the entire interval can be done in manners which are more efficient than
using linear interpolation. For example, one could use a high-order interpolation procedure,
or solve a local problem (this is a kind of postprocessing), to mention just a few of the
possibilities for processing such information.

Therefore a norm that directly compares the values at the cell centers was used to
compare the errors of the different methods. The norm chosen was the "average Euclidean
norm"

1/2

lIu -illl =
E

~ L(Uj -Uj)2
, 1

Here, Uj are the values of the exact solution at the cell centers, while Uj are those of the
approximate one.

Table II summarizes the numerical results. As in the numerical results of [10], the final
time tl = 0.5, Ll.x is taken to be E ~ 0.267 (Pe = ~) and Ll.x = E ~ 0.0533 (Pe = ~).

4 ( 75) 4 For Ll.x = 15, Ll.t = 0.25 was used Cu = "8 .For Ll.x = 75' the values 0.25, 0.05, and0.01 

of Ll.t were used, which correspond to Cu = ~, ¥' and f, respectively. The integrals
involving initial or boundary conditions were evaluated using Gauss- Kromod rules to a
high degree of precision. In Table II, the Euclidean errors associated with the approximate
solutions that were derived using ELLAM cells are compared with those obtained when
bilinear ELLAM [10] is used. In all cases the errors listed correspond to the final time
tl = 0.5.

In general terms, one may conclude that ELLAM cells performed in these examples
slightly better than bilinear ELLAM, with respect to the Euclidean error. Runs 1-4 do not
involve significant boundary contributions. When this is the case, bilinear ELLAM and
the modified method of characteristics (MMOC) become identical [10]. From the results
shown in Table II, it follows that in the example treated, ELLAM cells is slightly more
precise than MMOC. On the other hand, when the boundary contributions are important,
MMOC is considerably less accurate than bilinear ELLAM [10].
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B. Comparison Based on the Maximum Value

In [10], the maximum of the numerical solution was compared with the maximum of the
exact solution. Thus, for completeness, the same comparison was made in this paper and
the results are also illustrated in Table II. Inspecting this table, it is also seen that when
the performance is judged according to this criterium, the results obtained with ELLAM
cells were at least as good as bilinear ELLAM.

Observe that when the domain is 0 = [ -3, T ], the maximum of the Gaussian distribu-
tion (6.1) has already crossed the outflow boundary of the spatial domain, so that when the
boundary conditions are of Dirichlet type, the maximum values of the approximate and
the exact solutions are equal. Hence, this comparison is not informative in those cases.

VII. CONCLUSIONS

Evidence is presented which indicates that the method introduced here (ELLAM cells) is
at least as accurate as bilinear ELLAM (BELLAM) when applied to advection-dominated
transport, but easier to implement and more general, since the test functions used (piecewise
constant) can also be applied when the equations have nonconstant coefficients.

From a more general perspective, the results of this article illustrate some of the
advantages of an approach for developing algorithms to treat numerically partial differential
equations that the authors are advocating [4,11-13], and whose basic ingredients consist
of (a) identifying the information about the sought solution contained in the approximate
one; and (b) using this insight to choose the interpolation procedure.

In this respect, the results presented indicate that in the problem treated here, there are
definite advantages in proceeding in this manner. In particular, many of the problems that
were encountered in the construction of FVELLAM [21] were overcome.

The authors wish to thank Agustin Galindo for his participation in the numerical
computations presented in the paper, and Thomas F. Russell for having made available
the code used in [10]. The work presented in this article was carried out at the Institute of
Geophysics of the National University of Mexico (UNAM).
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