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ABSTRACT INTRODUCTION

Black-oil models neglect diffllsive mechanisms such as
molecular diffllsion or mechanical dispersion; this
omission produces a propensity to developing shocks.
This paper aims to carry out an exhaustive
identification of the kind of shocks that can occur
when black-oil models are applied to problems in
which the bubble-point varies and to establish the
conditions under which they are generated. In addition
to shocks of Buckley-Leverett type, two other classes
of shocks and a bifurcation mechanism, are identified.
Except for shocks of Buckley-Leverett type, all other
shocks may occur in the presence of capillary forces.
The paper contributes to clarify several aspects of
black-oil models and to understand pathologies that
occur in their numerical implementation.

The present paper stems from an effort initiated by the
main author [1-3] to understanding some features of
black-oil (or beta) models [4]; special attention has
been given to the limitations imposed by the
simplifying assumptions of such models. In particular,
they do not incorporate molecular diffusion, nor
mechanical dispersion. A consequence of this
simplification is a property referred here as the
"bubble-point conservation principle": In the ah.\'ellce
(?f a ga.\'-pha.\'e, oil-particles conseroe their di.\'.\'olved

ga.\' colltellt (oil:gas ratio, or equh'alelltly: huhhle
POillt). Physically, this means that, when a gas-phase is
not present, two oil particles cannot exchange
dissolved gas, independently of how close they may
be. This property in turn, produces a propensity of
black-oil models to develop shocks which becomes
apparent in problems wth variable bubble-point. In the
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Then, a summary of the results presented here, is as
follows:
-In the saturated region, the shocks that can occur are

essentially of the type described by the Buckley-
Leverett theory and they exist only if capillary
pressure is neglected.

-In the unsaturated region, the bubble point may have
jump discontinuities and such discontinuities
propagate with the velocity of the oil particles.

-At a gas-front two possible situations must be

distinguished:
a).- A front that advances into an undersaturated

region. At such a front, in general, both the bubble
point and the saturation are discontinuous and the
motion of the front is retarded with respect to the

gas particles.
b ).- A front that recedes from an undersaturated

region. At such a front, only the saturation is
discontinuous and the front moves with the velocity
of the gas particles. In addition, when an advancing
gas front changes its sense of motion and starts to
recede, the shock bifurcates, giving rise to two
shocks: one moving with the oil velocity and the
other one with the velocity of the gas.

It is important to stress that only in one case the
presence of capillary pressure precludes the
occurrence of shocks: in the saturated region where
free gas is present, and shocks ocurring in that region
are described by Buckley-Leverett theory. The other
types of shocks may occur even if capillary pressure is
incorporated in the model. Finally, the jump conditions
that prevail at an advancing gas front are of the same
kind as those that apply in Stefan problems [13].
It seems that the results presented here may be useful
on several counts. Firstly, they contribute to clarify
some aspects of black-oil models. For example, as
mentioned before, a consequence of omitting diffiJsion
and dispersion is the "bubble-point conservation
principle". This property, leads to the preservation of
discontinuities (shocks) of the oil:gas ratio. Further
more, due to the bubble-Qoint conservation QrinciQle,
the manners in which the gas-phase can transfer gas to
the liquid-oil phase, are rather restricted. In this
respect, it has interest to point out that shocks
occurring at an advancing gas front, constitute an
additional mechanism for transferring gas from the
gas-phase to oil-particles; thus, relaxing somewhat

present paper, a gas-front moving into a region
occupied by undersaturated oil -as in a solution gas-
drive- will be considered.
The effects we are referring to, are quite different to
those analyzed by Buckley-Leverett theory and, to
make our points more clear, we found convenient to
place them in the general perspective of shocks that
may occur in black-oil models. Thus, the present paper
describes a systematic and exhaustive-analysis of the
different kinds of shocks that can occur in black-oil
models, and the conditions under which they are
generated, without discussing details of the numerical
implementation, which have been treated in previous
publications [1-3] of this sequence (see also [5-7]).
In some respects, this paper is the continuation -and to
some extent the culmination- of lines of thought that
were initiated in [1-3]. However, the presentation here
intends to be self-contained while avoiding
unnecessary repetitions. Thus Buckley-Leverett
theory, extensively discussed in many other papers [8-
12], is not developed in detail, although some of its
results are briefly described and used. Buckley-
Leverett theory [8-10] deals with an important kind of
shocks which occur in black-oil model applications,
and Cardwell & Sheldon [11,12] explained clearly the
generation mechanisms of such shocks. From a
present-day perspective, Buckley-Leverett theory can
be thought of as a 'hyperbolic conservation law' [5].
The interested reader is referred to [2,7] for a recent
account of such developments. Additional references
on this subject are given there. The results to be
presented in what follows indicate that although
shocks of this kind may occur only when capillary
pressure is absent, this is not the case for other kinds
of shocks discussed here, since the presence of
capillary forces does not preclude their occurrence.
When dealing with variable bubble-point problems, in
general, in which free gas may, or may not, coexist
with liquid oil, the region of definition of the problem
can be divided into three subregions:
a).-A region where free gas is absent, usually,

undersaturated;
b).-A region where gas is present, necessarily,

saturated; and
c).-A gas-front; i.e., a boundary between an

undersaturated and a saturated region.
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3 SHOCKS IN SOLUTION GAS-DRIVE RESERVOIRS

such restrictions. Finally, numerical difficulties may
occur in numerical models when pathologies such as
shocks, are developed. A clear understanding of them
is important to design adecuate numerical treatments
and effectively overcome such difficulties -previous
studies did not deal with such pathologies explicitly
(see for example [14-16]).
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oil per unit volume per unit time, while gr" is the mass
of dissolved oil that goes into the gas phase per unit
volume and per unit time.

Clearly

THE BLACK-OIL MODEL

g;g +gfo =0 (3)

for mass conservation.
There are situations in which it is necessary to
consider discontinuous solutions. Surfaces on which
discontinuities take place are usually referred to as
"shocks" and will be represented by 1:; its unit normal

vector will be ~. Mass conservation requires the jump
conditions [1,2]:

[cf>Po So(L -~I)].n=O (4a)

[cf>PoSoRs(L-~I)].n=g~g (4b)

[cf>pgSg(~-~I)].n=g~ (4c)
to be satisfied at shocks. Here, square brackets stand
for the jump of the function inside; i.e., value on the
positive side minus value on the negative one; in the
understanding that the unit normal vector points
towards the positive side. The velocity of the shock is

For simplicity, we consider a "black-oil" or "beta"
model, consisting of two phases, liquid oil and gas

(whose particle velocities are denoted by ~o and ~g,
respectively), based on the following assumptions:

.Gas is soluble in liquid oil; i.e., the gas phase
consists of only one component, while the liquid
oil is made up of two components (dissolved gas
and non-volatile oil). This implies that the total
number of components is three and that the
latter two components move with the same

velocity;
.No physical diffiJsion is present. This includes

both molecular diffiJsion and that induced by the
randomness of the porous medium (mechanical

dispersion).
Black-oil models, in general, include the possibility of
non-vanishing capillary pressure, as is done here.

--
We use the notations Po and P dg , for the effective

densities of non-volatile oil and dissolved gas,
respectively, together with the relation:

-P gSTCwhere R =-Rs s .-
PoSTC

The factor Rs is the "solution gas:oil ratio" [4].
Application of the mass conservation conditions [1,2]

yields:

Pig = RsPo,

~I" while the quantities g~g and g!. are introduced to

account for the exchange of mass, on L; between the
gas and liquid oil phases. When these quantities are
different from zero (as at a gas front which advances
into a region of undersaturated oil), a mass exchange
concentrated on the surface L, between the gas and
liquid phases, takes place. This is in contrast with the

quantities g;g and gfo of Eqs. (2b) and (2c), which

represent a mass exchange distributed on a volume
and not concentrated on a surface.
Mass conservation requires:

(1)

(2a)

(2b)

g~g +gL =0 (5)

In addition, Darcy's Law implies:

[p.]=;l=O, g (6)
Eqs. (2) to (6), when complemented by suitable

constitutive equations such as Darcy's Law for multi-
phase systems, constitute a complete system of
governing equations for the black-oil model. Darcy's

(q,Sgpg)t + V.( q,Pg Sg~g)= gfo (2c)

No extraction terms, due to wells, have been included

and g;g is the mass of gas that is dissolved in the liquid
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are more easily derived applying the equations given
here.
Now let us restrict our attention to situations in which
a gas front divides the region of study into two
subregions: one in which free gas is present (the "gas
region") and the other in which there is only
undersaturated oil (the "unsaturated oil region"). To
be specific, at the gas front, the unit normal vector

(n)will be taken as pointing towards the gas region.

By a complete system of governing equations we
mean that when such a system is complemented with
appropriate initial and boundary conditions well posed
problems are defined. In Section 5, initial-value
problems in one dimension will be considered. The
region of definition of such problems will be the
interval [0,1], for t>O, and the gas region will be
located at the right-hand side of the gas front. In that
case, several combinations of initial and boundary
conditions lead to well posed problems. For example,
one such set is:
a) Initial conditions.

a 1) The values of q,PgSg and ~, at t=O;

a2) The bubble-point (i.e., Rs)' in the region where no
free gas is present.

b _)Boundary conditions:

bl) The value of"~ "at x=O, for t~O;

b2) At x=O, the value of Rs at times t~O, when !to > 0;

b3) The values of!tg andJ:.g at x = I.

Obviously the same is true'

Law for multi.phase systems is frequently expressed in
terms of Darcy velocities defined by:

f/JSa ~a; a=o and g (7)u =
-a

Then,

Pa.!!a=-AaVPa,a=o,g (8)

where the parameters A 0 and A g , are defined by

kk.aAa=4>Pa~' 
a=O,g (9)

Jia

Here .Llczstands for the viscosity of the different phases

Note that in the presence ofEq. (2a) one can write

(10)

<J>PgSginstead ofEq. (2b). Also, adding Eqs. (2c) and

(10), one gets:

(12)

if

YF, and Sg are replaced by Uo andSo.

TYPES OF SHOCKS AND THEIR VELOCITIESby virtue ofEq. (4a). Adding Eqs. (4c) and (12), one

gets

(14)
Thus, Eqs. (2b) and (2c), can be replaced by (10) and
(11), and similarly, Eqs. (4b) and (4c), can be replaced
by Eqs. (12) and (14). Common expressions for the
governing equations of the black-oil model could be
derived from the above ones, by introducing Darcy
velocities. However, we will not do that because such
equations will not be used in what follows; our results

Buckley and Leverett treated one class of shocks,
occurring in black-oil models, in their classical theory.
In this section an exhaustive analysis of the different
kinds of shocks that can occur in black-oil models is
carried out.
To be systematic it is necessary to consider the
following cases:
A). The shock occurs at a gas front, so that the gas-

phase is present at one side of the shock only;
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In a similar fashion, in the presence of (4a), Eq. (4b)
can bereplaced by

where
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B). The shock occurs at the unsaturated oil region, so
that the gas-phase is absent from both sides of the [ ]- ( 0 -I ). ( g - ).
shock' R, Po+So+ y.+ it ~+ pg+Sg+ y.+ ~I ~,

C). The shock occurs at the gas region, so that the S (g ) 0gas-phase is present at both sides of the shock. -P g- g- ~- -~1: .~ =

The shock velocities. Let us present a unified formula by virtue ofEq. (13) and the definition of the jump of
for the velocity of propagation of the shock, applicable a function. Thus

to cases A) and C), in which gas is present on at least
one side of the shock. To this end, define the

parameters £, {, and yby mean of the equations

fl=Po_So-(~: -~I:)'fl

= Po_So-{(~: -~I:)-

p(}+So+ (~: -~I

'yO ]} .n

or

[p"So ](r: -rr )ofl+Po-So-[ro

which becomes

].~=o

The first of these equations expresses the relative
velocity of the shock with respect to the velocity of
the oil, for the positive side, as a fraction of the
corresponding relative velocity of the gas.
Observe that E, when E<1, can be interpreted as a
retardation factor. Also, in case A), strictly speaking,

~~ is not defined, since no gas is present at the
unsaturated region. However, to give a meaning to the

above formulas, we define ~~ to be zero in case A).
With this convention, the following result holds.

UNIFIED FORMULA FOR THE SHOCK
VELOCITIES

Assuming the porosity to be continuous, the jump
conditions given by Eqs. (4b) and (4c), can be

replaced by

e[PnSo]+ YPo-Sn- =0

after the definitions (15) are introduced. When this
equation is solved for y, the second of Eqs. (16)
follows.
Case A

Recall that Sg- = 0, necessarily. Therefore, So- = 1 and

the Eqs. (16) become

433

+pg-Sg-l .tJ"n=O
Introducing the definitions ofEq. (15), one gets

e[ R..]po+So+ +( e-l)[pgSg]- °Pg_Sg- =0

Solving for e, the first of formulas (16) is obtained.
To obtain the second formula, note that the jump
condition (4a) can be written as
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A gas front advancing into a region of
undersaturated oil.
This situation is characterized by the fact that

~: -~~ > 0 and [R..]) 0, so that the parameter e is a

retardation factor, since it satisfies the condition e < 1.
A gas front receding from a region of
undersaturated oil.
This situation is characterized by the fact that

~: -~~ < 0 and [ R.. ] = 0, necessarily, because as the

gas front recedes it leaves saturated oil behind. Thus
the oil is saturated on both sides of the gas front. Eq.
(17) implies that e = 1, so that there is no retardation

and the gas front recedes with the velocity of the gas

particles.
Case B.
In this case the shock occurs in the middle of a region
where no free gas is present, so that the velocity of the
shock is not determined by Eq. (16). However, the

e=l+f>~!~
[PgSg]

A more transparent relation is

(22a)~r'~=<1>-I~!!:T'~
where

and ~g = fg~TlI r =U +11
--0 -g

rate g~g' at which the gas goes into the oil phase is

necessarily zero, and the jump condition (12), reduces
to

SHOCK GENERATION
In this section we discuss the mechanisms of shock
generation for the kinds of shocks that were
introduced in last Section.

IN AN UNSA TURA TED REGION
.

[Rs ]pJ~~~J.fl=O (18)

It may be shown that a non-zero jump ([ Rs] ;to 0), is

compatible both with this equation and with the jump

condition (4a), if and only if!:o.!! is continuous and

:!::I: .fl = :!::o .fl. on L (19)

Situations in which shocks of these characteristics
may occur are discussed in the next section.
Case C.
In this case gas is present on both sides of the shock.
Thus the liquid oil is saturated at both sides of the

shock. Assuming. as is usually the case, that Rs is a

-Po.[ Rs]= 0, because Po is

.(6) of Section 2). This

continuous function of

continuous across}: (Eq
implies that

In a region where the gas phase is present, the oil is

necessarily saturated and Rs is uniquely determined by
pressure. On the other hand, where the gas phase is
absent the liquid oil will usually be undersaturated and

R, can take any value below the saturation curve (Fig.
1). This provides some insight into the initial
conditions associated with well-posed problems. When
free gas is present, the oil is saturated and the pressure

determines Rs so that it is not necessary to include this
parameter in the initial conditions. On the other hand,

if the oil is undersaturated Rs is not determined by the
pressure and must be prescribed as an initial condition.
One point which is relevant for our discussions is that

the prescribed initial or boundary values of Rs' may be
discontinuous. In this case a shock in the
unsaturaturated region would be introduced, as it will
be seen in what follows.

434



7 SHOCKS IN SOLUTION GAS-DRIVE RESERVOIRS SPE 029136

One property of "oil particles" which move in the
interior of a region occupied by undersaturated oil is
that they conserve their bubble-point. This property
will be used in the sequel.

BUBBLE POINT CONSERVATION PRINCIPLE

In the absence of a gas phase, oil particles conserve
their bubble-point.
~ When a gas phase is not present the mass

exchange term g~g necessarily vanishes in the

governing differential equation (10), and therefore

(Rs) +~o .VRs =0 (23)
t

Thus the "material particle derivative" of Rs vanishes.

Clearly this implies that Rs (i.e., the bubble point)
remains constant on liquid oil particles.

If the liquid oil is initially undersaturated, R., is
prescribed as part of the initial conditions. If the initial
conditions are discontinuous and the liquid oil

particles retain their Rs values, then the discontinuity

will propagate with velocity ~o, as required for the
jumps, by the mass conservation condition (Case B of
Section 3, Eq. (19)). Thus shocks of this kind can be
produced by the initial or possibly by the boundary
conditions. Later in this section, it will be seen that
they can also be generated when an advancing gas-
front stops and starts to recede.

AT A GAS FRONT

periods spent by the particle in regions where the gas
phase is present, while the latter ones correspond to
periods spent by the particle in undersaturated regions
where the gas phase is necessarily absent. Thus, if a
particle starts at state "n" Fig. la, so that it is
undersaturated initially, and if it is then depressurized,
it moves along a horizontal line towards the left until it
reaches the saturation curve. If depressurization of the
particle continues, it bubbles and liberates gas. If
depressurization is stopped, the free gas is removed
and the oil is repressurized, so that the state of the

particle in the Rs -Po plane moves along a horizontal
line, this time towards the right. It finally reaches a
state such as "n+ I" (Fig. Ia).
This path is reversible: we could start at state "n+ I"
and by successive depressurization and
repressurization, reach state "n". The point at which
the mixture leaves the saturation curve when it is
repressurized depends on the amount of free gas
available. In actual reservoirs, this amount of gas is
supplied by the gas phase, which in turn is determined
by the relative motion of the liquid oil phase with
respect to it.

On the other hand, on the Rs- Po plane the states of an
oil particle cannot follow a path such as the one
joining states"n" and "n+ I" (Fig. 1 b) since this would

imply that Rs changes without reaching the bubble

point. That is, Rs would change when the gas phase is
absent and the bubble-point conservation principle
would be violated.
At an advancing gas front
At first glance, the previous discussion suggests that in
a beta model the only way in which an undersaturated
oil particle may become saturated is by
depressurization to the bubble point. This would imply
that the beta model is a very limited model, especially
when considering problems in which the bubble-point
varies, since it cannot mimic the processes by which an
undersaturated particle of oil receives gas from other
particles. However, such limitation is somewhat
relaxed by the fact that in a beta model an oil particle
may become saturated, in another manner: it may

follow a discontinuous path on the Rs -Po plane, as
illustrated in Fig. 1 c. This corresponds to an oil
particle which is initially undersaturated (point "n") so

The bubble-point conservation principle is very
restrictive condition and at a gas front shocks are
generated when undersaturated particles reach the
front and become suddenly saturated. This would
happen at an advancing gas front, but not at a gas
front that is receding from a region occupied by
undersaturated oil, as is explained next.

The evolution of Rs on an oil particle is restricted by
the "bubble-point conservation principle". The paths in

the Rs -Po plane described by the values of R. consist
of fragments of the saturation curve or of horizontal
segments, only (Fig. 1 a). The first ones take place in
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that the gas phase is absent. At some point the oil
particle is reached by a gas front (point SH) and
becomes suddenly saturated; under further

pressurization Rs moves along the saturation curve.
Such a path has a discontinuity at SH and therefore

[ Rs] * 0, there, in actual reservoir models. Clearly this

corresponds to a discontinuous front or shock. In this
case, the shock itself constitutes a mechanism for
transferring gas from the gas-phase to the oil-particles.
At an advancing gas front, due to the bubble-point
conservation principle, a shock of this kind generally
will occur even if the initial conditions are continuous.
This is because the continuity of the initial values does

not prevent oil particles, carrying values of Rs below
the saturation value, from reaching the gas-front,

where Rs necessarily equals the saturation value. This
is the mechanism of shock generation at an advancing
gas front.
At a receding gas front

At a front that is receding, on the contrary, Rs is
necessarily continuous because the gas phase leaves

saturated oil behind it, as it goes away. Since Rs is
continuous, the only discontinuous variable is the

saturation. Setting [Rs ]=0 in the first of Eqs. (17)

yields e = 1, which implies V1; = vg; i.e., the gas front

moves together with the gas particles that constitute
it. Note that if an advancing gas front changes its
sense of motion, thus becoming a receding one, at the
point where it stops and starts to recede, a

discontinuity of Rs at the oil phase remains. In general,
at later times such a shock will be located inside the
unsaturated region, since the gas front withdraws from
it. According to the results of Section 3, such shocks
move with the velocity of the oil-particles. This is a
mechanism of generation of the kind of shocks that
occur in the undersaturated region and that have been
described above in this Section.
A bifurcation mechanism
On the other hand, this analysis also indicates that
where an advancing front stops and starts to recede
the shock "bifurcates", giving rise to two shocks:one
in which the only discontinuous variable is the
saturation and the other one in which the only
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discontinuous variable is the bubble-point. This
phenomenon is illustrated in Fig. 2. At an advancing
gas front, the bubble-point and the saturation are both
discontinuous, so that when the sense of motion of the
front changes and it starts to recede, the

discontinuities of Rs and So coincide, at the point of

bifurcation; X=X R' in Fig. 2a. However, as the
receding motion of the front progresses, these
discontinuities split apart because one moves with the
velocity of the oil while the other one moves with the
velocity of the gas. This is illustrated in Fig. 2b, where

the discontinuity of the bubble-point (Rs) is located at

XtR , to the left of XB' while the discontinuity of the.
saturation is located at Xt , to the right of XB..
AT REGIONS WHERE FREE GAS IS PRESENT

This kind of shocks are generated by a mechanism that
was originally described by Buckley-Leverett [8,9]
and further discussed by many authors. They occur
when characteristic curves carrying different values of
saturation instersect, giving rise to multi-valued
solutions which are not physically admissible. A very
clear discusion of this process was presented by
Sheldon and Cardwell [12]. A recent account, from a
present-day perspective, is given in [2].
Note that in a region where free-gas is present, such
shocks only develop when capillary pressure is
neglected. If capillary pressure is present, the
continuity condition of Eq. (6) must be satisfied by
both the pressure of the oil and of the gas. This is
possible only if the capillary pressure is continuous.
This implies the continuity of saturation, since

capillary pressure is a continuous function of S".
However, other kinds of discontinuities that were
discussed above may be generated even if capillary
pressure is incorporated in the model. This is because
in the other cases considered, the gas phase is not
required to satisfy Eq. (6), since the gas pressure is
not defined at least at one side of the shock.

SUMMARY AND CONCLUSIONS
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close. This property, leads to the preservation of
discontinuities (shocks) of the bubble-point.
Another point to be made is that due to the bubble-
Qoint conservation QrinciQle, the manners in which the
oil:gas ratio of an oil particle can vary, are rather
restricted. In this respect, it has interest observe that
one class of shocks, here presented, constitutes a
mechanism by which gas is transferred to oil-particles.
Finally, numerical difficulties occur in numerical
models when pathologies such as shocks, are
developed; a clear understanding of them is important
to design adequate numerical treatments and
effectively overcome such difficulties.
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FIGURE CAPTIONS
FIGURE 1.- Paths in the R -p plane.
FIGURE 2.- The bifurcation mechanism.

a) The bifurcation point at XB .

b) The two shocks, after bifurcation.
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