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ABSTRACT. In this paper, a strategy for discretizing partial differential
equations or systems of such equations, is proposed. It is based in Local-
ized Adjoint Mcthod (LAM), but has greater generality and flexibility. It
consists in identifying firstly the information about the exact solution that
is contained in the approximate one and then processing it, in the most
efficient manner that is possible, without prejudging its shape. The facts
presented, indicate that it has clear advantages over standard procedures
and must be further studied and tested in a wider class of problems.

1. INTRODUCTION

The Localized Adjoint Mcthod (LAM) is.a methodology for discretizing partial
differential equations which was introduced by the author [I]. This procedure is
based on Herrera’s Algebraic Theory of Boundary Value Problems [2-6]. Appli-
cations have successively been made to ordinary differential equations, for which
highly accurate algorithms were developed [6-8], multidimensional stcady state
problems [9] and optimal spatial methods for advection-diffusion equations [10-12].
The gencralizations of Characteristic Methods known as Eulerian-Lagrangian Lo-
calized Adjoint Methods (ELLAM), have been specially successful in their different
implementations [13-20] and many specific applications have been made [21-30].

On the other hand, more recently the author [20] has been proposing a
strategy for discretizing partial diffcrential equations or systems of such equations,
which consists in identifying firstly the information about the exact solution con-
tained in the approximate onc and then processing it, in the most eflicient manner
that is possible, without prejudging its shape. This differs from finite element
approaches, since choosing a set of basis functions is a manner of assigning a
shape to the sought solution.

The procedure proposed here has been applied already to some specifi¢
problems and the results have been quite satisfactory. In particular, an Eulerian-
Lagrangian Method of Cells (CELLAM) was developed in [20], using this point
of view and the results were quite satisfactory. Previous attempts for developing
such a method were hindered by many numerical difficulties [15-17]. However, such
difficulties were not encountered when the new strategy was adopted [18-20]. More
specifically, in [17] approximations were derived using a system of basis functions,
while in [20] they were derived using the strategy recomended here. Apparently,
the numerical difficulties were not encountered in the second approach, because
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the strategy proposed by the author, allows deriving more precise approximations.
Indeed, assuming the shape of the solution unduly restricts the accuracy of the
algorithms that can be derived, as was corroborated in [20].

This paper is devoted to explain this novel strategy and the manner in
which it can be applied to general differential equations. Section 2 presents the
motivation for proposing this procedure. A brief description of a method to analyze
the information that is contained in approximate solutions, is given in Section 3.
Such method is based on the application of Green-Herrera formula for functions
with jump discontinuities, which allows the localization of the adjoint, when it is
applied to partial differential cquations or systems of such equations [I, 14]. As
an illustration, a comparative analysis of the procedures used in [17] and [20), is
carried out in Section 4. It is concluded, that the results obtained indicate that
the strategy proposcd here, which has wide applicability, may give good results, if

it is applied to many other problems.

2. BACKGROUND

In previous work {14, 20], it has been pointed out that in the construction of
approximate solutions two important processes occur:

i) Gathering information about the sought solution; and
ii) Interpolating or, more generally, processing such information.

Thesc two processes are distinct, although in many numerical methods they
arc not differentiated clearly. The information about the exact solution that is
gathered, is determined mainly by the weighting functions used. Since this infor-
mation does not determine uniquely the sought solution, some processing of it is
required, in order to fill the gaps of information and exhibit at the end, a unique
approximate solution. -

Different methods of solution follow different strategies for carrying out this
" process of extending the information that is available (interpolation, extrapolation
or both). For example, in finite element methods, some basis functions are chosen
and the approximate solution is assumed to be a superposition of such functions.
In this case, the information about the exact solution which is gathered by the
weighting functions, is interpolated in a manner which is determined by the family
of basis functions chosen.

Clearly, it is disadvantageous to carry out the process of extending the
information blindly, not knowing what is the actual information that is available.
However, this is what is usually done. On the contrary, it is advantageous to make
use of the insight gained when the available information has been identified, since
the sclection of the best procedure for extending such information, is strongly
dependent on the information that is at hand.

Due to these facts, in recent works the author [14, 20] has advocated ‘an
approach for developing numerical methods, in which the processes i) and ii)
are clearly separated, and the information about the sought solution that is at
hand, is identificd and then the procedure for extending it, is defined using that
information.

The procedure that was applied in [20] for deriving the algorithms pre-
sented there, is an illustration of such methodology. Using Herrera's Algebraic
Theory of Boundary Valuce Problems [2-6), which permits localizing the adjoint,
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the information contained in the approximate solution.is identified and analyzed |1,
14, 20]. This is what should be properly called Localized Adjoint Method. Then,
depending on the information that is identified, interpolation procedures suitable
for handling it efficiently, are selected and applied. In most cases the introduction of
basis functions is not required and, even more, their use is frequently inconvenient,
as for the problem treated in this paper. These points will be discussed further in

Scction 4, where an example is presented.
Another point which is important, is that the use of the algebraic theory

for the analysis of the information, has clear advantages over other options, such
as the standard theory of distributions, because of two reasons at least: the use of
the algebraic theory permits the localization of the adjoint, and the simultancous
use of discontinuous trial and test functions is feasible.

3. A METHOD FOR ANALYZING THE INFORMATION

As mentioned previously, a convenient manner of carrying out the analysis of
the information contained in approximate solutions, is by application of Herrera’s
Algebraic Theory of Boundary Value Problems [2-6]. A special feature is that the
analysis is carried out using exclusively simple inner products which are defined
locally. The theory implies a kind of operator extension which differs from the
theory of distributions [31].

The main result required is a Green formula for functions with jump dis-
continuities (Green-Herrera formula), which is explained in this Section, in a brief
manner. In its original form was presented in [3, 5, 6], but the intercsted reader
may find detailed and updated expositions of Green-Herrera formula, for partial
differential cquations and systems of such equations, in [1] and [14]. In some specific
applications, it is feasible to derive the results which are needed in an ad-hoc
manner (see, for example [13]). Ilowever, the frame-work of the general theory
supplies the guidelines that permit understanding thoroughly the methodology of
analysis, which is applicable to a great varicty of problems, including systems of
differential equations [14].

Consider functions defined in a region ( (possibly space-time), which may
have jump discontinuities across some internal boundary Z. In applications to
finite element methods, ¥ could be the union of all the inter-element boundaries.
The general boundary value problem treated by the theory is one with prescribed
jumps, across X. The differential equation is

Lu=fq, m (3.1)

Certain boundary and jump conditions are specified on the boundary 9§ of
and on ¥, respectively. When § is a space-time region, initial conditions may be
incorporated as part of the boundary conditions, since they apply in part of 99,

in this case.
Given a differential operator £ and its adjoint £*, Green-Herrera formula is:

/wﬁud:c - B(u,w)dz — / J (v, w)dz =
Q n r

/1¢£‘1er:1:—/ C'(u,w)dm—/l(,"(u,w)dx (3.2)
N an v
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where B and J are bilinear functions of u and w, defined point-wise, while C*
and K* are the transposes of C and K, respectively, which are also bilinear in u
and w.

Equation (3.2) can be obtained applying successive integration by parts.
However, a more systematic way, which permits exhibiting the frame-work that
can be used in a very general class of problems, is presented here. It starts from
the definition of formal adjoint, which requires that £ and £* satisfy:

wlu —ul*w =V - {D(u,w)} (3.3)
for a suitable vector-valued bilinear function D(u,w). Integration over §) of
Eq. (3.3) and application of generalized divergence theorem [32], yield:

/{wLu —ul'w}dzr = Ro(u,w)dz + / Ry(u,w)dr (3.4)
Q X

an
where the bilinear functions Ry and Ry, are defined on dQ and X, respectively,
by:

Ro (v, w) = D(u,w)-n and Ryp(w,w)=—[D(u,w)]-n (3.5)

Here, the square brackets stand for the “jumps” across £ of the function contained
inside, i.e., limit on the positive side minus limit on the negative side. The positive
side of ¥ is chosen arbitrarily and then the unit normal vector n is taken pointing
towards the positive side of . Observe that generally Lu will not be defined
on L, since u and its derivatives may be discontinuous. Thus, in the theory, it
is understood that integrals over §) are carried out excluding ¥. Consequently,
differential operators must be always understood in an elementary sense and not
in a distributional sense.

In the general theory of partial differential equations, Green’s formulas are
used extensively. For the construction of such formulas it is standard to introduce
a decomposition of the bilinear function R [33]. Indicating transposes of bilinear
forms by means of a star, the general form of such decomposition is:

Ra(u, w) = 2(“') w) ‘n= B(u) w) - C*(U, w) (36)

where B(u,w) and C(w,u) = C*(u,w) arc two bilincar functions.

When considering initial-boundary value problems, the definitions of these
bilinear forms depend on the type of boundary and initial conditions to be pre-
scribed. They are chosen satisfying the requirement that for any u that fulfills
the prescribed boundary and initial conditions, B(u,w) is a well-defined linear
function of w, independent of the particular choice of u. This linear function will
be denoted by g5 (thus, its value for any given function w, will be gs(w)), and the
boundary conditions can be specified by requiring that B(u,w) = g3(w), for every

test function w.
The linear function C*(u,-), on the other hand, can not be evaluated in

terms of the prescribed boundary values, but it also depends exclusively on certain
boundary values of u (the “complementary boundary values”). Generally, such
boundary values can only be evaluated after the initial-boundary value problem
has been solved.

In a similar fashion, convenient formulations of boundary value problems
with prescribed jumps requires constructing Green’s formulas in discontinuous
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fields. Green-Herrera formula is obtained introducing the gencral decomposition:

Ry (u,w) = I (w, w) = K* (v, w)

). This has becen done in general, for differential
be discontinuous [3]. However, the decomposition
are continuous, since for this case

0 7

of the bilinear function Ry(u,w
operators whose coefficients may
is specially easy to obtain when the cocflicients

t stems from the algebraic identity:

[D(u, w)] = D((u), ) + D(& [w]) o
if J and K*, are defined by
J(u,w) = D([u],w) -n (3.9a)
K (u,w) = K(w,u) = D, [w])-n (3.9b)
Here
[u) =uy  u-, = (uy +u-)/2 (3.10)

tion J(u,w) is that, when the jump

An important property of the bilincar func
h is independent

of u is specified, it defines a unique lincar function of w, whic
of the particular choice of u. When considering initial-boundary value problems

with prescribed jumps, the lincar function defined by the prescribed jumps in this
manner will be denoted by jg (thus, its value for any given function w will be

jg(w)) and the jump conditions at any point of T can be specified by means of
the equation J (v, w) = je(w). If the sought solution is required to be smooth,

one would usually have jg(w) = 0.
In problems with prescribed jumps, the lincar functional K*(w,-), plays a

role similar to that of the complementary boundary values C*(u,-). It can only
be evaluated after the initial-boundary value problem has been solved and certain
information about the average of the solution and its derivatives on T is known.

Such information is called the “gencralized averages”.
A weak formulation of the boundary value problem w

/ wludr — / B(u,w)dz — / J(uw,w)de =
a an z
/ wfodz — / ga(w) dx / je(w)dz (3 l1a)
Q an z
However, this weak {ormulation is cquivalent to
/ ul'wdz —/ C*(u,w)dz —-/ K*(u,w)dz =
1) an r
/ wfadz —-/ go(w)dz — / je(w)dz  (3.11b)
Q nN b))

(3.2). Eq. (3.1 1a) is the varialional formulation in lerms of the
he varialional formulation in lerms of the

ith prescribed jumps is:

by virtue of Eq.
data of the problem, while (3.11Db), is
sought information.
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The analysis of the information contained in approximate solutions, is based
in the following observations. When the method of weighted residuals is applied,
using a system of weighting functions {w!,...,w"}, an approximate solution sat-

isfies

/ﬁﬁ'w" dz — C*'(t,w")dz — / K*(t,w”)dz =
Q 1) T

-/ w” fndz — / ga(w™) dz — -/ Jjelw™) dx, a=1...,N (3.12)
l 211 B

Taking into account thal Ie. (3.12) is also satisficd by the exact solulion, iL 1s seen
that

/(ﬁ —u)L'w” dz — / C* (i — u,w”)dzx — / K*(t — u,w*)dz =0 (3.13)
2 an z

Equation (3.13) is the basis for analyzing the information contained in approxi-
mate solutions. The term [ (it — 1) L*w® da gives the information about the exact
solution wu, in the interior of the region of definition of the problem Q, the term
J50C* (& — w,w”)dz gives the information about the complementary boundary
values on 9 and the term [ K*(@ — u,w”) dx gives the information about the
genceralized averages in the interclement boundarics X.

4. AN EXAMPLE

In this Section we illustrate by means of an example, some of the advantages of

the procedure presented in this paper.
In {17] and [20), the advection-diffusion equalion in conservalive form, was

considered:
du 0 Ju
= ——(D——-Vu) = z,l); V>0 4.1
Lu 50~ B2 ( e u) Jalz,t) (4.1)
in the interval 2 = [0,1] and ¢ > 0, subject to initial conditions
u(x,0) = up(x) (4.2)

and suitable boundary conditions.
For constructing a solution of this problem step by step in Lime, the time

interval is decomposcd into subintervals. Let [t",t"+1], be onc such subinterval

(Fig. 1), then assuming that the solution at {, has alrcady been obtained, a pro-

cedure for constructing it ab Ly4q is developed. The region of definition of such

problem is 2 = 2, x [ty Lngt] and the initial conditions of Equ. (4.2), have Lo be
replaced by

u(z,lp) = u"(z) (4.3)

where the function u™(z) corresponds to the valucs of the solution at time 5,

which by assumption have been previously obtained.
In addition, a partition {x1, 32, 75/2,- ., T2, TE} into L subintervals
of the interval [0, 0] is introduced, for which #; = 0 and 2 = {. The points

Ty = (:’:i—l/2+xi+l/2)/2i i=2,...,b~- (44)



I. Herrera 1443

4t ‘
futs [ A—] [
E.'-1/3/ 7 Lit1/2
I e e I
/ 7
// 1 7’
| = | | |
/// AWA /]/
A —A | |
// L //
t A1 | | |
" ¥ "
i—-1/2 l i+1/2 l I l | r
Ti-1/2 T Tiy1/2
IFIGURE 1.

being the “cell centers”. Here, we assume that the partition is “uniform”; i.e, h; =
Zi41/2—Ti—1/2 = h, is independent of ¢, for interior nodes. Based on such partition,
a partition {Q,...,Qg)} of the region Q, x [t*,1"*+1], is defined. A typical one of
those subregions (€2;), in the case when §; does not intersect the lateral boundaries,
is limited by the two space-time characteristic curves X;_;/, and X, 5, which pass
through the points z;_;/, and x4/ at time tn41, respectively, as shown in Fig. 1.
The velocity of propagation Vg, of each one of these lines satisfies Vs = V| because
they are assumed here to be characteristic curves. In addition, it is assumed that
discontinuities may occur on these lines exclusively, so that

E-1
L= U 2i+l/2-

1=1

The weighting functions to be used are constant functions; namely, the
characteristic functions of each one of the subregions of this partition. For Q;, it is

, 1 if (x,t) € 8,
w'(z,l) = (4.5)
0 if (z,t) ¢

For the special case in which the sought solution is smooth (js = 0) and €); does
not intersect the lateral boundaries of €2, Eq. (3.11b) is [20]:

Ti4l thyt thyl 1’;
/ * u"+1d:l:+/ v (D%> dt—/ ' (D-a—l—f) dl:/ ¥ u” dzx

Zi-1 tn Oz i1z tn Oz Zic172 i
(4.6)
All the terms which supply information about the sought solution are in the left-
hand side of Iq. (4.6). The first integral supply information about u, at time
tn+1, while the other two integrals supply information about the first-order spatial

derivatives, along the characteristic curves, Yiv12 and Xi_y9.

In what follows, we discuss two possible strategies for processing this in-

formation. In both of them the integrals with respect to time in Eq. (4.6), are
cvaluated using a backward-Euler (fully implicit) approximation. When this is
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done, it is obtained:
n+l nt+l ) Zig1 z
{<D?> (D@> e [Tt [ urdz v o) (1)
T/ i+ Ox i-1/2 Ti-1 Ti_y

where k = tn41 — tn. A first possibility is to use a standard approach, in which
the solution is represented using a basis of piccewise linear functions [17]. Then,
in the interval (zi-1, Ti4+1), u"t! is approximated by

u1.;+l _ ur}+1
ultl 4 - 7 S (z—2;) zica<z<2
~n+1 t
Wt (z) =
) . u'ﬁf,l —urt
13 1
ult! 4+ h (z—xi) zi <z < Tig

Evaluation of the derivative of u"*! by means of (4.8) and substitution in the first
term of Eq. (4.7), yield

(611"““) (aun+1> },_ui+1+uf—1—2“‘k
0z /iy 9z /i1 h

The corresponding substitution in the next integral of Eq. (4.7) and the exact
evaluation of the resulting expression, yield

i 1 1 1
/x+1 wh gy VLU A 0T (4.10)
T

u
. 8

The other strategy does not use any representation for the sought solu-
tion [20]. It consists in concentrating all the information on u?“; i.c., the value
of the solution at the cell centers, at time n41. This we do, evaluating the terms
occurring in left-hand side of Eq. (4.7), as accurately as possible, using the values
of u at the ccll centers, exclusively. An additional condition that we impose, in
order to obtain a tri-diagonal matrix, is that only three cell centers be used. Then

n+1 n+41 . . N T
(6" > (6“ ) foo Y P Mo T WL ok) (4.11)
9z /)iy Iz /i h

and

h+ O(h®) (4.12)

z; n+1 n+1 n+1
i . I “i+1 + U; 1 + 22“.’
u ax
; 24

ri-1

Equation (4.12) can be derived in many diffcrent ways. For example, the Taylor
scrics expansion of u"+! around the cell center 2y, may be integrated in the interval
(.1:,-_,/2,.77,~+|/2). When this is done, to obtain (4.12), the relation

Oa? h?

9 n+1
- > y - ‘) 1
(0 u) Wipl + Ui—1 — 2U; + 0(/12) (4.13)
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Comparing the results obtained with each strategy, it is seen that Eqs. (4.9)
and (4.11) coincide, while (4.10) and (4.12) differ. Thus, depending on the strategy
that we have followed, we have obtained two different approximations and a natural
question to ask, is if the difference between them is relevant. If this were the case,
which one must be preferred.

When deriving Eq. (4.12), we were able to obtain the order of precision
of the approximation. On the other hand, in Eq. (4.10), the order of accuracy is
not given. llowever, this latter order of precision can be derived from Liq. (4.12).

Ideed, using the 1dent1ty

u"_,'_H + u? ! 4 22,0t _ u:’,:'l] + u:-'_"‘,l + 611}"“ 3 u,"_:']l + u"'*'1 Qu?’H (4.14)
24 8 12 )
Eq. (4.12) can be written as
Tiy ot n+1 n+1 n+l n+1 -2 n+1
/ unt gy = Y P o A0, iy Y h+O(hS) (4.15)
Using Eq. (4.13), it is seen that
n+1 n+l _ 9, n+1 2, n+
Mgt Tl T (6 ) e + O(h%) (4.16)
12 Oz*
Therefore
i +1 +1 +1
/r + uu-{-l dr = ul"'H + uc",”-sl + 6“:" h + O(h.'}) [417)
Li-]

Our conclusion is that by having followed an strategy in which all the information
was concentrated in the cell centers, the order of accuracy of the aproximation was
improved by two orders of magnitude.

As mentioned previously, when trying to derive an Eulerian-Lagrangian
FVELLAM in [17], many numerical difficulties were encountered. However, such
difficulties did not show up when deriving CELLAM in [20]. This is so, in spite
of the fact that both methods were derived using constant test functions. Thus,
apparently the explanation of this difference is that the approximation (4.10) was
used in (17], while we used approximation (4.12), which is two orders more accu-

rate, in {20].

5. CONCLUSIONS

The results of this paper indicate that the strategy proposed here, for discretizing
partial differential equations and systems of such equations, has clear advantages
over standard procedures and must be further studied and tested in a wider class

of problems.
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