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AnSTRACT. In this paper, a strcl.tegy for discrctizing partial differential
equations or systems of such equations, is proposed. It is based in Local-
ized Adjoint Method (TJAM), but has greater generality and flexibility. It
consists in identifying firstly thc information about the exact solution that
is contained in the approximate one and then processing it, in the most
efficient manner that is possible, without prejudging its shape. The facts
presented, indicate that it has clear advantages over standard procedures
and must be fllrther studied and tested in a wider class of problems.

1. INTRODUCTION

Thc JJocalizcd Adjoint Mcthod (JJAM) is.a methodology for discretizing partial
differential equations which was introduced by the author [I). This procedure is
bascd on Herrera's Algebraic 1'hcory of Boundary Value Problems [2-6). Appli-
cations have sllcccssively hcen nlade to ordinary differential equations, for which
highly accurate algorithms were developed [6-8), multidimensional.steady state

problems [9) and optimal spatial methods for advection-diffusion equations [10-12).
"J.'hc gcncralizations of Characteristic Methods known as Eulerian-Lagrangian Lo-
calizcd A<ljoint M<~tllods (EI.I.AM), Ilit.VC hccn specially sllcccssfill in their diffcrcllt
implementations [13-20) and many specific applications have been made [21-30).

On the other hand, more recently the author [20.1 has been proposing a
strategy for discret.izing partial differential equations or systems of such equations,
which consists in identifying firstly the information about the exact solution con-
tained in the approximate one and then processing it, in the most efficient manner
that is possible, without prejudging its shape. This differs from finite element
approaches, since choosing a set of basis functions is a manner of assigning a

shape to the sought solution.
The procedure proposed here has been applied already to some specific

problems and the results have been quite satisfactory. In particular, an Eulerian-
Lagrangian Method of Cells (CEJJLAM) was developed in [20], using this point
of view and the results were quite satisfactory. Previous attempts for developing
such a method were hindered by many numerical difficulties [15-17). However, such
difficulties were not encountered when the new strategy was adopted [18-20]. More

specifically, in [17] approximations were derived using a system of basis functions,
while in [20) they were derived using the strategy recomended here. Apparently,
the numerical difficulties were not encountered in the second approacll, because



1438 ADVECTION DIFFUSION

the strategy proposed by the author, allows deriving more precise approximations.
Indeed, assuming the shape of the solution unduly restricts the accuracy of the
algorithms that can be derived, as was corroborated in [20].

This paper is devoted to explain this novel strategy and the manner in
which it can be applied to general differential equations. Section ~ pre~ents the
motivation for proposing this procedure. A brief description of a method to analyze
the information that is contained in approximate solutions, is given in Section 3.
Such method is based on the application of Green-Herrera formula for functions
with jump discontinuities, which allows the localization of the adjoint, when it is
applied to partial differential equations or systems of such equations [1, 14J. As
an illustration, a comparative analysis of the procedures used in [17J and [20J, is
carried out in Section 4. It is concluded, that the results obtained indicate that
the strategy proposed here, wlJiclJ has wide applicability, may give good results, if
it is applied to many other problems.

2. BACKGROUND

In previous work (14, 20J, it has been pointed out that in the construction of
approximate solutions two important processes occur:

i) Gathering information about the sought solution; and

ii) Interpolating or, more generally, processing such information.

Thesc two processes arc distinct, although in many numeriGal methods they
arc not differentiated clearly. The information about the exact solution that is
gathered, is determined mainly by the weighting functions used. Since this infor-
mation does not determine uniquely the sought solution, some processing of it is
required, in,order to fill the gaps of information and exhibit at the end, a unique
approximate solution.

Different methods of solution follow different strategies for carrying out this
.process of extending the information that is available (interpolation, extrapolation

or both). For example, in finite element methods, some basis functions are chosen
and the approximate solution is assumed to be a superposition of such functions.
In this case, the information about the exact solution which is gathered by the
weighting functions, is interpolated in a manner which is determined by the family
of basis functions chosen.

Clearly, it is disad'va,ntageous to Ci\.rry out the process of extending the
information blindly, not knowing whi\.t is the actual information that is available.
However, this is what is usually done. On the contrary, it is advantageous to make
use of the insight gained when the available information has been identified, since
tile selection of the bcst procedure for extcllding such information, is strongly
dependent on the information that is at hand.

Due to these facts, in recent works the author (14, 201 has advocated an
approach for developing nttmerical methods, in whicll the processes i) and ii)
arc clearly scpilri\.I,('(I, i\.ll<I tll(~ illforlilal.ioll i\.IJolll. Ule :;Ollgllt :;oliltion tlli\.t i:; i\.t
haJld, is idcntilieu and tht'n the procedure [or extcnuing it, is defined using that
information.

The procedure tllat was applie<l in [201 for deriving the algorithms pre-
scnteu there, is all illlJ.')tration of such mel.hodology. Using Herrera's A Igcbraic
Tlleory of Uollll(I;lry Vill'll' Prol,Il'llls (2-6), \vllich perolits IOCillizillg I,IIt' .1djoint,
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the information contained in the approximatesolution.is identified and analyzed [1,
14, 20]. This is what should be properly called Localized Adjoint Method. Then,
depending on the information that is identified, interpolation procedures suitable
for handling it efficiently, are selected and applied. In most cases the introduction of
basis functions is not required and, even more, their use is frequently inconvenient,
as for the problem treated in this paper. These points will be discussed further in
Section Ij, where all example is presented.

Another point which is important, is that the use of the algebraic theory
for the analysis of the information, has clear advantages over other options, such
as the standard theory of distributions, because of two reasons at least: the use of
the algebraic theory pcrmits thc localization of the adjoint, alld the simultaneous
use of discontinuous trial and test functions is feasible.

3. A METHOD FOR ANALYZING THE INFORMATION

As mentioned previously, a convenient manner of carrying out the analysis of
the information contained in approximate solutions, is by application of }-Ierrera's
Algebraic Theory of Boundary Value Problems [2-6]. A special feature is that the
analysis is carried out using exclusively simple inner products which are defined
locally. The theory implies a kind of operator extension which differs from the
theory of distributions [31].

The main result required is a Green formula for functions with jump dis-
continuities (Green-Herrera formula), which is explained in this Section, in a brief
manner. In its original form was presented in [3, 5, 6], but the interested reader
may find detailed and updated expositions of Green- Herrera formula, for partial
differential eq\lations and syst<.'ms of such eqllations, in [1] and [14]. In some spccific
applications, it is f(';\.-;il>I(~ to d(~rive tll(~ r(~sliits wllicll .1.re needed ill an ad-hoc
manner (see, for example [13]). IIowever, the frame-work of the general theory
supplies the guidelines that permit understanding thoroughly the methodology of
a.nalysis, whicil is ill>plical)I(, 1\) il grcilt. \'ari(~ty \)f problcll1S, incilidilig systems of
differential cqtlations [1'1].

Consider functions defined in a region n (possibly space-time), which may
have jump discontinuities across some internal boundary E. In applications to
finite element methods, E could be the union of all the inter-element boundaries.
The general boundary value problem treated by the theory is one with prescribed
jumps, across E. The differential equation is

(3.1 )0..cu = In, III

Certain boundary and jump conditions are specified on the boundary an of n
and on E, respectively. When n is a space-time region, initial conditions may be
incorporated as pa.rt of the boundary conditions, since they apply in part of an,
in this case.

Given a differentia.1 operator £, and its adjoint £'*, Green-Herrera formula is:

f tu£ud.-z: -f
in iiJn

l3(u,1u)d.-r -h.J(U,1U)dX =

r u£.1.vdx -r
in ian

C+(u, tv) d.r -kK+(u,w)dx (3.2)
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where 8 and ..1 are bilinear functions of u and w, defined point-wise, while C*
and K* are the transposes of C and K, respectively, which are also bilinear in u
and w.

Equation (3.2) can be obtained applying successive integration by parts.
However, a more systematic way, which permits exhibiting the frame-work that
can be used in a very general class of problems, is presented here. It starts from
the definition of formal adjoint, which requires that [, and [,* satisfy:

w.cu -u.c'w = v. {~(u,w)} (3.3)

for a suitable vector-valued bilinear function Q( u, w). Integration over n of
Eq. (3.3) and application of generalized divergence theorem [32], yield:

[{W£U-u£.w}dx= [ 'Ra(u,w)dx+ ['R>::;(u,w)dx (3.4)
Jn Jun JE

where the bilinear functions 'Ra and 'RE, are defined on an alld E, respectively,
by:

no (u, w) = 12.( u, tv) .!! and 'RE(,t,'0) = -[Q.(1t, UJ)] .!!. (3.5)

Here, the square brackets stand for the "jumps" across E of the function contained
inside, i.e., limit on the positive side minus limit on the negative side. The positive
side of E is chosen arbitrarily and then the unit normal vector!! is taken pointing
towards the positive side of E. Observe that generally .cu will not be defined
on E, since u and its derivatives may be discontinuous. Thus, in the theory, it
is understood that integrals over n are carried out excluding E. Consequently,
differential operators must be always understood in an elementary sense and not
in a distributional sense.

In the general theory of partial differential equations, Green's formulas are
used extensively. For the construction of such formulas it is standard to introduce
a decomposition of the bilinear function 'R.a [33]. Indicating transposes of bilinear
forms by means of a star, the general form of such decomposition is:

'Ra(u, w) == ~(u, w) '!l = B(u, w) -C*(u, w) (3.6)

where B(1L,W) and C(1IJ,1L) = C*(u,w) are two bilinear fllnctions.
When considering initial-boundary value problems, the definitions of these

bilinear forms depend on the type of boundary and initial conditions to be pre-
scribed. They are chosen satisfying the requirement that for any u that fulfills
the prescribed botlndary and initial conditions, B( 1L, w) is a well-defined linear
function of w, independent of the particular choice of u. This linear function will
be denoted by 9a (thus, its value for any given function w, will be 9a(W)), and the
boundary conditions can be specified by requiring that B( u, w) = 9a( w), for every
test ftlnction tv.

The linear ftlnction C*(u,.), on the other hand, can not be evaluated in
terms of the prescribed boundary values, but it also depends exclusively on certain
boundary values of u (the "complementary boundary values"). Generally, such
boundary values can only be evaluated after the initial-boundary value problem
has been solved.

In a similar fashion, convenient formulations of boundary value problems
with prescribed jumps requires constructing Green's formulas in discontinuous



if ..1 and X:', are dcfined by
(J.9<\.).12([tt] , tv) .!!..J( 1£,10) =

(3.9b)12( it, [1V]) .n.K.(1t,W) = K(W,1t) =

Here
(3.10)it = (tt+ + u-)/2tl_,[u] = u+

r WL1L dx -r
JIl Jail

6(IL,II1)dx -h..1(ILltl1)dX =

r 111/11 d.. -r
in ian

1 a.)(3hj1;(tV) clx9;)(10) dx

(3.111»

by yirtuc of Eq. (3.2). Eq. (3.11 a) is the variational formulation in le7772S of the
data of tl/.c problem, whilc (3.111», is the varialionalfor77/.ulation in lerm.s of lILe

SOflghl iriformati07/..

{ U£".lV dx -( C.(lL,1V) dx - j K,.(lL,1V) dx ==
In Jan E



The analysis of the information contained in approximate solutions, is based
in the following observations. When the method of weighted residuals is applied,
using a system of weighting functions {WI,. .., wN}, an approximate solution sat-

isfies

fU'c.WCldx- f C.(u,wCl)dx- f,t".(U,WCl)dx=
in ian iE

r (ti -u)£.wlY dx -r C.(u -tL, tVIY) dx -r k';.(u -u, wlY) dx = 0 (3.13)

in ian iE
Eq\li\.t.ion (3.13) is t.he basis for il,ni\.]y~ing t.IIC infornliLt.ioll conl.aincd in approxi-

10i\.t.(: Rolllt.ioIIN. '1'11<: 1,<:1'111 hz(iL -1L)£+11I'r d:l: giV<:N 1.11<: illfol'llliLI.i<)11 iLI)OIII. 1.11<: CXiLct

solution tL, in the illtcrior of tile region of definition of the problem n, the term

fan C.( Ii -tI., tolY) dx gives t,he information about the complementary boundary

va,lues on an and the term JEK;.(u -u,tvlY)d.'l: gives the information about the

gcncri\.li~cd avcragcs in t.hc int.crclcmcnt boun(]arics E.

4. AN EXAMPLE

In this Section we illustrate by means of an example, some of the advantages of

the procedure present.ed in this paper.
In [17] and [20], the advection-diffusion equation in conservative form, was

considered:

att a ( au )£tt = ---D- -\/tt = rn ( x i ).-at a.'I: ax J.. ., , (4.1 )V2::0

in t,lle inLcrv(1.1 nz; = [0, I] ano l ~ 0, stlbjccL Lo iniLicl.1 condiLions

(4.2)u(x,O) = ttO(;l~)

a.nd sllit.".hlc bollnd".ry condit.ion~.
!,'or cOJI~I.rll("l.illg ..1. ~ollll.iOJI or t.lli~ l>rol,I('111 ~I,(~p I>y st.(~P ill I.illl(~, I.h(~ time

inl.crval is dCCOJl1l>oscd illl.o ~111>illt(~rvals. !.lct [tn, l"+I], bc onc such subinterval
(Fig. 1), thcn assuming th".t tIle solution a.t In II(\..0; a!ready bcen oht..l.incd, a pro-

ccdllrc ror Coll~t.rllct.ing it. ..I.t i"+1 is d('v(~lop(~(I. 'I'II(~ r(~giOJI or dcfillition or such

rroolcI11 is [1 = nr x [ill, i,,+J] iLII<1 LII(~ i'liLiiLI coll<li/,joIJ:; of l~qIJ. (1.2), IliLVC to be

replaced by

(4.3)u(.1;,ln) = u'~(X)

where the function u"(.'l:} corresponds to the valucs of the solution at time tn,

whic)1 by assumption have been previously obtained.
In addition, n pa.rtit.ioI1 {,1;tl :1:3/2' ,1:5/21"" ,1;1::-1/2' .1:E} into E sllbinterva.ls

of tile int.crv;J.1 fO, ('] j,'; jnt.rodllc:(~(I, ror wl.icll .1;1 = 0 ;l/IC! X/~' = f. Tllc point

(1.4)Xi = ('~i-l/2 + ,Ti+J/2)/2, i = 2, ..., E -
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Xi-l/2 Xi Xi+l/2

FIGURE 1.

being the "cell centers". Here, we assume that the partition is "uniform"; i.e, hi =
xi+l/2 -xi-l/2 = h, is independent of i, for interior nodes. Based on such partition,
a partition {n1,..., nE} of the region nx x [tn, tn+l], is defined. A typical one of
those subregions (ni), in the case when ni does not intersect the lateral boundaries,
is limited by the two space-time characteristic curves Ei-l/2 and Ei+l/2' which pass
through the points xi-l/2 and xi+l/2 at time tn+l, respectively, as shown in Fig. 1.
The velocity of propagation VE, of each one of these lines satisfies VE = V, because
they are assumed here to be characteristic curves. In addition, it is assumed that
discontinuities may occur on these lines exclusively, so that

E-I
E = U }::;i+I/Zo

i=l

The weighting functions to be used are constant functions; namely, the
chara.cteristic functions ofcach one of the sllbrcgions of this partition. For OJ, it is

if(x,t)EOj,1
lUI(X, t) =

[4.5)

j r (x, t) f/ OJ0

For the special case in which the s9ught solution is smooth (jE
not intersect the lateral boundaries of f2, Eq. (3.11 b) is [20]:

=: 0) and OJ does

l x. dl = i+

X~1-1

[Xi+l

}Xi-l

un+l dx + ['n+1
lln

auD-
ax

1tn+1 ( au )dt -D-

tn ax
undx

Ei-l/2
\"'
~i+l/:!

(4.6)
All the terms which supply information about the sought solution are in the left-
hand side of Eq. (4.6). The first integral supply information about fl, at time
tn+l, while the other two integrals supply information about the first-order spatial
derivatives, along the characteristic curves, Ei+I/2 and Ei-I/2'

In what follows, we discuss two possible strategies for processing this in-
formation. In botll of them the integrals with respect to time in Eq. (4.6), arc
evaluated using a bc\.ckwc\.rd-Elllcr ([..lly implicit) approximation. Wilen this is



done, it is obtained:

l ~i+l;1:. 11-

n+ln+l l Xi+l k+

xi-l(D~)
auD-
ax

undx+O(hk2) (4.7)n+ 1 dxu

i-l/2i+l

where k = tn+l -tn. A first possibility is to use a standard approach, in which
the solution is represented using a basis of piecewise linear .functions [17]. Then,
in the interval (Xi-I, Xi+l), un+1 is approximated by

U~I+l -U,:,+1n+l + I I-] ( -)U- x -X II Xi-.} :::; X :::; X
It

un+I(X) =

Xi ~ X ~ Xi+l

Evaluation of the derivative of u1t+l by means of (4.8) and substitution in the first

term of Eq. (4.7), yield

aull+1

ax

k -Ui+l + Ui-l -2uj
-k

h
i-l/2i+ 1 /2

The corresponding substitution in the next integral of Eq. (4.7) and the exact

evaluation of the resulting expression, yield

l Xi+l

Xi-l

(4.10)n+ 1 dx
u

h
8

The other strategy does not use any representation for the sought solu-
tion [20]. It consists in concent.rating all the information on ui+1; i.e., the value
of the solution at the cell centers, at time In+l. rrhis we do, evaluating the terms
occurring in left-hand side of Eq. (4.7), as accurately as possible, using the values
of tl at the cell ccnt.crs, excl\\sively. An additional condition that we impose, in
order to obtain a tri-diagonal matrix, is th..\.t only three c(~II centers be used. 1'hen

8un+l

~
8un+l

ax
(4.1.1 )Ui+l + 'lti-l -2'ltik + O

( h3k)~: =
II.

i-I/2i+J/2

and

l Xi+

xi-I

.11. + O(h5) (4.12)U"+1 d3:
21J

Equation (4.12) can be derived in many different. ways. For example, the Taylor
serics cXp;t.IISioll of u n+ I ;I.rOII nd thc c<-'IJ CCIII,(~r .7~i, Inil.y be i II ,,(~gril.t(~(1 i II I,h(~ in tcrvcJ.1

(,7:i-I/2,.7:i+I/2)' WII('II tlli:; is <1011(', to ol>tcl.ill (1.12), f,llc relcl.tiorl

n+l
821£
!1 oJ
(.f.I:~

( 4.13)
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Comparing the results obtained with each strategy, it is seen that Eqs. (4.9)
ttnd (-1.11) coinridc.', wl,il(! (1.10) allcl (" .12) cliffcr. TIllIS, clcpcnclillg Oil the strategy
tl,at W<" Ilave followed, we l,ilV<.' obtili/l(~d two dirrcr<.'llt approxillltttions alld a natural
question to ask, is if the difference between them is relevant. If this were the case,

which one must be preferred.
When deriving Eq. (It .12), we were ttble to obtain the order of precision

of t.II(~ clpproxilnill,ioll. Oil 1,11(' ol.II(~r Ililll(l, i,l 1~(I. ('1.10), tI,e ord(~r of ilC(:llracy is
not given. Ilowever, tllis liltl.cr ordcr of precision call be derived from I~q. (4.12).

Ideed, using the identity

tl~+1 + tl~+11+1 I-I 2U~+1
I'IL~+l + tL~+l + 6'1L~+11+1 I-I I

1t':1+1 + tt ':1+1 + ??,t~I+1
1+1 1-1 --1

(4.14)-
-

12824

Eq. (4.12) can be written as

Xi+

ii-I
Using Eq. (4.13), it is seen that

n+l
a2U

8x2
h3 + O(h5) (4.16)

Therefore

l ri+1

Xi-I
[4.17)

Our conclusion is tllat by Ilaving followed an strategy in which all the information
was concentrated in tile cell centers, tile order of accuracy of the aproximation was
improved by two orders of magnitude.

As mentioned previously, when trying to derive an Eulerian-Lagrangian
FVELLAM in [17], many numerical difficulties were encountered. However, such
difficulties did not show up when deriving CELLAM in [20]. This is so, in spite
of the fact that both methods were derived using constant test functions. Thus,
apparently the explanation of this difference is that the approximation (4.10) was
used in [17], while we used approximation (4.12), which is two orders more accu-
rate, in [20].

5. CONCLUSIONS

The results of this paper indicate that the strategy proposed here, for discretizing
partial differential equations and systems of such equations, has clear advantages
over standard procedures and must be further studied and tested in a wider class
of problems.
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